
Applied Mathematics Letters 25 (2012) 1701–1707

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

The Nordhaus–Gaddum-type inequalities for the Zagreb index and
co-index of graphs
Guifu Su a,b,∗, Liming Xiong a,c, Lan Xu b

a Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, PR China
b Department of Mathematics, Changji University, Xinjiang, 831100, PR China
c Department of Mathematics, Jiangxi Normal University, Jiangxi, 330022, PR China

a r t i c l e i n f o

Article history:
Received 6 November 2010
Received in revised form 2 December 2011
Accepted 30 January 2012

Keywords:
The general Zagreb index
The Zagreb co-index
Nordhaus–Gaddum-type inequality

a b s t r a c t

Let k ≥ 2 be an integer, a k-decomposition (G1,G2, . . . ,Gk) of the complete graph Kn is a
partition of its edge set to form k spanning subgraphs G1,G2, . . . ,Gk. In this contribution,
we investigate the Nordhaus–Gaddum-type inequality of a k-decomposition of Kn for the
general Zagreb index and a 2-decomposition for the Zagreb co-indices, respectively. The
corresponding extremal graphs are characterized.
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1. Introduction

Throughout this paper, we consider only finite simple connected graphs, i.e., connected graphs without loops and
multiple edges. LetG be a graphwith vertex set V (G) and edge set E(G), and |G| and |E| denote its order and size, respectively.

The degree of a vertex u is the number of edges incident to it in G, denoted by degG(u), or deg(u) when no confusion is
possible. Such a minimal number is called the minimal degree δ(G) of G. The distance dG(u, v) between vertices u and v is
the length of the shortest path connecting them in G. Suchmaximal distance between any two vertices is called the diameter
diam(G) of G. The complement of G, denoted by G, is a simple graph on the same set of vertices V (G) in which two vertices
u and v are adjacent if and only if they are not adjacent in G. For the sake of simplicity, we let m = |E| and m = |E|, hence
m + m =

 n
2


, and the degree of the same vertex u in G is then given by degG(u) = n − 1 − degG(u), respectively.

Let k ≥ 2 be an integer, a k-decomposition Dk = (G1,G2, . . . ,Gk) of the complete graph Kn is a partition of its edge set
to form k spanning subgraphs G1,G2, . . . ,Gk. In other words, graphs G1,G2, . . . ,Gk are pairwise edge disjoint, such that
∪

k
i=1 E(Gi) = E(Kn) and V (Gi) = V (Kn) (i = 1, 2, . . . , k), each of the Gi is said to be a cell of Kn. In particular, (G1,G2) is

a 2-decomposition of the complete graph Kn if and only if G1 is the complement of G2. Other terminology and notations
needed will be introduced as it naturally occurs in the following and we use [1] for those not defined here.

A graph invariant is a function on a graph that does not depend on the labeling of its vertices. Hundreds of graph
invariants have been considered in quantitative structure–activity relationship (QSAR) and quantitative structure–property
relationship (QSPR) researches.We refer the reader tomonograph [2]. Among those useful invariants,wewill present several
ones that are relevant for our contribution.

The Zagreb indices have been introduced in 1972 in the report of Gutman and Trinajstić on the topological basis of the
π-electron energy—two terms appeared in the topological formula for the total π-energy of alternant hydrocarbons, which
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were in 1975 used by Gutman et al. as branching indices, and later employed as molecular descriptors in QSAR and QSPR.
The first Zagreb index equals to the sum of squares of the vertex degrees:

M1(G) =


u∈V (G)


deg(u)

2
and the second Zagreb index equals to the sum of product of degree of pairs of adjacent vertices:

M2(G) =


uv∈E(G)


deg(u)deg(v)


.

We encourage the interested reader to [3–5] for more information and details.
The general Randić index was proposed 26 years later by Bollobás and Erdös [6] and Amic [7] independently, for a

parameter α ∈ R − {0}:

Rα(G) =


uv∈E(G)


deg(u)deg(v)

α
.

This index generalized the second Zagreb index and it has been extensively studied by bothmathematicians and theoretical
chemists [8]. Many important mathematical properties have been established in [9].

By observing the common appearance of the general Randić index and the second Zagreb index, Li and Zhao [10]
introduced the first general Zagreb index:

Mα(G) =


u∈V (G)


deg(u)

α
.

