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Abstract

In this paper, we address and overcome the difficulties associated with the use of the classic cable theory to treat low
tension cables by developing a new three-noded locking-free nonlinear curved beam element. Based upon nonlinear
generalized curved beam theory, large deformations and rotations in the new element are formulated in terms of
Updated Lagrangian framework. Consistently coupled polynomial displacement fields are used to satisfy the membrane
locking-free condition and the requirement of being able to recover the inextensible bending modes. Quintic transverse
displacement interpolation functions are used to represent the bending deformation of the beam, while the axial and
torsional displacement fields are derived by integration of the presumably linear membrane and torsional shear strain
fields, which are coupled with the transverse displacement fields. Numerical results are presented to demonstrate the
superior accuracy and the high convergence rate of the newly developed curved beam element. The stability and accu-
racy of the new element are further validated by experiments of an instrumented free-swinging steel cable experiencing
slack and low tension. Good agreements in cable position and tension are observed between the experimental results
and the finite element predictions.
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1. Introduction

Cables have widely been used in industry as an economic mean to transmit forces and carry payloads
over great distances. However, a low working tension in the cables such as that experienced in aerial
tow cable (Leonard and Recker, 1972), aerial refueling hose (Vassberg et al., 2002), cable towed sonar
and remote operated vehicles in deep sea (Vassalos and Huang, 1996; Sun and Leonard, 1998) may result
in unstable behaviors resulting from cable slacking (Wu et al., 2003). The unstable behavior of low tension
cables under dynamic loading could cause excessive tension spikes in the cable leading to catastrophic fail-
ures, such as premature cable breakage (Phillips, 1949).

Many studies have been carried out for the analysis of low tension cable problems using the classic cable
theory and the finite difference method. The classic cable theory simplifies the cable as a tensile member that
cannot resist compressive, bending and torsional loads. However, unlike high tension cable problems, the
basic mechanism of energy propagation in low tension cables is changed from membrane dominant state to
bending dominant state when the cable tension disappears (Burgess, 1992). The classic cable theory be-
comes singular when the tension disappears in any part of the cable (Howell, 1992). The limitations of
the existing approaches create a need for alternative approaches to treat the low tension cable problems.
Many works (Buckham and Nahon, 1999; Howell, 1992; Burgess, 1992; Koh et al., 1999; Wu et al.,
2003) have been carried out to alleviate the low tension cable problems by adding artificial damping, higher
order terms and bending stiffness of cable. Among them, only the approach based on the beam theory is a
natural extension of the classic cable theory and has a sound theoretical foundation and physical meaning.

The modeling of the low tension cables with a realistic and robust description of cable dynamics inev-
itably leads to a complex mathematical problem and consequently requires numerical solution techniques,
such as, lumped parameter (Buckham and Nahon, 1999), finite segment (Delmer et al., 1988), finite differ-
ence (Koh et al., 1999), and finite element (Zhu et al., 2001; Rizzo, 1991). Among all the numerical
methods, the finite element method is probably the most appealing technique. The main advantage of
the finite element method over other methods is its capability to handle complex geometries with multiple
cable branches or different cable properties along the cable length in an algorithmic fashion.

