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In proving limit theorems for some stochastic processes, the following classes of distribution 
functions were introduced by Chover-Ney-Wainger and Chistyakov F belongs to Y(y) if and 
only if: 

(i) lim,,, F’2’(X)/&) = c < 00, 
(ii) limX-+ao p(x - y)/&) = eYY for all y real, 

(iii) 1: eyy dF( y ) < 00. 
Some new results on Y(y) are presented. The class Y(y) is strictly smaller than the class of F 
for which the distribution function 1: e”’ dF( y)/l,” e”’ dF(y) belongs to Y(O), although several 
papers assume the two classes coincide. Consequences of the one-way inclusion in renewal theory 
and random walks are investigated. 

AMS 1980 Math. Subj. Class.: Primary 60E05, Secondary 60F95 
Compound Poisson random walks 
renewal theory subexponentiality 
tails of probability measures 

I.. Introduction 

We consider distribution functions on [0, o~j[ with unbounded support. We write 
Ffn’ for the nth-convolution of F with itself, F - 1 -F for the tail of F, p = I- 
F(“), and lower case letters f, g always denote Laplace-Stieltjes transforms of the 
corresponding distribution functions F, C. 

A distribution function F on [0, CO[ belongs to Y(y) with y 2 0 iff 

(i) lim,,, F~(x)/P(xJ=c<oo, 
(ii) lim, +oo P(x - y)/P(x) = eyy, for all y real, 

(iii) f(-r) = Itp eyx dF(x) < 00. 
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Belgium. 
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These classes of functions were introduced independently by Chistyakov [2] and 
Chover-Ney-Wainger [3,4] to obtain detailed information about the YagloTn limit 
in a subcritical, age-dependent branching process for which the _Malthusian para- 
;neter does not exist. Other applications include renewal theory [16], random walks 
[18], queues [lo, 131 and infinite divisibility [7, 81. 

In [16] the following related classes were investigated. 

Definition 1.2. A distribution function F on [0, a[ belongs to Y(y) iff 

(i) f(--r)<aJ, 
(ii) the so-called y-transform F,, defined by 

F,(X) =f(-y)-’ 1’ erv WY) 
0 , 

belongs to Y’(O). 

The class 9’(O) of subexponential distributi,on functions is usually denoted by 9. 
An extens!3e study of 9 and its applications is given in [6] and [S]. In [16] it was 
stated that, for all y 30, 9’(y) = Y(y). However, as mentioned in [8, Remark 21, 
the proof of this result is incomplete: in the present paper, we prove that for 
y > 0,9’(y) f Y(y) (see Section 3). This has many ramifications, on which we shall 
comment in Section 5. For reasons that will become clear at the end of the paper, 
we shall mainly focus on properties of Y(y), and in Section 2 we bring together 
most of the important theorems about it. In Section 4 these results will be applied 
to the compound Poisson case, indicatiing very naturally how both classes give rise 
to different limit theorems. The compound Poisson example covers most of the 
known applications. 

2. Properties of Y( y ) fmctisns 

Lemma 2.1 ([3]). Using the notation of Definition l.1 
that c - 2f(-y). 

for all F in Y(y) we have 

This result is by no means trivial, its prooE depending heavily on Banach algebra 
iechniques. Using Lemma 12.1 we can rewrite Definition 1.1. 

on 2.2. F belongs to S(y) iff 
(i) lim,,, P(x)/i;;(x)=?,f(-y)cco, 

(ii) lim x+oD P(x - y)/P(x) = eyy for all y real. 

The class of d.f.‘s satisfying Definition 2.2(ii) will be denoted by .9(y). We refer 
to Embrechts-Goldie [6] for some closure properties of A?(y). The convergence in 
(ii) is automatically uniform on y-compacta (see [ 17, 121 or more recently [ 1, 
appendix]). 
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Lemma 2.3 ([M, p. 1002 bottom lines]). If lim,,, p(x)/.&) = c <OC and 
FEZ’(~), then f(-y&a. 

Lemma 2.4. Suppose F’ E A?(y) and E > 0, then 
(i) limX+oo e (y+“x&) = cje, 

()I 00 ii oe (y+&)y dfT(y)=QQ. 

Proof. (i) FE 3’(y) is equivalent to regular variation, with index -‘y, of F(log x). 
By a standard property [12, p. 181, lim,,, x”‘&log x) = ~0, and (i) follows. 