The first and second Zagreb co-indices are a pair of recently introduced graph invariants [11], which were originally
defined as follows:

M1(G) =


uv∉E(G)


deg(u) + deg(v)


and M2(G) =


uv∉E(G)


deg(u)deg(v)


.

The Zagreb co-indices can be viewed as sums of contributions depend on the degrees of non-adjacent vertices over all edges
of a given graph, and we encourage the interested reader to [12,13] for some recent results on Zagreb co-indices.

Let I be an invariant of G, we denote by I the same invariant but in G. Nordhaus and Gaddum-type inequalities for the
graph invariant I are as follows:

L1(n) ≤ I + I ≤ U1(n) and L2(n) ≤ I · I ≤ U2(n),

where L1(n) and L2(n) are the lower bounding functions of the order n, and U1(n) and U2(n) upper bounding functions of
the order n. These types of inequalities are named after Nordhaus and Gaddum [14], who were the first authors to give such
relations, namely, the following theorem.

Theorem A (Nordhaus and Gaddum [14]). Let G be a graph with order n and G be its complement. Then

2
√
n ≤ χ + χ ≤ n + 1 and n ≤ χ · χ ≤


n + 1
2

2


,

where χ denotes the chromatic number of graph G.

The extremal graphs for the inequalities in Theorem A were characterized by Finck. Since then many graph theorists
have been interested in finding such inequalities for various graph invariants. We refer the reader to [15] for review of early
results of Nordhaus–Gaddum type.

The following result is a Nordhaus–Gaddum type inequality of k-decomposition of Kn for the diameter [16].

Theorem B (An et al. [16]). Let Dk = (G1,G2, . . . ,Gk) be a k-decomposition of the complete graph Kn. Then for any sufficiently
large n with respect to k, we have

2k ≤ diam(G1) + diam(G2) + · · · + diam(Gk) ≤ (k − 1)(n − 1) + 2.

The lower and upper bounds are sharp.

Motivated by Theorems A and B, in this paper we consider the Nordhaus–Gaddum-type inequality of a k-decomposition
of Kn for the general Zagreb index in Section 3. The Nordhaus–Gaddum-type inequalities for the first and second Zagreb
co-indices of a 2-decomposition of Kn are also investigated in Section 4.
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Table 1
TheM1- and M2-values of some graph classes.

G Kn K n Pn Cn Qk Ks,t

M1 0 0 2n2
− 8n + 8 2n2

− 6n k2k(2k
− k − 1) st(s + t − 2)

M2 0 0 2n2
− 10n + 13 2n2

− 6n k22k−1(2k
− k − 1) s2t2 − 2−1s2t − 2−1st2

2. Preliminary lemmas

In this section, we list or prove some lemmas as basic but necessary preliminaries, which will be used in the subsequent
proofs.

Recall that if a real valued function G(x) defined on an interval has a second derivative G′′(x), then a necessary and
sufficient condition for it to be convex (concave, resp.) on that interval is that G′′(x) ≥ 0 (G′′(x) ≤ 0, resp.).

The fundamental discrete Jensen’s inequalities show the following lemma.

Lemma 2.1 (Hairer and Wanner [17]). Let C be a convex subset of a real vector space X, let xi ∈ C and σi ≥ 0 (i = 1, 2, . . . , n)
with

n
i=1 σi = 1. Then

(a) Φ


k

i=1

σixi


≤

k
i=1

σiΦ(xi) if Φ(x) : C → R is a convex function

(b) Φ


k

i=1

σixi


≥

k
i=1

σiΦ(xi) if Φ(x) : C → R is a concave function.

The following conclusion is the well-known Newton’s binomial theorem in integrable-differential.

Lemma 2.2 (Generalized Binomial Theorem of Newton [18]). For any real number α, we have for x(|x| < 1),

(1 + x)α =

∞
r=0

α

r


xr

whereα

r


=

α(α − 1) · · · (α − r + 1)
r!

.

Ashrafi and his co-workers established the following relations in [12].

Lemma 2.3 (Ashrafi et al. [12]). Let G be a graph with order n and size m. Then M1(G) = 2m(n − 1) − M1(G).