There are many types of beam elements available in the literatures for modeling cable systems (Schrefler
and Odorizzi, 1983). The simplest one is the two-noded straight element. However, the straight element vio-
lates the continuity condition of slope and curvature of the slacking cable by discretizing the curved cable
into straight segments and as a result excessive bending stiffness or membrane locking become prevalent
(Cantin and Clough, 1968). Curved beam elements, which are based on the curvilinear strain field descrip-
tion, have an advantage over their straight counterparts in modeling curved cables with higher accuracy by
coarse meshes. However, the formulation of curved beams is not a simple extension of the straight beam
formulations because of the membrane locking problem. The earliest curved beam elements exhibited exces-
sive bending stiffness when C0-continuous axial and C1-continuous transverse displacements are employed
(Cantin and Clough, 1968). This phenomenon was initially attributed to the inability of low order polyno-
mial interpolation to represent rigid body motion of the curved element properly (Ashwell and Sabir, 1971).
The requirement for the terms of rigid body motion in interpolation function transfers the kinematic equa-
tions of membrane strain and curvature rate of curved beam into a second order homogeneous differential
equation. The solutions of the differential equations, which are in terms of trigonometric functions, describe
the rigid body modes of the curved beam. The addition of trigonometric terms to the polynomial displace-
ment fields yielded better results (Ashwell and Sabir, 1971; Guimaraes and Heppler, 1997). Unfortunately,
the trigonometric terms will provide a trivial solution, as the curvature of the beam approaches zero and the
degenerated displacement fields are insufficient to represent the bending deformation of the straightened
beam. However, studies (Dawe, 1976; Meck, 1980) show that adopting higher order polynomial displace-
ment fields would alleviate the membrane locking. For instance, quintic polynomials have been used to
interpolate the transverse and axial displacement fields of two-noded, planar curved beam element with
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six degrees of freedom per node. It was further discovered by Meck (1980) that a more reliable curved beam
element could be developed by using coupled high order polynomial displacement fields that recovered the
inextensible bending mode of the curved beam. Later, Stolarski and Belytschko (1981) and Prathap and
Bhashyam (1982) identified the cause of the locking as the failure of the independently interpolated dis-
placement fields to recover correct constraints from the membrane strains in the state of inextensible bend-
ing and not because those displacement fields did not contain rigid body modes explicitly. Accordingly,
reduced integration of membrane strain energy was proposed to improve the behavior of the curved beam
element. Prathap and Bhashyam (1986) and Balasubramanian and Prathap (1989) further proposed a field
consistency interpolation method, in which the axial displacement field is required to be one order higher
than the transverse displacement field. The field consistency concept seems to be the most appealing among
the curved beam element formulations, since it allows predicting a priori any poor convergence due to lock-
ing. Detailed reviews of curved element formulations can be found in the works of Raveendranath et al.
(1999, 2000, 2001) and Bucalem and Bathe (1995). Although successful in eliminating membrane locking,
it has been noticed that the relatively high accuracy of the above approaches is generally coupled with much
more complicated mathematical formulations and cumbersome numerical computations. To reduce the
computational burden, while being able to recover the inextensible bending mode of a curved beam, lower
order polynomial displacement fields have been developed for curved beam elements by coupling the axial
and transverse polynomial interpolations through the equilibrium equations (Raveendranath et al., 1999).
To avoid the mathematical complexity of coupling through the equilibrium equations, Zhu and Meguid
(accepted for publication) proposed a three-noded, three-dimensional curved beam element by coupling
the consistent axial and transverse polynomial interpolations with presumably linear membrane and tor-
sional strain fields. The new element demonstrates greater accuracy, faster convergence rate and better com-
putational efficiency. However, the authors are unaware of any work that reports the application of curved
beam elements in modeling low tension cable systems.

In this paper, we address and overcome these difficulties by developing a new nonlinear three-noded
curved beam element that is capable of modeling the dynamics of low tension cable based on our previously
proposed three-noded curved beam element (Zhu and Meguid, accepted for publication). The finite element
formulation of the new curved beam element is developed by a variational approach using the principle of
virtual work in the framework of incremental Updated Lagrange description. For the sake of the stability
and the reliability of the numerical integration, the predictor–corrector method with Newmark (1959) time
stepping algorithm and Newton–Raphson iteration is used to solve the equation of motion of low tension
cables. The resulting finite element formulations and the time integration method are implemented in an
appropriate computer program and validated by theoretical analyses and experimental investigations.

This paper contains five sections. Following this introductory section, Section 2 provides a detailed ac-
count of the newly developed curved beam element using updated Lagrangian formulations. In Section 3,
we validate the newly developed curved beam element by various existing static and dynamic examples. In
Section 4, we validate the newly developed curved beam element experimentally using a freely swinging steel
cable and high speed imaging setup. The steel cable was strain gauged to allow the strain and load measure-
ments. Finally, in Section 5, we conclude the paper.
2. Finite element formulation of three-noded curved beam element

Consider the three-noded curved beam element shown in Fig. 1. In order to describe the curved beam
and its motion, a system of convected curvilinear coordinates, which are moved along with the beam mate-
rial, is the most appropriate one, such as, xi (i = 1,2,3). The choice of coordinates is made in such a way
that x3 denotes the length along the neutral axis, and x1 and x2 denote the distances along lines orthogonal
to the neutral axis. The incremental translational and rotational displacements of the neutral axis tu1, tu2,
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Fig. 1. Three-dimensional curved beam element in curvilinear coordinates.
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tu3, th1, th2, th3 with respect to time t configuration are shown in the local curvilinear coordinate system in
their respective positive directions. The geometry of the curved element will be described by its length tL
and curvature tj while the position and the orientation of the element in space will be determined by its
nodal coordinates Xi (i = 1,2,3) in a global Cartesian coordinate system. The transformation between
the global and local coordinates will be established in accordance with Choi and Lim (1995).

