Note

R-sequenceability and R^{*}-sequenceability of abelian 2-groups

Patrick Headley
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-4903, USA

Received 20 December 1991; revised 15 June 1992

Abstract

A group of order n is said to be R-sequenceable if the nonidentity elements of the group can be listed in a sequence $a_{1}, a_{2}, \ldots, a_{n-1}$ such that the quotients $a_{1}^{-1} a_{2}, a_{2}^{-1} a_{3}, \ldots, a_{n-2}^{-1} a_{n-1}, a_{n-1}^{-1} a_{1}$ are distinct. An abelian group is R^{*}-sequenceable if it has an R-sequencing $a_{1}, a_{2}, \ldots, a_{n-1}$ such that $a_{i-1} a_{i+1}=a_{i}$ for some i (subscripts are read modulo $n-1$). Friedlander, Gordon and Miller (1978) showed that an R^{*}-sequenceable Sylow 2 -subgroup is a sufficient condition for a group to be R-sequenceable. In this paper we also show that all noncyclic abelian 2 -groups are R^{*}-sequenceable except for $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$ and $\mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2}$.

A group of order n is said to be R-sequenceable if the nonidentity elements of the group can be listed in a sequence $a_{1}, a_{2}, \ldots, a_{n}$ i such that the quotients $a_{1}^{-1} a_{2}, a_{2}^{-1} a_{3}, \ldots, a_{n-2}^{-1} a_{n-1}, a_{n-1}^{-1} a_{1}$ are distinct. The concept of R-sequenceability has been around for more than 40 years in one form or another. In 1951 Paige observed that it is a sufficient condition for a group to have a complete mapping. In 1955 Hall and Paige [3] showed that a solvable group has a complete mapping if and only if its Sylow 2-subgroup is either trivial or noncyclic. In 1974 Ringel [5] was led to the concept of R-sequenceability in his solution of the map coloring problem for all compact two-dimensional manifolds except the sphere. In their book [1] Dénes and Keedwell used an alternative definition of R-sequenceable and discussed the topic in great depth. They also showed that an abelian group is a super P-group if and only if it is either R-sequenceable or sequenceable. Friedlander et al. [2] showed that the following types of abelian groups are R-sequenceable: cyclic groups of odd order greater than 1; groups of odd order whose Sylow 3-subgroup is cyclic; groups whose orders are relatively prime to 6 ; elementary abelian p-groups, except the group of order 2; groups of type $\mathscr{Z}_{2} \times \mathscr{Z}_{4 k}, k \geqslant 1$; groups whose Sylow p-subgroup has the form $\mathscr{Z}_{2}^{m}, m>1$ but $m \neq 3$; groups G whose Sylow p-subgroup has the form $S=\mathscr{Z}_{2} \times \mathscr{Z}_{n}$
where $n=2^{k}$ and either k is odd or $k \geqslant 2$ is even and G / S has a direct cyclic factor of order congruent to 2 modulo 3. Ringel [1] has claimed that abelian groups of the form $\mathscr{Z}_{2} \times \mathscr{Z}_{6 k+2}$ are R-sequenceable.

Friedlander et al. [2] conjectured that an abelian group is R-sequenceable if and only if its Sylow 2-subgroup is either trivial or noncyclic. This paper proves the conjecture for abelian 2-groups.

The following types of nonabelian groups are known to be R-sequenceable: groups of order $p q$ where p and q are odd primes, $p<q$, and p has 2 as a primitive root [4]; dihedral groups of order $2 n$ where n is even [4]; dicyclic groups of order $4 n$ where n is divisible by 4 [6].

An abelian group is R^{*}-sequenceable if it has an R-sequencing $a_{1}, a_{2}, \ldots, a_{n-1}$ such that $a_{i-1} a_{i+1}=a_{i}$ for some i (subscripts are read modulo $n-1$). The term was introduced by Friedlander et al. [2], who showed that the existence of an R^{*} sequenceable Sylow 2 -subgroup is a sufficient condition for a group to be R-sequenceable. In this paper we also show that all noncyclic abelian 2 -groups are R^{*}-sequenceable except for $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$ and $\mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2}$.