Lemma 2.4 (Ashrafi et al. [12]). Let G be a graph with order n and size m. Then M2(G) = M2(G) − (n − 1)M1(G) + m(n − 1)2.

Lemma 2.5 (Zhang andWu [19]). Let G be a graphwith order n. Then 2−2α−1n(n−1)2α+1
≤ Rα(G)+Rα(G) ≤ 2−1n(n−1)2α+1

for α ∈ (0, +∞).

Lemma 2.6. Let G be a graphwith two non-adjacent vertices u, v ∈ V (G). ThenMα(G+uv) > Mα(G) for α ∈ (0, 1)∪(1, +∞)
and Mα(G + uv) < Mα(G) for α ∈ (−∞, 0).

Proof. LetW = V − {u, v}; then by definition and Lagrange’s mean-value theorem

Mα(G + uv) − Mα(G)

=


u∈W


degG(u)

α
+

degG(u) + 1

α
+

degG(v) + 1

α
−


u∈W


degG(u)

α
−

degG(u)

α
−

degG(v)

α
=

degG(u) + 1

α
−

degG(u)

α
+

degG(v) + 1

α
−

degG(v)

α
= α


ξα−1

+ ηα−1,
where degG(u) < ξ < degG(u) + 1 and degG(v) < η < degG(v) + 1. This completes the proof. �

Before concluding this section, we present the explicit formulas of several families of graphs for the first and second
co-indices in terms of the number of vertices.

Let Kn, Pn and Cn be the complete, path and cycle graph with order n. Let Ks,t be the complete bipartite graph with s and
t vertices in its two partite sets, and Qk, k ≥ 2, the hypercube graph as usual.
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3. The general Zagreb index of graphs

Let k be an positive integer not less than 2; we define two classes

P n
k = {Dk|Dk = (G1,G2, . . . ,Gk) is a k-decomposition of Kn such that each cell Gi is connected and δ(Gi) ≥ 2}

and

Qn
k = {Dk|Dk = (G1,G2, . . . ,Gk) is a k-decomposition of Kn such that each cell Gi is connected and δ(Gi) ≥ 1}.

Now we state our main result of this section.

Theorem 3.1. Let k ≥ 2 and t be integers, Dk = (G1,G2, . . . ,Gk) be a k-decomposition of Kn. Then

(a) n(n − 1)αk1−α
≤ Mα(G1) + Mα(G2) + · · · + Mα(Gk) ≤ n(n − 1)α, if α > 1

(b) n(n − 1)α ≤ Mα(G1) + Mα(G2) + · · · + Mα(Gk) ≤ n(n − 1)αk1−α, if 0 < α < 1
(c) n(n − 1)αk1−α

≤ Mα(G1) + Mα(G2) + · · · + Mα(Gk) ≤ kn, if α < 0 and Dk ∈ Qn
k

(d) n(n − 1)αk1−α
≤ Mα(G1) + Mα(G2) + · · · + Mα(Gk) ≤ n


t + t(n − 2)α


, if α < 0, k = 2t and Dk ∈ P n

k

(e) n(n − 1)αk1−α
≤ Mα(G1) + Mα(G2) + · · · + Mα(Gk)

≤ n

t + (t + 1)(n − 2)α


, if α < 0, k = 2t + 1 and Dk ∈ P n

k .

Proof. From the definition of the general Zagreb index, we have

Mα(G1) + Mα(G2) + · · · + Mα(Gk) =


u∈V (G1)

[degG1(u)]
α

+


u∈V (G2)

[degG2(u)]
α

+ · · · +


u∈V (Gk)

[degGk(u)]
α

=


u∈V (G)


[degG1(u)]

α
+ [degG2(u)]

α
+ · · · + [degGk(u)]

α

.

Let ρ(x) = xα for x ≥ 0 and α ∈ R−{0, 1}. Easy verification shows that ρ(x) is a convex function if α ∈ (−∞, 0)∪ (1, +∞)
and is a concave one otherwise. We distinguish the following three separate cases.
Case 1. α > 1.

Noticing ρ(x) is a convex function in the case of α > 1, and then we have by Lemma 2.1

[degG1(u)]
α

+ [degG2(u)]
α

+ · · · + [degGk(u)]
α

≥ k

degG1(u) + degG2(u) + · · · + degGk(u)

k

α

=
(n − 1)α

kα−1
,

which implies that

Mα(G1) + Mα(G2) + · · · + Mα(Gk) ≥
n(n − 1)α

kα−1
.