The incremental Green–Lagrange strains of the curved beam at time t + Dt are defined with respect to
time t (Zhu, 2004), such as,
tE33 ¼ te� x1ðtx2 � 2tj teÞ þ x2 tx1; tE13 ¼ � x2
2

tg; tE23 ¼
x1
2

tg ð1Þ
where te, tx1, tx2, tg are the incremental membrane strain and curvature rates of the neutral axis and can be
expressed in terms of the displacements of the neutral axis,
te ¼ tu3;3 � tj tu1þ
1

2
ðtu1;3 þ tj tu1Þ2 þ

1

2
ðtu2;3Þ

2 þ 1

2
ðtu3;3 � tj tu1Þ2 ð2aÞ

tx1 ¼ �tu2;33 þ tj th3þth3ðtu1;33 þ 2tj tu3;3 � tj2
tu1Þ þ tu2;3ðtu3;33 � 2tj tu1;3 � tj2

tu3Þ ð2bÞ

tx2 ¼ tu1;33 þ tj tu3;3 þ tj te
Lþth3 tu2;33 � ðtu1;3 þ tj tu3Þðtu3;33 � 2tj tu1;3 � tj2

tu3Þ ð2cÞ

tg ¼ th3;3 þ tj tu2;3þtj th3ðtu1;3 þ tj tu3Þ þ tu2;3ðtu1;33 þ tj tu3;3Þ ð2dÞ
The underlined terms in the above expressions are the nonlinear parts of the incremental membrane strain
and curvature rates of the neutral axis due to the large displacements and rotations.

The incremental stress and strain of an elastic solid at time t obey the Hook�s law, such that,
tSij ¼ tCijkl tEkl ð3Þ

where tCijkl is elastic constant tensor and tSij is the incremental second Piola–Kirchhoff stress tensor, respec-
tively. By substituting Eqs. (1) and (2) into Eq. (3) and then calculating the stress resultant and couplings
over the beam cross-section, we derive the incremental constitutive relationships of the curved beam as,
tT ¼ DT þ tu3;3
tþDtT þ th1;3

tþDtM1 þ th2;3
tþDtM2 ð4aÞ

tM1 ¼ DM1 þ tu3;3
tþDtM1 þ tþDtM3 th2

tI1=tJ þ tþDtT th1;3
tI1=tA ð4bÞ

tM2 ¼ DM2 þ tu3;3
tþDtM2 � tþDtM3 th1

tI2=tJ þ tþDtT th2;3
tI2=tA ð4cÞ
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tM3 ¼ DM3 � tu1;3
tþDtM1 � tu2;3

tþDtM2 þ tþDtT th3;3
tJ=tA ð4dÞ
where DT and DMi (i = 1,2,3) are the linear parts of the incremental tension, bending and torsional mo-
ments, the underlined terms are the nonlinear increments due to the large displacements and rotations,
and tA, tIi (i = 1,2) and tJ are the area, principal and polar inertia moments of the cross-section of the
beam, respectively.

The linear parts of the incremental tension, bending and torsional moments satisfy the following rela-
tionships, such that,
DT
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DM2

DM3

8>>>><
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9>>>>=
>>>>;

¼
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0 tE tI1 0 0

0 0 tE tI2 0

0 0 0 tG tJ
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66664
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77775
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8>>>><
>>>>:

9>>>>=
>>>>;

ð4eÞ
where tE and tG are Young�s and shear modulus, respectively.
As mentioned earlier, the fundamental condition for membrane locking-free element is that the displace-

ment interpolation functions shall be able to recover the inextensible bending mode of a curved beam in
which the membrane strain is zero (Stolarski and Belytschko, 1981; Prathap and Bhashyam, 1982). By
ignoring the higher order terms in Eq. (2a), the fundamental condition can expressed approximately as,
te � tu3;3 � tj tu1 ¼ 0 ð5Þ

With this in mind, a simple and efficient approach is proposed herein to derive lower order coupled con-
sistent polynomial interpolations for a curved beam element. First, assume that the interpolation functions
for the transverse displacement fields (tu1 and tu2) are quintic polynomials, which would represent the bend-
ing deformation of a three-noded curved beam element accurately, such that,
tu1 ¼ a0 þ a1x3 þ a2x23 þ a3x33 þ a4x43 þ a5x53 ð6aÞ

tu2 ¼ b0 þ b1x3 þ b2x23 þ b3x33 þ b4x43 þ b5x53 ð6bÞ

where ai and bi are the coefficients of the interpolation functions.

