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Abstract In the present study, the alteration in the sleep EEG in rats due to chronic exposure to

low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields

were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals

has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed

and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep)

revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields

(RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating

a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect

of radiation exposure was proposed and the interaction of the extremely low frequency radiation

with the similar EEG frequencies was suggested.
ª 2012 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Introduction

The widespread of radiofrequency radiation (RFR) sources in

domestic use has increased over the last decades, especially in
the communication field, and public concern has been raised to
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quantify the health hazard problems that may occur due to the
exposure to such type of non-ionizing radiation.

Tissue heating is the most widely accepted mechanism of
microwave radiation with biological systems. These effects can
result from elevations of tissue temperature induced by radiofre-

quency (RF) energy deposited or absorbed in biological systems
through local, partial-body or whole-body exposures. However,
a large bulk of literature have evidenced that several biological
effects of RF can be formed without tissue heating which are

known as non-thermal biological effects of radiation [1].
EEG considered to be a sensitive tool to asses quantify and

classify sleep stages as well as study their changes due to radi-

ation interaction with the brain. In human and most animals,
EEG appears as low-amplitude fast waves during awake state,
high-amplitude slow waves during SWS and low amplitude

fast waves during REM sleep.
.V. All rights reserved.
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It has also been repeatedly reported that exposure to low-
level microwaves produces alterations in the resting or sleep
EEG signal and brain physiology [2–4]. It has been demon-

strated that exposure to pulse-modulated microwaves alters
not only the EEG but also regional cerebral blood flow [5,6].
Furthermore, it has been reported that modulation is crucial

for radiofrequency electromagnetic field-induced alterations
in brain physiology [6].

Sleep function is hypothesized to be the reprocessing and

consolidation of memory traces [7,8]. There is also some recent
evidence suggesting that sleep may help to protect declarative
memories from subsequent associative interferences [9].

Sleep is one of the biological phenomena that can be

affected by RF radiation exposure. Mann and Roschke [10]
reported reduction in latency to sleep onset and the percentage
of REM sleep due to exposure to GSM-like signals. Loughran

et al. [11] reported a decrease in REM sleep latency after
30 min of 894.6 MHz radiation exposure.

In the present study, several aims have been addressed.

First, the non-thermal effect of electromagnetic radiation
was studied by the application of low-level radiation
(0.025 mW/cm2). Second, the differences in the effect of the

continuous and the modulated wave’s electromagnetic radia-
tion were checked out by application of these two types of
radiation. The modulation frequencies were selected to be
within the physiological range of the brain’s EEG signals to as-

sess the interaction of theses similar frequencies. Finally, the
chronic exposure of radiation rather than the acute exposure
was used to investigate the cumulative nature of radiation

effects on the biological system.

Material and methods

Experimental animals

The experimental animals used in the present study were adult
male Wistar albino rats, weighing 175–250 g. The animals were
obtained from the animal house of the National Research Cen-

ter, Egypt. They were maintained on stock diet and kept under
fixed conditions of housing and handling. They were under
controlled light-dark cycle (on at 7 a.m. and off at 7 p.m.)
and temperature conditions (25 ±2 �C). All experiments were

carried out in accordance with the research protocols estab-
lished by the Animal Care Committee of the National Re-
search Center, Egypt which followed the recommendations

of the National Institutes of Health Guide for Care and Use
of Laboratory Animals (Publication No. 85-23, revised 1985).

Experimental design

A total of 40 rats were divided into four groups. Three groups
were irradiated with electromagnetic radiation either 900 MHz

continuous wave or frequency-modulated (8 and 16 Hz) wave
on a daily basis, (1 h per day) for 1 month. The fourth group
served as a control group with the same experimental condi-
tions except radiation exposure.