On the other hand, degG1(u) + degG2(u) + · · · + degGk(u) = n − 1 and

k
i=1


degGi(u)

α

degG1(u) + degG2(u) + · · · + degGk(u)

α =

k
i=1


degGi(u)

degG1(u) + degG2(u) + · · · + degGk(u)

α

≤

k
i=1


degGi(u)

degG1(u) + degG2(u) + · · · + degGk(u)

1
=

n − 1
n − 1

= 1.

Then, we have

[degG1(u)]
α

+ [degG2(u)]
α

+ · · · + [degGk(u)]
α

≤


degG1(u) + degG2(u) + · · · + degGk(u)

α

.

This gives us the proof of (a)

Mα(G1) + Mα(G2) + · · · + Mα(Gk) ≤


u∈V (G)


degG1(u) + degG2(u) + · · · + degGk(u)

α

= n(n − 1)α.

Case 2. 0 < α < 1.
By analogous reasoning as used in Case 1 we can prove (b), and we omit the proof here, respectively.
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Case 3. α < 0.
For sake of simplicity, let x1 = degG1(u), x2 = degG2(u), . . . , xk = degGk(u). Easy verification shows that each cell Gi

must be connected when α < 0, otherwise there would produce a contradiction to the definition of Mα . Without loss of
generality we assume x1 ≥ x2 ≥ · · · ≥ xk ≥ 1.
Subcase 3.1. Dk ∈ Qn

k .
Let Φ1


x1, x2, . . . , xk


= xα

1 + xα
2 + · · · + xα

k . If x1 ≥ x2 ≥ · · · ≥ xk−l ≥ 2 > xk−l+1 = · · · = xk = 1; then

Φ1

x1, x2, . . . , xk


= xα

1 + xα
2 + · · · + xα

k−l + xα
k−l+1 + xα

k−l+2 + · · · + xα
k

= xα
1 + xα

2 + · · · + xα
k−l + 1α

+ 1α
+ · · · + 1α  

l times

(Since ρ(x) = xα is decreasing for α < 0)

< 1α
+ 1α

+ · · · + 1α  
k−l times

+ 1α
+ 1α

+ · · · + 1α  
l times

= k,

this implies thatMα(G1) + Mα(G2) + · · · + Mα(Gk) < kn.
If x1 = x2 = · · · = xk, then Φ1


x1, x2, . . . , xk


= xα

1 + xα
2 + · · · + xα

k = k. Easy verification shows that there exists a
k-decomposition ( n

2K2,
n
2K2, . . . ,

n
2K2) of Kn which attains the maximum Mα-value kn when n is even. This completes the

upper bound of (c). Note that ρ(x) is a convex function when α < 0, then by Lemma 2.1 we obtain the lower bound of (c).
Subcase 3.2. Dk ∈ P n

k .
Let Φ2


x1, x2, . . . , xk


= Φ1


x1 + 1, . . . , xi + 1, xi+1 − 1, . . . , x2i+1 − 1, x2i+2, . . . , xk


.

We first need to prove the following claim.

Claim 1. Φ1

x1, x2, . . . , xk


< Φ2


x1, x2, . . . , xk


.

Proof of Claim 1. By using Lagrange’s mean-value theorem and Lemma 2.6, we conclude that

Φ2

x1, x2, . . . , xk


− Φ1


x1, x2, . . . , xk


=


(x1 + 1)α + · · · + (xi + 1)α + (xi+1 − 1)α + · · · + (x2i − 1)α + xα

2i+1 + xα
2i+2 + · · · + xα

k


−


xα
1 + xα

2 + · · · + xα
i + xα

i+1 + xα
i+2 + · · · + xα

2i + xα
2i+1 + xα

2i+2 + xα
2i+3 + · · · + xα

k


=


(x1 + 1)α − xα

1


+ · · · +


(xi + 1)α − xα

i


+


(xi+1 − 1)α − xα

i+1


+ · · · +


(x2i − 1)α − xα

2i


= αξα−1

1 + αξα−1
2 + · · ·αξα−1

i − αηα−1
1 − αηα−1

2 − · · · − αηα−1
i

= α


ξα−1
1 − ηα−1

1


+

ξα−1
2 − ηα−1

2


+ · · · +


ξα−1
i − ηα−1

i


= α(α − 1)