Then, the axial displacement tu3 is obtained by integrating the presumably linearly distributed membrane
strain along the curved beam element, such that,
tu3 ¼
Z

ðteþ tj tu1Þdx3 ¼ a6 þ a7x3 þ a8x23 þ
tj
3
a2x33 þ

tj
4
a3x43 þ

tj
5
a4x53 þ

tj
6
a5x63 ð7Þ
Substituting the displacements tu1 and tu3 into the inextensible bending condition Eq. (5) leads to
te � tu3;3 � tj tu1 ¼ a7 � tja0 þ ð2a8 � tja1Þx3 ¼ 0 ð8Þ

Eq. (8) leads to the constraint equations of the inextensible bending mode, such that,
a7 � tja0 ¼ 0 2a8 � tja1 ¼ 0 ð9Þ

Eq. (9) shows that there are no spurious terms in the constraint equations since each constraint equation
contains the contributions from the axial and transverse displacement fields. Thus, the proposed displace-
ment fields are able to recover the inextensible bending mode of the curved beam element, which ensures
that the proposed interpolations are free from the membrane locking.

Secondly, it is noticed from the torsional strain expression that the torsional displacement th3 is coupled
with the transverse displacement tu2. Similar to the axial displacement interpolation, the interpolation for
the torsional displacement is derived by assuming a linearly distributed torsional strain along the curved
beam element, such that,
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th3 ¼
Z

tg� tj tu2;3ð Þdx3 ¼ b6 þ b7x3 þ b8x23 � tjb3x33 � tjb4x43 � tjb5x53 ð10Þ
Finally, the complete set of interpolations for the three-noded curved beam element can be written as,
tu1 ¼ a0 þ a1x3 þ a2x23 þ a3x33 þ a4x43 þ a5x53 ð11aÞ

tu2 ¼ b0 þ b1x3 þ b2x23 þ b3x33 þ b4x43 þ b5x53 ð11bÞ

tu3 ¼ a6 þ a7x3 þ a8x23 þ
tj
3
a2x33 þ

tj
4
a3x43 þ

tj
5
a4x53 þ

tj
6
a5x63 ð11cÞ

th1 ¼ �b1 � 2b2x3 � 3b3x23 � 4b4x33 � 5b5x43 ð11dÞ

th2 ¼ ða1 þ tja6Þ þ ð2a2 þ tja7Þx3 þ ð3a3 þ tja8Þx23 þ 4a4 þ
tj2

3
a2

� �
x33 þ 5a5 þ

tj2

4
a3

� �
x43

þ
tj2

5
a4x53 þ

tj2

6
a5x63 ð11eÞ

th3 ¼ b6 þ b7x3 þ b8x23 � tjb3x33 � tjb4x43 � tjb5x53 ð11fÞ

It can be easily seen that the above displacement interpolations reduce to those of a three-noded straight
beam element, if the curvature of the beam approaches zero. This indicates that the newly proposed curved
beam element is applicable to both curved and straight beam analyses.

By using the incremental principle of virtual work at time t + Dt with respect to the reference configu-
ration at time t in the updated Lagrangian description, such as,
Z

tV

tþDtSijd tEij d
tV �

Z
tAr

tþDtpid tui d tA�
Z

tV

tþDtbid tui d tV þ
Z

tV

tþDtq t€uid tui d tV ¼ 0 ð12Þ
we derive the discretized finite element equation of motion of the curved beam element,
½t tM�ft€ug þ ½t tC �ft _ug þ ½t tK �ftug ¼ ftþDtFg � ftFSg � ftF Ig ð13Þ

where ½t tM�, ½t tC �, ½t tK � are themass, damping and stiffnessmatrixes, ft€ug, ft _ug, {tu} are the acceleration, veloc-
ity and displacement vectors, {t+DtF}, {tFS}, {