(ii) Since I,” e(“+‘)’ W(v) 3 e(Y+e)x&), (ii) is immediate. 

From (ii) we see that the assumptions f(-y) < 00 and F E 9’(y) imply that -y is 
the left abscissa of convergence of f. By itself, the assumption f( - y) < 00 implies 
lim x+ao eyx&) = 0. 

An explicit example of an Y(y) function is 

e-1’(4t)-yf &, x 3 (! 
3 

x co. 

(For details, see [2, p. 6461.) On the other hand the gamma distribution with 
parameters a and 6, 

F’(x) = b-“/T(a)/-’ e-x’61Lo,&), 

with f(s) = (1 + bs)-O, Re s > - l/b, satisfies F ~9(l/b) but p(x)/&) does not 
converge to a finite limit. Note that f(-l/b) = 00 (cf. Lemma 2.3). 

Lemma 2.5 ([4]). SupposeF E 9’(y) and n 2 1 an integer, then lim,,, P(x I/&) = 
nf(-y)“? 

Lemma 2.6 ([14]). If F E .Y( y) and E > 0, then there exists a constant K < 00 such 
that for all n 2 1 integer and for all x positive, 

F7”5(x)lfl(x)~K(f(-y)+~)n. 

eorem 2.7. Suppose F E Y’(y) and that for a distribution function G on [O, 001, 
lim x-,,oo &)/F(x) = c where 0 CC < 00. Then G E 9’(y). 

. The assumptions give G E 5?(y) Because 

I 
al 

f(-r)=l+y eYy&) dy e 00, 
0 

it is easy to see that g(-y) is als(> finite. 
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Fix II> 0 and x > 2v. Put X, Y independent random variables, with common 
distribution function G. Then 

(x+Y>x)={x~v,x+Y>x}u{vcx~x-v,X+Y>x} 

v(Y>v,X>x-v)v(Y==v,X+Y>x). 

The events on the right-hand side ueing disjoint we conclude 

mx)_, “ax-y) 

ax) I 0 G(x) Wy) + 5 x-” G(x - y) 
- G(x) dWy)+ 

G(X-v) - 
V 

G(x) G(v). (1) 

WriIing 1(x, 0) = I,“-” (G(x - y)/G(x)) dG(y), we shall show that 

lim lim+yp 1(x, v) = 0. (2) 
?J+oO 

Using G E .5?(r), the rest of the right-hand side of (1) converges to 2 ji e”’ dG(y) + 
e”%(v) as x -*oo, and the latter converges to 2g(-r) as v +OO, so that, when (2) is 
established, the proof will be complete. Fix E satisfying 0 < e C c, and x0 such that 
c--E&(x)/&x)sc+E forallx~xo.Then,forv~xoandx>2v, 

rt.Y, v)a -(c +&j(c -e)-l I x-v (&x - y )/F(x)) d&y) 
V 

c + & E(v)G(x - v) .F(x - v)G(v) v G(X-t) - =---------_ 
f c-e i P(x) - P(x) - x-v P(x) I dF0) 

G(x-vu) G(x) F(x-v) - _- 
G(x) P(x) Rx) 

G(v)+(c te) 

s-(c+c)(c --E)-l(c e”?(v)-e”%(v)-(c+E)H(v))+o(l) 

as x -+ 00, where 

I 

X-V 

H(v) = 15+1~p (Rx - y )/Rx)) WY )* 
V 

By replacing G by F in (1) one finds lim,,, H(v) = 0, and SO (2) is proved, as 
required. 

A useful inequality is the following. 

%e . If F E 2?(y), then, for all n 2 1 integer, 

lim inf fl(x)/P(x) 3 nf(-#-l. x-*co 

is result holds even if f (-- y) = oo.) 
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Proof. For x 2 A, 

I 
m 

P(x) = F(x-t/\A)dF(“-‘) -t) dF(t) (3) 
0 

where t A A denotes :minimum of t and A. Let I, denote lim inf,,, ~(x)/&x). 
Divide (2)) by F(x) and use Fatou’s lemma: 

00 

I, 2 I lim (&x - t A A) / p(x)) dF’“-“( t) 
01 x+Q) 

+ low lirnef( I~O,x-~#) Tr) 2(-T) dF(t). 