ζ α−2
1 (ξ1 − η1) + ζ α−2

2 (ξ2 − η2) + · · · + ζ α−2
i (ξi − ηi)


,

where ξ1 ∈ (x1, x1 + 1), ξ2 ∈ (x2, x2 + 1), . . . , ξi ∈ (xi, xi + 1); η1 ∈ (xi+1 − 1, xi+1), η2 ∈ (xi+2 − 1, xi+2), . . . , ηi ∈

(x2i − 1, x2i); ζ1 ∈ (ξ1, η1), ζ2 ∈ (ξ2, η2), . . . , ζi ∈ (ξi, ηi). In view of the facts that x1 ≥ x2 ≥ · · · ≥ xk, xl < ξl < xl + 1
and x2l − 1 < ηl < x2l, we obtain ξl − ηl > xl − x2l ≥ xl − xl = 0, this implies Φ1


x1, x2, . . . , xk


< Φ2


x1, x2, . . . , xk


for

α < 0. �

FromClaim 1we know that theMα-value of a graphwill increasewhen replacing the degree consequence (x1, x2, . . . , xk)
by (x1 + 1, . . . , xi + 1, xi+1 + 1, . . . , x2i+1 − 1, x2i+2, . . . , xk).

To obtain the proof of (d) and (e), it is sufficient to consider the following two claims. Note that the equality x1 + x2 +

· · · + xk = n − 1 always holds.

Claim 2. Φ1

x1, x2, . . . , xk


≤ t(n − 2)α + t, if k = 2t.

Proof of Claim 2. Actually, from Claim 1 we obtain that

Φ1

x1, x2, . . . , x2t


= xα

1 + xα
2 + · · · + xα

t + xα
t+1 + xα

t+2 + · · · + xα
2t

≤ (x1 + 1)α + (x2 + 1)α + · · · + (xt + 1)α + (xt+1 − 1)α + (xt+1 − 1)α + · · · + (x2t − 1)α

≤ (x1 + 2)α + (x2 + 2)α + · · · + (xt + 2)α + (xt+1 − 2)α + (xt+1 − 2)α + · · · + (x2t − 2)α

· · ·

≤ (n − 2)α + (n − 2)α + · · · + (n − 2)α  
t times

+ 1α
+ 1α

+ · · · + 1α  
t times

= t(n − 2)α + t.

This completes the proof of Claim 2. �
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Now we use Claim 2 to prove (d). By taking the sum over all vertices of G for two sides of Claim 2, we obtain the upper
bound of (d). Note that ρ(x) is a convex function when α < 0, then by Lemma 2.1 we obtain the lower bound of (d).

Claim 3. Φ1

x1, x2, . . . , xk


≤ t(n − 2)α + t, if k = 2t + 1.

Proof of Claim 3. By the same reasoning, one can obtain

Φ1

x1, x2, . . . , x2t+1


= xα

1 + xα
2 + · · · + xα

t + xα
t+1 + xα

t+2 + · · · + xα
2t + xα

2t+1

≤ (x1 + 1)α + (x2 + 1)α + · · · + (xt + 1)α + (xt+1 − 1)α + (xt+1 − 1)α + · · · + (x2t − 1)α + xα
2t+1

≤ (x1 + 2)α + (x2 + 2)α + · · · + (xt + 2)α + (xt+1 − 2)α + (xt+1 − 2)α + · · · + (x2t − 2)α + xα
2t+1

· · ·

≤ (n − 2)α + (n − 2)α + · · · + (n − 2)α  
t times

+ 1α
+ 1α

+ · · · + 1α  
t times

+xα
2t+1

= t(n − 2)α + t · 1α
+ (n − 2)α

= (t + 1)(n − 2)α + t.

This completes the proof of Claim 3. �

Taking the sum over all vertices of G for two sides of Claim 2, we obtain the upper bound of (e). The lower bound of (e)
can be verified by Lemma 2.1 since ρ(x) is a convex function when α < 0.