tFI} are the external load, initial stress and inertia load vectors,
respectively. The damping matrix in Eq. (13) is the Rayleigh damping (Rao, 1995) which is defined as,
½t tC � ¼ av½t tM� þ bv½t tK �

av ¼
4pf1f2ðf2n1 � f1n2Þ

f 2
2 � f 2

1

; bv ¼
f2n2 � f1n1
pðf 2

2 � f 2
1 Þ

ð14Þ
where av and bv are the Rayleigh damping coefficients, f1 and f2 are the lower and upper bound frequencies
of interest in Hz, and n1 and n2 are the corresponding critical damping ratios, respectively.

The equation of motion (13) will be solved numerically by the predictor–corrector method using New-
mark (1959) time stepping scheme with Newton–Raphson iteration (Hughes et al., 1979). The process of the
predictor–corrector method may be outlined as follows,

(i) Predict displacement {t+Dtu(i)}, velocity ftþDt _uðiÞg, and acceleration ftþDt€uðiÞg at time t + Dt by
ftþDtuðiÞg ¼ ftþDt~ug ¼ ftug þ ft _ugDt þ 1

2
� b

� �
Dt2ft€ug ð15Þ



1496 Z.H. Zhu, S.A. Meguid / International Journal of Solids and Structures 43 (2006) 1490–1504
ftþDt _uðiÞg ¼ ftþDt~_ug ¼ ft _ug þ ð1� aÞDtft€ug ð16Þ

ftþDt€uðiÞg ¼ ftþDt~€ug ¼ ftþDtuðiÞg � tþDt~uf g
bDt2

¼ 0 ð17Þ
(ii) Form effective stiffness matrix ½t tKe� and calculate residual force {R(tu
(i))}
½t tKe� ¼
1

bDt2
½t tM � þ a

bDt
½t tC � þ ½t tK � ð18Þ

fRðtuðiÞÞg ¼ ½t tKe�ftuðiÞg ¼ ftþDtFg � ftþDtF
ðiÞ
I g � ftþDtF

ðiÞ
S g ð19Þ
(iii) Solve for correction {tu
(i)} and correct previous solutions
ftþDtuðiþ1Þg ¼ ftþDtuðiÞg þ ftuðiÞg ð20Þ

ftþDt€uðiþ1Þg ¼ ftþDtuðiþ1Þg � ftþDt~ug
bDt2

ð21Þ

ftþDt _uðiÞg ¼ ftþDt~_ug þ DtftþDt€uðiþ1Þg ð22Þ

If the residual force or the correction to the displacement is greater than the prescribed tolerance and addi-
tional iterations are to be performed, i is replaced by i + 1, and calculations resume with (18). In the above
equations, the a and b are the Newmark�s time integration parameters and can be determined by
a ¼ 3� q1
2ð1þ q1Þ

; b ¼ 1

ð1þ q1Þ
2

ð23Þ
where q1 is a spectral radius representing the numerical damping in the high frequency limit (usually user-
defined high frequency dissipation). This numerical dissipation varies from no dissipation case, q1 = 1, to
so-called asymptotic annihilation case, q1 = 0.
3. Numerical verification of curved beam element

3.1. In-plane bending of one-half circular cantilever beam

Consider one-half of a circular cantilever beam fixed at one end and subjected to a load at its free end as
shown in Fig. 2. The theoretical solutions of the tip displacements are obtained using Castigliano�s energy
theorem:
u ¼ 2PR3

EI
; v ¼ 3p

2

PR3

EI
þ p

2

PR
EA

; hz ¼
pPR2

EI
ð24Þ
v

u

P

z

EI, A

R

O
X

Y

θz

,

Fig. 2. Cantilevered one-half circular beam with in-plane tip load.
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By using only one newly developed curved beam element, we derive the tip displacements as,
uf � 1.00072
2PR3

EI
; vf � 0.99980

3pPR3

2EI
þ 0.98578

pPR
2EA

; hzf � 0.99997
pPR2

EI
ð25Þ
Considering the fact PR3

EI =
PR
EA � 1 for slender beams, Eq. (25) indicates that the idealization with only one

newly developed three-noded curved element efficiently converges to the theoretical solution with discrep-
ancies less than 0.02%.