By Embrechts-Goldie [6, Theorem 3(b)] we know that 6;‘ E s(y) implies F’“-“E 
A?(y), and so the lim inf in the last integral reduces to In-1 eyr. Thus 

c al 

r, 2 e y(r,rA) @h-l) (t) +&-lf(-y) +f(-y)“-’ + Inwlf(--y) as A --) 00. 
JO 

The result follows by induction. 

The following lemma provides a useful criterion 

Lemma 2.9. Suppose FE 5f( y) and for some n ->s 2, 

lim sup (P(x)/&)) s nf( -yY < 00. X-+X) 

Then FE 9’(y). 
< 

for proving Y(y)-membership. 

Proof. Let S,, denote lim SU~~+~ F’“‘(x)/F(x). Divide (3) ty F(x) and take lim sup, 

then the first term on the right-hand side converges (by dominated convergerace) 

nf C--y) 

+ limssp 
F-(x - tj w(tj 

F(x) l 

Therefore 

nf(__r)“-’ _ e~(tnA) u(n- l)(t) s 

2: lim sup -- 
F(X -t) M(tj 

X+a F(x) 

2~ lim sup 
x+m 

=: S,_1 lim 
I 

A P-(x - t) d$+(t) --- 
x+00 0 j_(x) 
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(the latter limit exists, by dominated convergence, because: Ftnsl’ E y(y)) 

I 

A 

= s n-1 eyt dF(t). 
0 

Let A + 00, whence &-I s (ti - llf(-r)“-* . Repeating the process we find eventually 

that S2 s 2f(- y), and so E;’ E Y(y) by Lemma 2.8. 

A crucial point for proving limit theorems using Y(r) functions is the convolution- 
roots closure of Y(y). The following theorem is the best known result in that 
direction. 

Theorem 2.10. If F ~2(y) and, for some positive integer k, Ffkk Y’(y), then 

,F E 9’(y). 

IProof, From Lemma 2.5 we know that FTn;r(x)/p(x)+2f(-y)k. Moreover, 
all positive-integer convolution powers of F are in 9(y) (see [6, Theorem 3(b)]). 
‘Now for fixed A and any x 3 A, 

2 
I 

A F’&‘(x - t) 
d=‘“](t) + 

I 

x-A F’“‘(X - t) 
dFtk’( t) + 

P(x -A)*- 

0 P(x) 
F (A)= 

A P(x) Fcx) 

F(x) 
=7-J 

F (x) 
+2f(--yY asx+oo. 

0n the left-hand side the first term converges, using dominated 
2 1: e”’ dFtk’(t) and the third term converges to eyAF’k’(A). Thus 

convergence, to 

Amb - t, &k'(t) 

p(x) 
3 

2 ear #d(t) _eYAF(A) . (4) 

Fix u > 0 so that F’k-“(~) > 0. Then, for x 2 4u, we can split up F’k’(x) to get 

(x)+ !4(~), say. 

We bound 12, I3, Id in turn. 
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Provided the integrand of 12 is dominated by some function of t which is integrable 
with respect to dF(t) over ]0,2u], we may by Fatou’s lemma say that 

2u 

lim sup 12(x ) s 
F-(x - 0 H(t) 

lim sup - 
X+W J 0 x+00 

I 

2u 
F-(x - t) = J lim sup 

lim F”k-“k’(~ - t) 

0 x+00 F((k-l)kT(~ -t) x-*Q~ fl(, -t) 

x lim F% - t! 

XLF71;r(X) 
dF(th 

where, in the latter integrand, the middle factor is (k - l)f(-y)k’k-2’ because Ftkk 
Y(y), using Lemma 2.5 (i.e., the limit exists and has this value) and the limit in 
the third factor exists and is e”’ because Ftkk Z(y). The first factor (the lim sup) 
is at most l/(I~f(-y)‘~-“~) because F’k-1’ ~.9’(y), using Lemma 2.8. The required 
domination of the integrand of 12 is obtainable using these results, and so the use 
of Fatou’s lemma is justified and we have 

lim sup 12(x) s ((k - 1)/(/#-y))) J2’ eYf dF(t). 
.x*m 0 

(6) 

For 13, let Sk-l, &, Sk be mutually independent random variables with distribution 
functions F’k-” , F, Ftk’ 1 espectively, and set Sk = skYI + & Then 