Note that the bounds are best possible. The upper bound of (a) and the lower bound of (b) are the same and are attained
uniquely if one of the cells Gi is the complete graph Kn and the others are empty graphs with order n. On the other hand,
the lower bound of (a), (c), (d) and (e) and the upper bound of (b) are the same and are attained on the n−1

k -regular graphs,
since for any n = βk + 1, β ≥ 1, there exist a graph Gi with Gi and all the k − 1 graphs G1,G2, . . . ,Gi−1,Gi+1, . . . ,Gk are
n−1
k -regular and with n orders. The upper bound of (d) attained on the graph Hn is obtained from Kn by deleting a perfect

matching, so this occurs only if n is even. �

The following consequence is obvious, just taking k = 2 in the following. Theorem 3.1.

Corollary 3.2 (Zhang and Wu [19]). Let G be a graph with order n and G its complement. Then

(a) n(n − 1)α21−α
≤ Mα(G) + Mα(G) ≤ n(n − 1)α, if α > 1;

(b) n(n − 1)α ≤ Mα(G) + Mα(G) ≤ n(n − 1)α21−α, if 0 < α < 1;
(c) n(n − 1)α21−α

≤ Mα(G) + Mα(G) ≤ n

1 + (n − 2)α


, if α < 0.

Theorem 3.3. Let G be a graph with order n and G be its complement. Then

Mα(G) =

∞
r=0

(−1)r
α(α − 1) · · · (α − r + 1)

r!
(n − 1)α−rMr(G).

Proof. From the definition of the general Zagreb index, we obtain

Mα(G) =


u∈V (G)


degG(u)

α

=


u∈V (G)


n − 1 − degG(u)

α

= (n − 1)α


u∈V (G)


1 −

degG(u)
n − 1

α

.

By applying Lemma 2.2 to the last equality above, we have

Mα(G) = (n − 1)α


u∈V (G)

∞
r=0

α

r


−

degG(u)
n − 1

r

=

∞
r=0

(−1)r(n − 1)α−r
α

r

 
u∈V (G)


degG(u)

r
.

This completes the proof of Theorem 3.3. �

As an immediate corollary of Theorem 3.3, we obtain the following.

Corollary 3.4 (Ashrafi et al. [12]). Let G be a graph with order n and G be its complement. Then M1(G) = M1(G) + 2(n − 1)
m − m


.
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4. The Zagreb co-index of graphs

The main results of this section show the following theorem.

Theorem 4.1. Let G be a graph with order n; then 0 ≤ M1(G) + M1(G) ≤ 2−1n(n − 1)2, the lower bound attains on Kn, and
the upper bound attains on the n−1

2 -regular graphs.

Proof. By applying Lemma 2.3 to the complement graph G, one obtains M1(G) = 2m(n − 1) − M1(G). Now plugging
in the expression for M1(G), we have M1(G) + M1(G) = n(n − 1)2 − [M1(G) + M1(G)]. From Corollary 3.2, we have
2−1n(n − 1)2 ≤ M1(G) + M1(G) ≤ n(n − 1)2. The theorem follows immediately.

Note that the bounds are best possible. In view of Table 1in Section 2,M1(Kn)+M1(K n) = 0, the lower bound attains on
Kn. The upper bound attains on the n−1

2 -regular graphs, so n = 4β + 1 for some integer β . �

Theorem 4.2. Let G be a graph with order n; then 0 ≤ M2(G) + M2(G) ≤ 2−1n(n − 1)3, the lower bound attains on Kn, and
the upper bound attains on the 2k-regular graphs.

Proof. By applying Lemma 2.4 to the complement graph G, one obtainsM2(G) = M2(G) − (n− 1)M1(G) +m(n− 1)2, thus
M2(G) + M2(G) = [M2(G) + M2(G)] + 2−1n(n − 1)3 − (n − 1)[M1(G) + M1(G)]. From Corollary 3.2 and Lemma 2.5, we
have 2−1n(n − 1)2 ≤ M1(G) + M1(G) ≤ n(n − 1)2 and 2−3n(n − 1)3 ≤ M2(G) + M2(G) ≤ 2−1n(n − 1)3. Easy verification
completes the proof.

Note that the bounds are best possible. In view of Table 1 in Section 2, M2(Kn) + M2(K n) = 0, the lower bound attains
on Kn. The upper bound attains on the 2k-regular graphs. �
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