DISCRETE MATHEMATICS

Discrete Mathematics 131 (1994) 345-350

R-sequenceability and *R**-sequenceability of abelian 2-groups

Note

Patrick Headley

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-4903, USA

Received 20 December 1991; revised 15 June 1992

Abstract

A group of order *n* is said to be *R*-sequenceable if the nonidentity elements of the group can be listed in a sequence $a_1, a_2, ..., a_{n-1}$ such that the quotients $a_1^{-1}a_2, a_2^{-1}a_3, ..., a_{n-2}^{-1}a_{n-1}, a_{n-1}^{-1}a_1$ are distinct. An abelian group is *R**-sequenceable if it has an *R*-sequencing $a_1, a_2, ..., a_{n-1}$ such that $a_{i-1}a_{i+1} = a_i$ for some *i* (subscripts are read modulo n-1). Friedlander, Gordon and Miller (1978) showed that an *R**-sequenceable Sylow 2-subgroup is a sufficient condition for a group to be *R*-sequenceable. In this paper we also show that all noncyclic abelian 2-groups are *R**-sequenceable except for $\mathscr{Z}_2 \times \mathscr{Z}_4$ and $\mathscr{Z}_2 \times \mathscr{Z}_2 \times \mathscr{Z}_2$.

A group of order n is said to be *R*-sequenceable if the nonidentity elements of the group can be listed in a sequence $a_1, a_2, \ldots, a_{n-1}$ such that the quotients $a_1^{-1}a_2, a_2^{-1}a_3, \dots, a_{n-2}^{-1}a_{n-1}, a_{n-1}^{-1}a_1$ are distinct. The concept of R-sequenceability has been around for more than 40 years in one form or another. In 1951 Paige observed that it is a sufficient condition for a group to have a complete mapping. In 1955 Hall and Paige [3] showed that a solvable group has a complete mapping if and only if its Sylow 2-subgroup is either trivial or noncyclic. In 1974 Ringel [5] was led to the concept of R-sequenceability in his solution of the map coloring problem for all compact two-dimensional manifolds except the sphere. In their book [1] Dénes and Keedwell used an alternative definition of R-sequenceable and discussed the topic in great depth. They also showed that an abelian group is a super P-group if and only if it is either R-sequenceable or sequenceable. Friedlander et al. [2] showed that the following types of abelian groups are R-sequenceable: cyclic groups of odd order greater than 1; groups of odd order whose Sylow 3-subgroup is cyclic; groups whose orders are relatively prime to 6; elementary abelian p-groups, except the group of order 2; groups of type $\mathscr{Z}_2 \times \mathscr{Z}_{4k}, k \ge 1$; groups whose Sylow *p*-subgroup has the form \mathscr{Z}_2^m , m > 1 but $m \neq 3$; groups G whose Sylow p-subgroup has the form $S = \mathscr{Z}_2 \times \mathscr{Z}_n$

where $n = 2^k$ and either k is odd or $k \ge 2$ is even and G/S has a direct cyclic factor of order congruent to 2 modulo 3. Ringel [1] has claimed that abelian groups of the form $\mathscr{Z}_2 \times \mathscr{Z}_{6k+2}$ are R-sequenceable.

Friedlander et al. [2] conjectured that an abelian group is *R*-sequenceable if and only if its Sylow 2-subgroup is either trivial or noncyclic. This paper proves the conjecture for abelian 2-groups.

The following types of nonabelian groups are known to be *R*-sequenceable: groups of order pq where p and q are odd primes, p < q, and p has 2 as a primitive root [4]; dihedral groups of order 2n where n is even [4]; dicyclic groups of order 4n where n is divisible by 4 [6].

An abelian group is R^* -sequenceable if it has an R-sequencing $a_1, a_2, ..., a_{n-1}$ such that $a_{i-1}a_{i+1} = a_i$ for some i (subscripts are read modulo n-1). The term was introduced by Friedlander et al. [2], who showed that the existence of an R^* -sequenceable Sylow 2-subgroup is a sufficient condition for a group to be R-sequenceable. In this paper we also show that all noncyclic abelian 2-groups are R^* -sequenceable except for $\mathscr{X}_2 \times \mathscr{X}_4$ and $\mathscr{X}_2 \times \mathscr{X}_2 \times \mathscr{X}_2$.

We begin with two results of Friedlander et al. concerning abelian 2-groups.

Lemma 1 (Friedlander et al. [2]). $(\mathscr{Z}_2)^m$ is R^* -sequenceable for m > 1, $m \neq 3$, $\mathscr{Z}_2 \times \mathscr{Z}_{2^k}$ is R^* -sequenceable for k odd, and R-sequenceable for all k.