J 
x-2l.4 

F’k-l’(u) F=(x - t) dF(t) s 
2u 

x-2u 
</(k-l) 

( )I P(x -t) W(t) 
1 

. U 
2u 

= P&-l s u)p(2u <& SX -2u, x <xk +sh) 

(u <Sk sx -u,x <Sk +s;), 

so that 

J 
x - u 

F’k-1’(~)13(~) 6 (P(x - t)/p(.r)) dF’k’(lL) 
14 

J 
00 

+2 e”’ c@‘(t) - eYuF’k)(u) 
u 

by (4), as x + a. Lastly, 
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Then from (5), (6), (7) and (8) 

e”’ dF(t) - eyr dF’%) 

- jim(2u) e2yu + l/k asu+m. 

Now let .xk + 00 be any sequence such that p(x)/&) -# r s 00. Then 

(9) 

II (xn ) = 
&l) I 2u F(x, -t) 

P(x,) 0 
F(x ) ~‘k-“u) 

n 

I 
2u 

41/r) eyr dF’k-“( t) 

0 

as n -+ 00, by dominated convergence. Therefore, the right-hand side of (10) is at 
least the right-hand side of (9) and letting u + W we conclude that f(-y)k-l/r 2 l/k, 
so that 

lim sup F’k’(x)/&) G kf(-y)k--‘. X-PC0 

The proof is ended with an appeal to Lemma 2.9. 

The basic assumption Fik) E Y(y) already implies that Ffk) E .2(y); however, we 
cannot prove that it always follows that FE S(y). Therefore we made the following 
conjecture [6]: 

“If for any integer k 2 2, F’“‘E Z(y), then FE S(y)“. 

3. The counterexample 

Theorem 3,l. For every y > 0,9’(y) s;; Y(y). 

Proof. (i) Suppose F E Y(y) and denote H(x) = F&r) (see Definition 1.2(ii)). Now 

fl(x) =f(-r)-’ lW cry dF(y) 
X 

=f(-79-l eyxF(x) + yf(-y)-* Irn eyyF(y) dy 
X 

- yf(-74-l eyyF(y) dy as x + 00, 

using the slow variation of u’F(log u). One easily proves that 

H”‘(x) = f(---~)-~ Ix eyy dF”‘( y ) 
0 
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and so 

p(x) - rf(-r)-* Im eyyp(y) dy, 
x 

using the slow variation of p(log U)U 7 Thus 

lim p(x)/&) = f(-r)-’ lim F(x)/&x) = 2, 
X+00 X400 

whg:nce F E F(y). 
(ii) Y(y) #Y(y). Let c = CTzl n-* ew2” and let F be atomic with atoms of mass 

-1 -2 -2” 
c 4 e at the points 2”, n = 1,2, . . . , Then 

a0 

f( 1) - = ex dF(x)=c-’ C n-*=n*/(t~). 
n= 1 

So, with y = 1, &, is atomic with atoms of mass 6/(n2n2) at points 2”, n = 1,2,. . . . 
Now, for 2”-’ sx <2”, 

l&(x)/&(2x) = t j-*/ g j-* + I asx-,a. 
j=n j=n+l 

Thus PI, being monotone, is slowly varying, so F1 E Sp. However, F does not 
belong to any Y(r) for y >O, because F(2” + 1)/&2”) = 1 for all n. Indeed, 
lim x-+oo F(x + t)/&) fails to exist for any t # 0, as one may see directly or from the 
consideration that the limit would have to be an exponential function, as a monotone 
solution of the Hamel functional equation. 

The example above is similar to the one given by Feller [9, Example 321 showing 
that a function with a slowly varying partial moment need1 not be regularly varying 
itself. It follows from the proof that there exist F(y) functions for which &x - y)/ 
F(X) does not converge, this being one of the main disadvantages of these classes. 
Theorem 3.1 also shows how to interpret the following st’atement of Chover-Ney- 
Wainger [4, p, 6641: 

“One way to construct densities whose distributions are in Y(y) for 
y > 0 is to multiply densities whose distributions ar? in Y’ by negative 
exponentials. Thus, if G is absolutely continuous and G’(t) - 
t-b e-Ye, b > 1, then G is such a distribution”. 