3.2. Three-dimensional deformation of helical spring

A three-dimensional curved structure such as the one turn of a helical spring and its material and geo-
metric properties are shown in Fig. 3. The spring is fixed at one end and is subjected a concentrated load at
the other end. The theoretical deflection of the spring at loading point can be obtained from Castigliano�s
energy theorem
v ¼ pPR3

cos aEIxx
þ 3pPR3

cos aGJ
ð26Þ
The spring was modeled with the newly developed three-noded curved beam element and the finite element
solutions are normalized by the theoretical solution of Eq. (26). Fig. 4 shows the comparisons of the finite
element solutions of new and existing beam elements vs. the number of element. It can be seen that a quite
accurate result can be obtained by using only two newly developed three-noded curved beam elements with
a discrepancy of less than 0.4%. By using four new curved beam elements, the finite element solution is al-
most the same as the theoretical solution. The results of a straight element and a comparable three-noded
curved element by Choi and Lim (1995) are also depicted for comparison. The straight element exhibits
strong membrane locking characteristics and consequently a fine mesh is required to ensure its convergence
to the theoretical solution. The existing curved element converged to 98% of the theoretical solution by
using eight elements. Obviously, the new curved beam element converges much faster than the existing ear-
lier curved beam element considered in the comparison.

3.3. Large rotation of in-plane bending of cantilever beam

Consider an initially straight cantilever beam which is subjected to a concentrated moment M at its free
end as shown in Fig. 5. The analytical solution (Shafr, 1999) shows that the deformed beam will be part of a
circle of curvature of j = M/EI, and the displacements of free end are
u ¼ EI
M

sin
ML
EI

� �
� L; v ¼ EI

M
1� cos

ML
EI

� �� �
ð27Þ
Fig. 3. A helical spring with point load at tip.
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where EI and L are the rigidity and length of the beam, and j is the curvature of the deformed beam,
respectively. The same problem has been studied by Surana (1983), Lo (1992), and many other researchers
with eight or more two-noded straight beam elements. In the present study, only two newly developed
three-noded curved beam elements (15 DOF) are used to model the cantilever beam. The dimensionless re-
sults of present analysis are shown in Fig. 6 to demonstrate how the newly derived curved beam element
performs numerically. Note that the load factor is k = LM/pEI. With only two new elements, the present
results agree with the theoretical solutions even in the range of very large displacement and rotation, where
the beam is bent into a circle by using 60 equal load increments. Compared with the results of Lo (1992),
which employed eight straight beam elements (27 DOF), it has been shown that the present results agree
with the theoretical solutions better in very large displacement and rotation situation.

3.4. Natural frequencies of U-bend beam

The U-bend beam with intermediate supports is shown in Fig. 7. The rotational inertia has been ne-
glected, except the rotary inertia associated with the beam twisting about its own axis. The half circular
portion is modeled by six newly developed three-noded curved beam elements and the two straight legs
are modeled by one to four new elements depending on the length of these legs. The natural frequencies
of first two modes of in-plane and out-of-plane vibrations of the U-bend are shown in Fig. 8. The results
of the newly developed curved beam element agree with the Blevins� (1979) numerical results very well.
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Fig. 7. Free vibration of U-bend beam with intermediate supports.
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4. Experimental investigation

The setup of the free swing experiment of an instrumented cable is shown schematically in Fig. 9. The
cable is initially simply supported at both ends by circular pins and then released from the temporary sup-
port to allow it swing freely. A high speed digital camera records the motion of the swinging cable while an
oscilloscope records the time history of cable tension at simply supported end by strain gauges. The selected
test piece is a 6.5mm diameter, 6 · 7 with 1 · 7 WSC steel cable of 1668mm long. Its effective area and mo-
ment inertia of cross-section are 19.62mm2 and 2.71mm4, respectively. The cable density is 0.15kg/m and
its elastic modulus is 53GPa. There are two aluminum blocks attached to two ends as harnesses. The
dimensions of the free end block are 100mm · 50mm · 25mm while the block at the simply supported
end is 45 · 16 · 6mm. Four 3.175mm unidirectional strain gauges were mounted on two opposite faces
of the block at the simply supported end in T-configurations to eliminate possible out-of-plane bending ef-
fects as well as to increase the gain of the strain gauge readings.