The exposure setup

The radiofrequency (RF) generator (Aeroflex company,

Model: 2025, UK) connected to a power amplifier (Stealth
Microwave, Model: SM 0520-36, SSB Technologies, Inc.,
NJ, USA) was used to generate the electromagnetic radiation.
The amplifier, in turn, was connected to a circular monopole

antenna designed so that the reflection coefficient at its input
should not more than �12 dBm and fed by a coaxial line
through a Bayonet Neill-Concelman (BNC) connector. The

spatial distribution of the electromagnetic radiation power
density was measured with a field meter (Narda, EMR200, fre-
quency from 0 to 4 GHz, Germany).

The specific absorption rate (SAR) distribution in the rat
head was determined by using the finite different time domain
(FDTD) method, with the aid of the XFDTD Bio-pro soft-
ware (version: 6.3.8.4, NY, USA). Geometric/electric model

was constructed for the animal’s head from the stereotaxic at-
las of Paxinos and Watson [12]. An ellipsoid model with the
internal anatomic layers was used. The standard dielectric

properties [13] were assigned to each layer. The animal head
model was subjected to RFR with the same power density as
that measured by the field meter through the experimental

exposure process. The FDTD algorithm was then applied to
calculate the electric field distribution everywhere inside the
head model. The SAR was calculated at the desired points as

rDED2/2q, where E is the electric field peak value at the point
(V/m), r is the conductivity of the tissue at this point (S/m) and
q is the density of the tissue (Kg/m3). The calculated spatial
peak SAR averaged over 1 g was found to be 0.245 W/kg.

As shown in Fig. 2, rats were housed in a circular plastic
tray (50 cm diameter) which is divided into equal sectors to en-
sure that all rats were equally exposed to radiation. The anten-

na emitting the electromagnetic radiation was fixed in the
center of the tray. To avoid stress, an aperture (1.5 cm in diam-
eter) was made in the upper lid of each sector tip toward the

antenna for animal breathing and this design make the animals
freely direct their heads toward the radiation antenna.

EEG recording and analysis

Under Na-pentobarbital anesthesia (40 g/kg of animal), ani-
mals were positioned in the stereotaxic device (David Kopf
instruments, Tujunga, California, USA) and implanted with

three epidural stainless steel electrodes, of 1 mm diameter,
Electrodes were implanted over the frontal cortex at 3.9 mm
anterior to the Bregma and 2 mm lateral (right) to the midline,

the other electrode was implanted at 6.4 mm posterior to the
Bregma and 4 mm lateral (right) to the midline, whereas, the
third electrode (reference electrode) was implanted over the

cerebellum 1 mm posterior to Lambda, on the extension of
the midline [12]. The three electrodes were connected to a mul-
tipin connector base, and the entire assembly was fixed to the
skull and isolated with dental cement (zinc polycarboxylate

non-irritating dental cement, purchased from Spofa-Dental-
Praha, Czech Republic).

During EEG recordings, rats were housed in a sound atten-

uated, aerated and electrically shielded cage (25 · 25 · 30 cm).
They were left 30 min prior to recording for acclimatization to
the laboratory environment. EEG recordings were performed

at fixed time of the day under the following conditions;
50 Hz notch filter and sampling rate of 200 sample/s.

REM sleep was characterized by low-voltage (desynchro-

nized) EEG activity and continuous high theta power (4–
8 Hz) [14,15]. SWS was characterized by high-voltage (syn-



Fig. 1 EEG time domain signals and their corresponding power spectra during: (A) SWS and (B) REM sleep in an unexposed rat.

Fig. 2 Exposure set-up of the animals with the antenna placed in

the center.
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chronized) EEG activity and high delta power (1–4 Hz). Using
both the time and frequency domains criteria, the two different
sleep states were distinguished over 1 h of EEG recording
session.

The Fast Fourier Transform (FFT) was used to convert
data from the time domain to the frequency domain to obtain
power spectra for each of the SWS and REM sleep samples.