In this paragraph, we always suppose A > 0 and, for a certain distribution function 
G on [0, a[, F to be a (A, G)-compound Poisson distribution, 

F(x) = e-’ f (A “/n !)G'"'(x). 
n=O 

(11) 
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Often on,e is interested in relating the behaviour of P and G for large X, This was 
done for subexponentfal distribution functions in [8], generalizing the regular 
variation case dealt with in [5, 9, 141. In getting exponential rates of decay, the 
classes Y’(y) and Y(y) provide nice limit theorems. 

Theorem 4.1. Suppose y > 0, then the following statements are equivalent: 

(9 F E T(Y), 

(ii) G E T(y), 
(iii) Cm,,, F&)/G,(X) = hg(-y). 

Proof. Using the fact that (M * NJ,, = M,, * NY9 whenever these y-transforms exist 
(* denotes convolution), one easily verifies that, for all x positive, 

FT (x) = e-An(-y) “f. ((M-y))“ln Wf (4. (12) = 

But then the result immediately follows from Embrechts-Goldie-Veraverbeke [8, 
Theorem 31, indeed 

F E <Y(y) * F, E Y (Definition 1.2) 

e G, E P’ ([8, Theorem 3) and (12)) 

e G E F(y) (Definition 1.2) 

CI, &x)/G,(x) + hg(-y) ([8, Theorem 31 and WV), 

finishing the proof. 

Whereas the T(y) result follows directly from the known 9 theorem, the Y’(y) 
case is much more involved and needs a proof along the same lines as in the 5” 
case. However, we have to impose some extra conditions: this is a general feature? 

Theorem 4,2. (We use the above notation.) 
(i) If FE Y(y) and for a certain, positive integer k, such that 0 c A/k < 

log(2f -I”(-y)), we have F(‘lk) &E(y), then G E Y(y) and moreover F(x) - 
Af(-y)&) as x + so. 

(ii) If G E 9’(~)~ then FE Y(y) and indeed F(x) - hf(-y)&). 
(iii) Suppose F(x) - Aft--y)G(x) as x + 00 and F E Z’(y), then F, G E Y(y). 

Proof. (i) Consider, for x 20, 

R(X) = 1.e” - 1)’ f (A “/n !)G’“‘(x). 
n= 1 

(13) 

(14) 

Then 

(e” - 1) e-%(x) = F(x)-e-“&(x) 
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where &(x) = 0 (X < 0), = 1 (X 23 0). SO for x > 0, 

(1 -e-“)R(x) = F(X). (13 

Taking Laplace-Stieltjes transforms in (14) we find 

r(s) = (eAg’“‘-- l)/(eA - l), Re s 3 -y. (16) 

Assume in the first piart of the proof f(-7) < 2 and O<A <log(2/f(-y)). Using 
(16) the latter is equivalent with 0 < (e” - l)r(-y) < 1. So for all x 3 0, 

al 

AG(x)=- c n-'( 1 - eh)nR(n)(X). (17) 
n=l 

By (15) and Theorem 2.7, I? E Y’(y), whence using (for R) Lemma 2.6 and domi- 
nated convergence in (17), we get 

lim A&x)/R(x) = (e’, - l)(l - (1 -e”)r(-y))-‘. 
X-+00 

From I? E Y(y) and Theorem 2.7 we conclude G E Y’(y) and moreover 

lim x-am Pb)/d(x) = Aj’(- y)* 

Now fix A > 0 arbitrarily. We can find a positive integer k such that 0 <: A/k C 

wPk C-Y)), i.e., f(-r) < 2k and A < log(2kf-‘(-y)). 
By assumption, such a k exists for which F(l’k’ E 3(y). Consider 

H(x) = e-A’k E. ((A/k)"/n !)G(")(x). 
n- 

Then Htk’ = F E Y’(y) and H = I=‘l’k) E.Z(Y), so Theorem 2.10 yields HEY(Y). 
Moreover, h(-r)C2 and O<A/k<log(2/h(-y)), ard therefore the first part of 

the proof applies. 
(ii) This is easy, using Lemmas 2.5 and 2.6, Theorem 2.7 and dominated conver- 

gence. 
(iii) Since FE 9(y), we also have G E Z(y). Using Lemma 2.8 we find for all 

integer n 

“m&f ;P(xj/G(x) 3 n(s(-y))“-l C m. 