For the motion of low tension cable, the drag effect of the free end block becomes noticeable and could
be determined as follows:
F ¼ �1.1qaDV
2 ð28Þ
where D is the characteristic transverse dimension of the block, qa is the air density, V is the velocity of
block, respectively.
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The experiments have been done with and without a lumped mass of 0.34kg attached to the free end of
the cable. The motion of the swinging cable was captured using the high speed digital camera at every 1/60s
and the cable tension was measured at the simply supported end by strain gauges at a sampling rate of
1000Hz. The experiments show that the cable with the lumped mass is stable and swings in a pendulum
mode, while the cable without the lumped mass slacks in the first two swings and then approaches the stable
pendulum mode. Fig. 10(a) shows the successive positions of the first two swings of the cable without the
lumped mass retracted from the motion images. It is noted that the cable whips in the first swing as it swings
upwards to the highest position, and then slacks in the second swing as it falls from the highest position.
Figs. 11 and 12 show the measured time histories of the position and the velocity of the free end of cable
with lumped mass. Fig. 13 depicts the measurements of cable tension at the simply supported end vs. time.

The finite element analysis of the cable is carried out using 12 newly developed curved beam elements (10
for the cable and 2 for the end blocks) and one mass element for the lumped mass. The parameters for time
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integration, such as the time step, the spectral radius of numerical damping and Rayleigh damping coeffi-
cients, were chosen carefully by examining the dynamic characteristics of the swinging cable. The experi-
mental data of Fig. 11 shows that the frequency of the pendulum motion of the cable is 0.35Hz and the
logarithmic decrement is 0.02, which is equivalent to a critical damping ratio of 0.003 (Rao, 1995). In addi-
tion, the membrane natural frequency of the cable is 156Hz, and its inherent damping is exceptionally low;
usually less than 0.2% of critical damping, (Carrie, 1980). By substituting the above frequency and damping
ratios into Eq. (14), we obtain the Rayleigh damping coefficients to be am � 10�2 and bm � 10�5. In addition,
the work of an elastic pendulum by Kuhl and Crisfield (1999) demonstrated that the Newmark integration
scheme with q1 = 1.0 is unstable in this class of nonlinear problem. A lower value of the spectral radius
q1 < 1.0 is required to maintain the numerical stability. However, this selection would result in a decrease
of total energy of the system. Consequently, a spectral radius of numerical damping of q1 = 0.9 was se-
lected to provide the minimum required numerical damping to dissipate the spurious high frequency com-
ponents, while minimizing the loss of the total energy. Finally, the finite element discretization of the cable
results in a smallest modal period of 0.0004s. A stable time step needs to be about one-tenth of the smallest
period (Bathe, 1982). Thus, the time integration step was set to 5 · 10�5 s for our finite element analysis.

The positions of the cable without the lump mass predicted by finite element analysis are depicted in Fig.
10(b) together with the experimental measurements. It is shown that the finite element predictions and
experimental measurements are in good agreement. Next, the predicted time histories of the position
and the velocity of the free end of cable with lumped mass are shown in Figs. 11 and 12 against the exper-
imental findings. It can be seen that the finite element results agree with the experimental data very well.
Finally, the predicted time history of the cable tension with lumped mass at the simply supported end is
shown in Fig. 13 against the experimental results. The finite element predictions and experimental results
are in good agreement.
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5. Conclusion

Existing analyses of low tension cable systems are mostly restricted to the classic cable theory, in which
the cable is idealized as a tensile member only. Under dynamic loading conditions, the slacking of the cable
could result in zero cable tension and lead to singularity. In this paper, we address and overcome the dif-
ficulties associated with the singularity in the classic cable theory by developing an accurate and computa-
tionally efficient three-noded, curved beam element for the three-dimensional analysis of large
displacements and rotations of curved beams. Consistently coupled polynomial interpolations are used
to eliminate the membrane locking and ensure a faster convergence rate. Numerical results of two- and
three-dimensional applications are presented to demonstrate the superior accuracy and the high conver-
gence rate of the newly developed curved beam element compared with the existing ones. A predictor–cor-
rector method is presented for the efficient and the reliable analysis of nonlinear dynamic behavior of low
tension cables. Experiments involving the free swinging of a steel cable were conducted to validate the new-
ly developed curved beam element and the predictor–corrector time integration algorithm. The experimen-
tal results are compared with the finite element predictions using the newly developed curved beam element.
Very good agreements in position, velocity and tension of the cable are observed.
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