Lemma 2 (Friedlander et al. [2]). $\mathscr{Z}_2 \times \mathscr{Z}_2 \times \mathscr{Z}_2$ and $\mathscr{Z}_2 \times \mathscr{Z}_4$ are *R*-sequenceable but not R^* -sequenceable.

Lemma 3. If an abelian group G is an extension of $\mathscr{Z}_2 \times \mathscr{Z}_2$ by an R*-sequenceable group H, then G is R*-sequenceable.

Proof of Lemma 3. Let n = |H|. Since H is R^* -sequenceable, the cosets of $\mathscr{L}_2 \times \mathscr{L}_2$, excluding $\mathscr{L}_2 \times \mathscr{L}_2$ itself, have an ordering K_1, \ldots, K_{n-1} that is an R-sequence with $K_{n-1}K_2 = K_1$. Choose k_i , $1 \le i \le n-1$, such that $k_i \in K_i$ and $k_{n-1}k_2 = k_1$. Then any element in G can be uniquely expressed as a product of an element in $\mathscr{L}_2 \times \mathscr{L}_2$ and an element in $\{k_1, \ldots, k_{n-1}, e\}$. Let $\{y_i\}_{i=1}^{4n-1}$ be the sequence $k_1, k_2, \ldots, k_{n-1}, e$, $k_2, k_3, \ldots, k_{n-1}, k_1, k_1, k_2, \ldots, k_{n-1}, e, e, k_2, k_3, \ldots, k_{n-1}$. Let a and b be generators of the $\mathscr{L}_2 \times \mathscr{L}_2$ subgroup of G. Define $\{x_i\}_{i=1}^{4n-1}$ as follows.

Case 1: $|H| \mod 3 \equiv 0$. Let 3k = |H|, $\{x_i\}$ is given by the successive rows of the $4 \times n$ matrix

/ e	е				b	a \	
ab	$k-2$ copies of $\{a, b, ab\}$	a	ab	ab	b	a	
ab	b	$k-2$ copies of $\{ab, a, b\}$	ab	b	а	ab	ľ
b	а	$k-2$ copies of $\{b, ab, a\}$	b	а	е	/	1

If k=1, then $H = \mathscr{Z}_3$, so $G = \mathscr{Z}_2 \times \mathscr{Z}_6$, which is R^* -sequenceable since its Sylow 2-subgroup is R^* -sequenceable.

Case 2: $|H| \mod 3 \equiv 1$. Let 3k + 1 = |H|. $\{x_i\}$ is read from the successive rows of the $4 \times n$ matrix.

$$\begin{pmatrix} e & e & \cdots & b & a \\ ab & k-1 \text{ copies of } \{b, a, ab\} & ab & b & a \\ ab & b & k-1 \text{ copies of } \{a, ab, b\} & a & ab \\ b & a & k-1 \text{ copies of } \{ab, b, a\} & e \end{pmatrix}$$

Case 3: $|H| \mod 3 \equiv 2$. Let 3k + 2 = |H|. $\{x_i\}$ is read from the successive rows of the $4 \times n$ matrix

$$\begin{pmatrix} e & e & \cdots & b & a \\ ab & k-1 \text{ copies of } \{b, a, ab\} & b & ab & b & a \\ ab & b & k-1 \text{ copies of } \{a, ab, b\} & a & a & ab \\ b & a & k-1 \text{ copies of } \{ab, b, a\} & ab & e \end{pmatrix}$$

Then $\{x_i y_i\}$ is an *R**-sequence. Clearly $(x_{4n-1}y_{4n-1})(x_2y_2) = x_1y_1$. Verifying that $\{x_i y_i\}$ is an *R*-sequence is straightforward with the following observations:

(i) $k_{n-1}^{-1}e = k_1^{-1}k_2$ and $e^{-1}k_2 = k_{n-1}^{-1}k_1$, so $\{y_i^{-1}y_{i+1}\}_{i=1}^{4n-1}$ (with $y_{4n} = y_1$) is the sequence $k_1^{-1}k_2, k_2^{-1}k_3, \dots, k_{n-2}^{-1}k_{n-1}, k_1^{-1}k_2, k_{n-1}^{-1}k_1, k_2^{-1}k_3, k_3^{-1}k_4, \dots, k_{n-2}^{-1}k_{n-1}, k_{n-1}^{-1}k_1, e, e, k_1^{-1}k_2, k_2^{-1}k_3, \dots, k_{n-2}^{-1}k_{n-1}, k_1^{-1}k_2, e, k_{n-1}^{-1}k_1, k_2^{-1}k_3, k_3^{-1}k_4, \dots, k_{n-2}^{-1}k_{n-2}$ $k_{n-1}, k_{n-1}^{-1}k_1$.