so 

P(X)/&) = (e-“A 2/2)(7;12T(x)/G (x) + CA n;2 (h”/n!)z?qX)/aX)L 

from which it follows easily that 

lim sup ZP(x)/G(x) s2g(-y), 
X-+00 

whence G E Y(y), consequently FE Y(r). 
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A solution of the above mentioned conjecture on convolution-roots closure of 
Z(y) would enable us to drop the technical assumption in part (i) of the theorem. 
Howczver, the extra assumption FE Z(y) in part (iii) seems to be much dleeper and 
is intimately related to the question of the relation between the convergence of 
P(X)/&) and that of P(x - y )/F(x). An example of a distribution function for 
which P(X)/&) converges but &x - y)/&) does not would elucidate this 
problem. 

The main difference between Theorems 4.1 and 4.2 is the ‘Mercerian’ statement 
(iii); indeed in Theorem 4.1 one compares integrated tail&‘,,/ & whereas in Theorem 
4.2 one has much more precise information, namely on the tails F/G itself. This is 
one of the reasons why we focus on Y(r), rather than on 9(y). 

These considerations also clarify the general remark on the importance of Y(y) 
as a Mercerian class, given in [16, p, 10101. 

5. Some applications 

In both1 [ 161 and [ 183 the classes 9’(y) were used in order to derive limit theorems 
for distribution functions with exponential tail decay. However, the results were 
baded on the misapprehension that Y(y) = 5’). It is the aim of this paragraph to 
present the correct statements, using the previous theory on Y’(y) and T(y). 

In [16] the context is transient renewal theory. Let F be a defective distribution 
function such that F(O+) = 0 and for all x positive F(x) < Ei(m) = a where 0 < CII < 1. 

The renewal function associated with F is given by U(X) = cz= 1 F(“)(x), which can 
be rewritten as 

R(x)=(l-cu)cc’ f a nG(n)(x), 
n=l 

(18) 

where the nondefective distribution functions R and G are defined by R(K) = 
(1 -a>~‘-‘U(x) and G(x) = a?F(x). 

The relation (18) being compound geometric, we can prove the following 
in a similar way as in Theorem 4.1 (but now the corresponding 9 result is [B, 
Corollary 31). 

Corollary 5.1. Assume f (- y) = jr e”’ U(y) C 1, where y 2 0. The following state - 
men ts are equivalent : 

(9 
(ii) 

(iii) 

F-‘(m)F(x) E T(y). 
U-‘(@U(n) E T(y). 

lim 
X-+00 

;;;;-Fu;o=(l -f(-y))_2, 
Y -y 

where Us = ji ey9 dU(y), F&d = Iox eyy d 
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This result corrects [16, Corollary 61. Observe that (iii) is not equivalent to 

(i”j 

iam 1 _F-l(oo)F(x) = (1 --f(-Y>rl* l.m l- mww 

We know that (iv) plus the extra condition .F’-‘(@F(x) E A?(y) yields F-‘@:,)F(x) E 
Y’(y) which follows as in Theorem 4.2(iii). Further information on Y(y) functions 
in this set up can be obtained from Theorem 4.2. 

In [18] the context is random walk theory. Suppose F is a distribution function 
on the real line. Given X1, X2, . . . a sequence of i.i.d. random variables, distributed 
according to F, we denote N = min{n > 0 i S, = $, X’ > 0) and fl= 
min(n > 0 1 S, < 0). Writing f, f+- and f_ for the Fourier-Stieltjes transforms of X, 
SN and SN we get the Wiener-Hopf equation 1 -f(t) = (1 -f,(r))(l --f-(t)). The 
distribution functions of S N and SN are denoted by F+ and L whereas 
&(x) = F(x)&(x) and for all x for which the integrals exist 

PO+ 

I 

00 

g-(x) = 
4 

exy fl-(y ), g+(x) = emxy dF,(y). 
-C0 o+ 

According to the constants A = Cz__=, K?(S, SO), B = CT= 1 n‘-'P(S,, > 0) there are 
three cases to consider: 

(i) A < 00 (hence B - 00) so F,(oo) = 1 and F_(Q+) = I -e? 
(ii) B < OQ (hence A = 00) so F+(m) = I- e’-& and F.. (O+) = 1. 