The obtained power spectrum of each sample was segmented
into five frequency bands, delta (1–4 Hz); theta (4.1–8 Hz); al-
pha (8.1–13 Hz); beta-1 (13.1–18 Hz); beta-2 (18.1–30 Hz). The

band power (BP), which is the integration of the power in cer-
tain EEG band, for SWS and REMS states were calculated,
then an average was estimated over 1 h of EEG session. For

comparison purpose and to overcome the inter-individual vari-
ations, a normalization of band power was achieved by divid-
ing value of the individual band power by the total power of all
bands for each animal.
The latency of REM sleep, which is the period of time be-
tween the onset of sleep and the appearance of the first
REM, was measured. Statistical analysis between control

and irradiated animals were determined by using student’s
t-test.

Results

Identification of SWS and REM sleep patterns

The base line recording of rat’s EEG during SWS and REM
sleep is illustrated in Fig. 1A and B, respectively. As shown
in Fig. 1A, the pattern of the EEG recorded during SWS is

generally characterized by high amplitude and slow frequency
in contrast to the pattern of EEG recorded during REM sleep
which is characterized by lower amplitude and higher fre-

quency as shown in Fig. 1B. On the basis of amplitude and
frequency analysis the two types of sleep (SWS and REM)
were identified.

Effect of continuous and modulated RFR on EEG bands power

during SWS

The effect of RFR on the EEG band power (BP) values during
SWS in adult male rats is presented in Table 1 and Fig. 3. Gen-
erally, The RFR resulted in non-significant changes in the BP
values during SWS. At continuous RF, the BP values of both

theta and alpha frequency bands showed increases (+7.477%
and +19.093%, respectively) with respect to the control val-
ues, while the delta BP value showed a decrease of

(�13.857%) below the control value. Beta-1 and beta-2 fre-
quency bands showed nearly control-like values (+0.512%
and 0.416%, respectively).

At 8 Hz modulated RF, there was an increase in the band
power (BP) value of the delta and theta waves (+6.205%
and +3.673%, respectively). However, The BP values of al-

pha, beta-1 and beta-2 frequency band showed decreases with
respect to the control group, the highest decrease was observed
for the beta-2 (�19.351%), followed by beta-1 (�8.738%) and
the least decrease (�6.315%) was recorded for the alpha band.



Table 1 Effect of RFR on the EEG band power during SWS.

SWS EEG band Control 900 MHz 900 MHz modulated at 8 Hz 900 MHz modulated at 16 Hz

Delta 37.84 ± 2.27 32.59 ± 2.39 40.18 ± 3.45 37.75 ± 3.7

Theta 28.04 ± 0.92 30.14 ± 0.66 29.07 ± 2.30 27.11 ± 0.58

Alpha 17.91 ± 1.54 21.33 ± 1.11 16.73 ± 2.55 20.09 ± 2.12

Beta-1 9.18 ± 0.99 9.23 ± 0.50 8.37 ± 1.22 9.62 ± 1.51

Beta-2 6.97 ± 0.64 6.99 ± 0.70 5.62 ± 0.61 5.59 ± 0.84

Mean ± SEM values.
\Significant P< 0.05.

Fig. 3 Percentage differences between control and irradiated

groups of EEG bands power at 900 MHz un-modulated wave and

900 MHz modulated at 8 and 16 Hz during SWS.
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At 16 Hz modulated RF, The increase was detected in the
alpha and beta-1 frequency band, (+12.185% and +4.859,
respectively) whereas, delta, theta and beta-2 BPs showed de-
creases with respect to control values (�0.216%, �3.313%
and �19.824% respectively).

Effect of continuous and modulated RFR on EEG bands power
during REM sleep

The data showing the effect of RFR on the BP values during
REM sleep of adult male rats is presented in Table 2 and

Fig. 4. At continuous RF, non-significant changes were re-
corded, however the low frequency delta BP showed a moder-
ate increase (+18.567%) above the control value, the theta

and beta-2 BPs were recorded nearly normal-like values
(+2.234% and �1.144%, respectively). Meanwhile, the BPs
of alpha and beta-1 showed moderate decreases (�19.904%
and �18.223%, respectively).