(ii) If x_m is the first element of the first copy of one of the repeated 3-element sequences in $\{x_i\}$, then $y_m = k_3$, and the sequence $\{a, b, ab\}$ is itself an *R*-sequence. \Box

Lemma 4. $\mathscr{Z}_2 \times \mathscr{Z}_{2^n}$ is R^* -sequenceable for $n \ge 1$, $n \ne 2$.

Proof of Lemma 4. Any sequence of the nonidentity elements of $\mathscr{Z}_2 \times \mathscr{Z}_2$ is an R^* -sequence. $\mathscr{Z}_2 \times \mathscr{Z}_8 \cong \langle a, b | a^8 = b^2 = e, ab = ba \rangle$ has the R^* -sequence ba^7 , b, a^5, a^3, ba^6 , $ba, a^2, a^6, ba^5, ba^2, a^4, ba^4, ba^3, a^7, a$. The relevant triple is ba^4, ba^3 and a^7 .

For $n \ge 4$, $\mathscr{Z}_2 \times \mathscr{Z}_{2^n} \cong \langle a, b | a^{2^n} = b^2 = e$, $ab = ba \rangle$, an R^* -sequence can be read from the successive rows of this $2m \times 8$ matrix, where $m = 2^{n-3}$:

ba^{8m-1}	b	a ^{3m}	a ^{5m}	ba ^{8m-2}	ba	a^{m-2}	a^{7m+2}
ba ^{8m-3}	ba ²	a^{3m-2}	a^{5m+2}	ba ^{8m-4}	ba ³	a^{m-4}	a ^{7m+4}
			:				
ba ^{7m+3}	ba ^{m-4}	a^{2m+4}	a ^{6m-4}	ba ^{7m+2}	ba^{m-3}	a^2	a^{8m-2}
ba^{7m+1}	ba ^{m-2}	a^{2m+2}	a^{6m-2}	ba ^{7m}	ba ^{m-1}	a^{8m-1}	а
ba ^{7m-1}	ba ^m	a ^{6m-1}	a^{2m+1}	ba ^{7m-2}	ba ^{m+1}	a ^{8m-3}	a ³
ba ^{7m-3}	ba^{m+2}	a^{6m-3}	a^{2m+3}	ba ^{7m-4}	ba^{m+3}	a^{8m-5}	a ⁵
			÷				
ba ^{5m+3}	ba ^{3m-4}	a^{4m+3}	a^{4m-3}	ba^{5m+2}	ba ^{3m-3}	a ^{6m+1}	a^{2m-1}
ba ^{5m+1}	ba^{3m-2}	a^{4m+1}	a^{4m-1}	ba ^{5m}	ba ^{3m-1}	a^{2m}	a ^{6m}
ba^{5m-1}	ba ^{3m}	a^{4m}		ba ^{5m-2}	ba^{3m+1}	a^{2m-2}	a ^{6m+2}
ba^{5m-3}	ba^{3m+2}	a^{4m-2}	a^{4m+2}	ba ^{5m-4}	ba^{3m+3}	a^{2m-4}	a ^{6m+4}
			÷				
ba^{4m+1}	ba^{4m-2}	a^{3m+2}	a^{5m-2}	ba ^{4m}	ba^{4m-1}	a ^m	a ^{7m}

To see that the sequence is an R-sequence, the successive quotients are listed in the successive rows of this matrix:

а	ba ^{3m}	a ^{2m}	ba^{3m-2}	a ³	ba^{m-3}	a ^{6m+4}	ba ^{m-5}
a ⁵	ba ^{3m-4}	a ^{2m+4}	ba ^{3m-6}	a ⁷	ba^{m-7}	a ^{6m+8}	ba ^{m-9}
			÷				
a ^{2m-7}	ba ^{m+8}	a^{4m-8}	ba ^{m+6}	a^{2m-5}	ba ^{7m+5}	a^{8m-4}	ba^{7m+3}
a^{2m-3}	ba^{m+4}	a^{4m-4}	ba^{m+2}	a^{2m-1}	ba^{7m}	a ²	ba ^{7m-2}
a^{2m+1}	ba ^{5m-1}	a^{4m+2}	ba ^{5m-3}	a^{2m+3}	ba ^{7m-4}	a ⁶	ba ^{7m-6}
a^{2m+5}	ba ^{5m-5}	a^{4m+6}	ba ^{5m-7}	a^{2m+7}	ba ^{7m-8}	a ¹⁰	ba^{7m-10}
			÷				
a ^{6m-7}	ba ^{m + 7}	a^{8m-6}	ba^{m+5}	a ^{6m-5}	ba^{3m+4}	a^{4m-2}	ba^{3m+2}
a ^{6m-3}	ba^{m+3}	a ^{8m-2}	ba ^{m+1}	a^{6m-1}	ba^{7m+1}	a^{4m}	ba^{7m-1}
a^{6m+1}	ba ^m		ba ^{m-2}	a ^{6m+3}	ba ^{7m-3}	a^{4m+4}	ba ^{7m-5}
a^{6m+5}	ba^{m-4}	a ⁴	ba ^{m-6}	a ^{6m+7}	ba ^{7m-7}	a ^{4m+8}	ba ^{7m-9}
			÷				
a ^{8m-7}	ba ^{7m+8}	a^{2m-8}	ba ^{7m+6}	a ^{8m-5}	ba ^{5m+5}	a ^{6m-4}	ba^{5m+3}
a^{8m-3}	ba ^{7m+4}	a^{2m-4}	ba ^{7m+2}	a^{8m-1}	ba^{5m+1}	a ^{6m}	ba ^{m-1}

If m = 6k + 2, we have ..., $ba^{7m-1-2(4k+1)}$, $ba^{m+2(4k+1)}$, $a^{6m-1-2(4k+1)}$,... and $(ba^{7m-1-2(4k+1)})(a^{6m-1-2(4k+1)}) = ba^{14k+4} = ba^{m+2(4k+1)}$. If m = 6k + 4, we have ..., $a^{2m+1+2(4k+2)}$, $ba^{7m-2-2(4k+2)}$, $ba^{m+1+2(4k+2)}$,... and $(a^{2m+1+2(4k+2)})(ba^{m+1+2(4k+2)}) = ba^{34k+22} = ba^{7m-2-2(4k+2)}$. Thus, the sequence is an R^* -sequence for all $n \ge 4$. \Box

Theorem. If G is a non-cyclic abelian 2-group, then G is R-sequenceable. Moreover, if $|G| \neq 8$, then G is R*-sequenceable.

Proof. If |G| = 8, the result follows from Lemma 2. Otherwise, we use induction on n, where $|G| = 2^n$. For n even, the base of the induction is n = 2, so that $G \cong \mathscr{Z}_2 \times \mathscr{Z}_2$, which is R^* -sequenceable by Lemma 1. For n odd, the base of the induction is n = 5, so that either $G \cong \mathscr{Z}_2 \times \mathscr{Z$

To complete the induction, we assume the result is true for *n*. Let $|G|=2^{n+2}$. If $G \cong \mathscr{Z}_2 \times \mathscr{Z}_{2^{n+1}}$, *G* is *R**-sequenceable by Lemma 4. Otherwise, *G* is an extension of $\mathscr{Z}_2 \times \mathscr{Z}_2$ by a noncyclic abelian 2-group *H*, and $|H|=2^n$. Since *H* is *R**-sequenceable by assumption, *G* is *R**-sequenceable by Lemma 3. \Box

Since Friedlander et al. [2] have shown that an abelian group whose Sylow 2-subgroup is R^* -sequenceable is itself R^* -sequenceable, we have the following corollary.

Corollary. An abelian group whose Sylow 2-subgroup is noncyclic and not of order 8 is R^* -sequenceable.

Acknowledgment

This paper was written at the University of Minnesota, Duluth, under the direction of Professor Joseph Gallian. Donald Keedwell read a preliminary version of the paper and made several helpful suggestions that are incorporated in this version. The research was supported by NSF grant DMS 8709428.

References

- J. Dénes and A.D. Keedwell, Latin squares: new developments in the theory and applications, Ann. Discrete Math. 46 (1991).
- [2] R.J. Friedlander, B. Gordon and M.D. Miller, On a group sequencing problem of Ringel, Proc. 9th S-E Conf. Combinatorics, Graph Theory and Computing, Congr. Numer. XXI (1978) 307-321.

- [3] M. Hall and L.J. Paige, Complete mappings of finite groups, Pacific J. Math. 5 (1955) 541-549.
- [4] A.D. Keedwell, On *R*-sequenceability and R_h -sequenceability of groups, Ann. Discrete Math. 18 (1983) 535–548.
- [5] G. Ringel, Cyclic arrangements of the elements of a group, Notices Amer. Math. Soc. 21 (1974) A95-96.
- [6] C. Wang, On the R-sequenceability of dicyclic groups, preprint.