(iii) A = B = ~0, then E’+(m) = F--(a) = 1. 
In [18] eq. (14) reads, for x positive, 

P(x) 
F&0) -F+(x) = l- I O+ F+(az) -F+(x - y) 

-cQ F+(co) -F+(x) w-w 
Using dominated convergence and Proposition 2.7 we find the following. 

Corollrary 5.12~ Suppose y > 0 and F+ E 9’(y), then 

lim 
fW 

x4m F+(m) - F+(x j 
= 1 -g-(y) 

and F. E Y(y). 
If F+ E 9 and A < 00 (i.e., g. (0) = 1 -- eMA < l), then FOE Y nnd 

lim 
P(s) 

x+00 F+(m) -F+(x) 
= 1 -g_(O) = CA. 

Moreover we know that [18, eq. (lS>] 

f (-ir) I 
0-t 

F+y(x) = (1 -g_(y))g+(-.y) 
&(x -y) dG’(y) for y >O, 

-_oo 

F+(x) = (l-g_(O))-' jn’&+y)dG(y) fory=&,A<(‘e. 
-.5 

(19) 

pII) 

(21) 
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In the above G is defined for all y 3 0 as 

G(x) = (1 -g-(y)) : @“)(x), B(dx) = e”’ dE(x). 

Corolllary 5.3 
F+ E 9’(y) and 

Corollary 5.4 
F+ E F(y) and 

kZ- -0 

(from (21)). Suppose A finite and y 3 0, then FOE WY) implies 

lim,+,(~+(x)/~(x)) = (I- g-(r))-l. 

(from (IO)). Suppose A infinite and y > 0, then FOE Y(y) implies 

lim (F+,(x )/F&)) = 
f(-ir) 

x+00 (1 -&(Y)k+(-Y)’ 
(22) 

Corollaries 5.2,X3 and 5.4 correct the corresponding statements in [ 18, Theorem 
11. Finally, we should remark that it is mainly (20) which causes the problems; 
indeed, as shown in Corollary 5.4, if the right tail of F belongs to Y(y), then we 
know that F, belongs to 9and hence dominated convergence in (20) yields F,, E 9’; 
so F+ belongs to Y(y) but not necessarily to Y(y). Moreover, the limit relation 
holds between the integrated tails. The corresponding Y(y) theorem would read 
as follows: 

FU E F(y) implies F+ E Y(y) and (22) holds, 

this result being stronger than Corollary 5.4 in as much that it yields the same 
conclusion on the non-empty set Y(y)\P’(y). However, we have no information 
whatsoever on the tail behaviour of the latter functions. 

In an analogous way one should reformulate [18, Theorem 2(iii), remark and 
corollary on p. 361. For further comments on the importance of these results, we 
refer to r 181. 

6.1. Chover-Ney-Wainger 9141 used the notation Y(d), d 2 1, whenever 

(i) lim,,, 7(x)/P(x) = c < 00, 
(ii) lim,,,, P(x - y )/P(x) = eyy for a certain y positive, 

(iii) f(-yj = d < 00. 
However, we think that labelling these classes according to the left abscissa of 
convergence for f is much more appealing. 

e proof of [I& Theorem l(i)] is incomplete (sr:e [8, Remark 5.2]), and we 
do not know whether its statement, 

“F belongs to 9’ iff lim,,, p(x)/F(x) = c, Snite and 

for all E >O, f(-E) = 00” 
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holds. In the discrete case, a related problem was posed by Rudin [ 11, remark on 

p. 9841. 

6.3. Using the Y(y), Y(y) theory, we could build on Theorems 4.1 and 4.2 to 
obtain more general results on the tail behaviour of infinitely divisible distribution 
functions. Again, the T(y) theorem follows quite readily from the original 9 result 
in [g]. 

Theorem 6,4. Suppose F is infinitely divisible on [0, a[ and y > 0 such that f (-y) 
is finite. If v is the L&y-measure of F, we set p = ~(1, m) and Q(x) = p-%(x, m), 
x a 1. The following are equivalent : 

(9 FE TW 

(ii) 0 E ZQ+ 

(iii) lim,,, FJx)lii,(x) = @4(--Y)* 

The Y(y) version however is overloaded with technical assumptions and will not 
be given. Theorem 6.4 is sharp in as much that for every infinitely divisible F on 
[0, a[, Steutel proved [lS] the following: 

“F is either degenerate or F(x) = exp{-0(x log x )}, x + co". 
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