At 8 Hz modulated RF, there was a significant decrease
(�15.698%) in the BP value of the theta frequency band. In
Table 2 Effect of RFR on the EEG band power during REM slee

REM EEG bands Control 900 MHz

Delta 23.36 ± 2.02 27.69 ± 2.86

Theta 41.13 ± 2.10 42.05 ± 2.09

Alpha 17.44 ± 2.09 13.97 ± 2.09

Beta-1 8.28 ± 0.56 6.76 ± 1.22

Beta-2 9.61 ± 1.32 9.49 ± 1.81

Mean ± SEM values.
* Significant P < 0.05.
beta-2 BP value a considerable but non-significant increase
(+27.646%) was recorded with respect to the control group.

Moderate and slight increases in the BPs of delta and beta-1
were observed (+14.222% and 8.628%, respectively). Mean-
while, the alpha BP was recorded as nearly a control-like value

(�1.834%).
At 16 Hz modulated RF, The theta BP showed a significant

increase (+19.464%) and beta-1 band power showed a signif-

icant decrease (�27.794%) with respect to the control group.
Considerable decreases were observed in beta-2 and alpha
waves (�22.223% and �28.097%, respectively). Delta BP
showed an increase by +6.349% above the control value.

Effect of continuous and modulated RFR on REM sleep latency

The effect of RFR on the REM sleep latency period (the time

between the onset of the rat’s sleep and the appearance of the
first REM period) during 1 h of sleep in adult male rats is pre-
sented in Table 3 and Fig. 5. The three irradiated groups

showed increases in the REM sleep latency period with respect
to control. At continuous RF and 8 Hz modulated waves, a
considerable increase above the control value were obtained,

(+28.220% and +13.794%, respectively) compared to the
control value. However, at 16 Hz modulated RF a significant
increase in the REM sleep latency period (+94.252%) was
determined as compared to the control.

Discussion

The spectrum of rodent sleep is typically divided into two cate-

gories: slow wave sleep (SWS) and rapid-eye-movement (REM)
sleep [16,17]. Both these states of sleep could be easily distin-
guished from each other by inspection of sleep EEG signals

amplitudes and frequencies (see Material and methods section).
Based upon this sleep phenomenon, the present study aimed to
investigate whether these two states of sleep could be affected

differently by electromagnetic radiation field’s exposure.
p.

900 MHz modulated at 8 Hz 900 MHz modulated at 16 Hz

26.68 ± 1.16 24.84 ± 3.73

34.67 ± 1.53* 49.14 ± 1.66*

17.12 ± 1.82 12.54 ± 2.59

8.98 ± 1.15 5.98 ± 0.75*

12.26 ± 1.14 7.47 ± 0.9



Fig. 4 Percentage differences between control and irradiated

groups of EEG bands power at 900 MHz un-modulated wave and

900 MHz modulated at 8 and 16 Hz during REM sleep.

Table 3 Effect of RFR on latency (sec) of REM sleep during

1 h of sleep.

REM

latency

Control 900 MHz 900 MHz

modulated

at 8 Hz

900 MHz

modulated

at 16 Hz

17.3 ± 1.11 22.2 ± 2.1 19.7 ± 2.45 33.6 ± 2.66*

Mean ± SEM values.
* Significant P< 0.05.

Fig. 5 Latency in seconds of REM sleep for control, un-

modulated and modulated electromagnetic radiation fields. Lines

above bars represent standard deviation.
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The current safety standards of electromagnetic radiation
are based on thermal effects only and completely ignoring

the non-thermal biological and health effects [18]. Several stud-
ies have showed that the low level non-ionizing radiation has
adverse effects on different biological levels [19–22]. In the

present study, we used low level electromagnetic radiation
(0.025 mW/cm2) which resulted in low SAR value (0.245 W/
Kg) to investigate the effect of such non-thermal radiation
on the sleep patterns of rat. Generally, the changes induced

in the sleep EEG frequency bands, either with continuous or
modulated low level radiation fields in irradiated animals with
respect to control animals in the present study, provide evi-

dence about the hypothesis of non-thermal effects of electro-
magnetic on the brain physiology. The mechanism of non-
thermal RFR on biological tissues still under investigation,

however, calcium efflux and free radical production are among
the candidates of the possible mechanism responsible for non-
thermal effects of RFR.

In the present study the exposure of the animals to 900 MHz

RFR either continuous or modulated at 8 and 16 Hz resulted in
non-significant changes of all EEG bands during SWS. How-
ever, significant changes have been recorded during REM sleep

especially with modulated electromagnetic radiation fields.
This result denotes that the REM sleep is more sensitive to
changes due to electromagnetic radiation exposure than SWS.

One possible mechanism for interpretation of the sensitivity
of the REM sleep for RFR is the interaction of the RFR with
the central cholinergic system that known to control both REM

sleep and waking state in the animal [23]. On the other hand,
many studies have shown the importance of REM sleep for suc-
cessful memory consolidation and learning in rats [24–27].
Therefore, the alteration in REM sleep due to RFR may com-
promise memory and learning process in rat.

During REM sleep, in the present study, exposure to RFR

modulated at 8 Hz resulted in significant decrease in Theta BP
(�15.7%) and exposure to RFR modulated at 16 Hz resulted
in a significant decrease in the beta-1 BP (�27.79%). Both of
these suppressed frequency bands have a frequency range

which is similar to the used modulation frequency, respec-
tively. It has earlier been reported that inhibitory as well as
excitatory influences of high frequency electromagnetic fields

are dependent on the kind of signal modulation [28]. Recently,
Hinrikus et al. [29] have found that exposure of humans to
450 MHz microwave modulated at 14, 21, 40, 70 and 217 Hz

affects the EEG frequencies lower or close to the modulation
frequency and that no significant effect was detected at EEG
frequencies higher than the modulation frequency. A review

on animal studies suggested that pulse modulations between
8 and 16 Hz might be critical for physiological effects of
GSM mobile phone signals [30]. It could be suggested that
the presence of such extremely low frequencies, which are with-

in the physiological range of the brain signals, may play a role
in enhancing the interaction of RFR with the brain physiol-
ogy. However, the mechanism of interaction between these fre-

quencies and brain signals still unclear.
Using of acute rather than chronic exposure to RFR led

several studies to report negative effects of exposure on the

brain physiology [31–34]. In the present study; the animals
were exposed to RFR for 30 consecutive days. This relatively
long period of exposure allows the radiation effects to be accu-
mulated and ends up with effects that may have not appeared

in acute experiment. Furthermore, this may explain the dis-
crepancy of results in the literature between the acute and
the chronic exposure to radiation fields.

The irradiated groups, in the present study, showed a large
increase in the REM sleep latency. The change in the REM
sleep latency may suggest initial alterations to the ultradian

rhythm of the SWS/REM sleep cycle [35]. Numerous findings
confirmed that cholinergic mechanisms are essential for the
generation of REM sleep and its physiologic signs [36,37].

The alterations in the cholinergic neurons or their innervations
by the interaction with RFR may lead to changes in the REM
latency.
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Conclusions

In the present study, it can be concluded that exposure to elec-
tromagnetic radiation in awake animals can alter their subse-

quent sleep structure. The REM sleep considered to be more
sensitive for RF radiation than SWS as indicated from sleep
EEG data analyses. The using of frequencies similar or close

to the biological frequencies could result in more adverse effect
than other frequencies which lie far from biological frequen-
cies. The increase in REM latency after irradiation denotes
change in the sleep pattern of the exposed animals and pro-

vides evidence about the adverse effect of non-thermal electro-
magnetic radiation fields on brain physiology. Further studies
are needed to explore the mechanism of interaction between

electromagnetic radiation fields and the biological phenomena.
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low-level extremely low frequency-modulated microwaves

affects cortex–hypothalamus interplay in freely moving rats:

EEG study. Int J Radiat Biol 2010;86(5):376–83.

[23] Marrosu F, Portas C, Mascia MS, Casu MA, Fà M, Giagheddu
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