We begin with two results of Friedlander et al. concerning abelian 2-groups.

Lemma 1 (Friedlander et al. [2]). ($\left.\mathscr{Z}_{2}\right)^{m}$ is R^{*}-sequenceable for $m>1, m \neq 3, \mathscr{Z}_{2} \times \mathscr{Z}_{2^{k}}$ is R^{*}-sequenceable for k odd, and R-sequenceable for all k.

Lemma 2 (Friedlander et al. [2]). $\mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2}$ and $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$ are R-sequenceable but not R^{*}-sequenceable.

Lemma 3. If an abelian group G is an extension of $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$ by an R^{*}-sequenceable group H, then G is R^{*}-sequenceable.

Proof of Lemma 3. Let $n=|H|$. Since H is R^{*}-sequenceable, the cosets of $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$, excluding $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$ itself, have an ordering K_{1}, \ldots, K_{n-1} that is an R-sequence with $K_{n-1} K_{2}=K_{1}$. Choose $k_{i}, 1 \leqslant i \leqslant n-1$, such that $k_{i} \in K_{i}$ and $k_{n-1} k_{2}=k_{1}$. Then any element in G can be uniquely expressed as a product of an element in $\mathscr{F}_{2} \times \mathscr{F}_{2}$ and an element in $\left\{k_{1}, \ldots, k_{n-1}, e\right\}$. Let $\left\{y_{i}\right\}_{i=1}^{4 n-1}$ be the sequence $k_{1}, k_{2}, \ldots, k_{n-1}, e$, $k_{2}, k_{3}, \ldots, k_{n-1}, k_{1}, k_{1}, k_{1}, k_{2}, \ldots, k_{n-1}, e, e, k_{2}, k_{3}, \ldots, k_{n-1}$. Let a and b be generators of the $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$ subgroup of G. Define $\left\{x_{i}\right\}_{i=1}^{4 n-1}$ as follows.

Case $1:|H| \bmod 3 \equiv 0$. Let $3 k=|H|,\left\{x_{i}\right\}$ is given by the successive rows of the $4 \times n$ matrix

$$
\left(\begin{array}{ccccccc}
e & e & \cdots & & & \\
a b & k-2 \text { copies of }\{a, b, a b\} & a & a b & a b & b & a \\
a b & b & k-2 \text { copies of }\{a b, a, b\} & a b & b & a & a b \\
b & a & k-2 \text { copies of }\{b, a b, a\} & b & a & e &
\end{array}\right) .
$$

If $k=1$, then $H=\mathscr{Z}_{3}$, so $G=\mathscr{Z}_{2} \times \mathscr{Z}_{6}$, which is R^{*}-sequenceable since its Sylow 2subgroup is R^{*}-sequenceable.

Case 2: $|H| \bmod 3 \equiv 1$. Let $3 k+1=|H| .\left\{x_{i}\right\}$ is read from the successive rows of the $4 \times n$ matrix.

$$
\left(\begin{array}{ccccc}
e & e & \cdots & b & a \\
a b & k-1 \text { copies of }\{b, a, a b\} & a b & b & a \\
a b & b & k-1 \text { copies of }\{a, a b, b\} & a & a b \\
b & a & k-1 \text { copies of }\{a b, b, a\} & e &
\end{array}\right)
$$

Case 3: $|H| \bmod 3 \equiv 2$. Let $3 k+2=|H| .\left\{x_{i}\right\}$ is read from the successive rows of the $4 \times n$ matrix

$$
\left(\begin{array}{cccccc}
e & e & \cdots & b & a \\
a b & k-1 \text { copies of }\{b, a, a b\} & b & a b & b & a \\
a b & b & k-1 \text { copies of }\{a, a b, b\} & a & a & a b \\
b & a & k-1 \text { copics of }\{a b, b, a\} & a b & e &
\end{array}\right) .
$$

Then $\left\{x_{i} y_{i}\right\}$ is an R^{*}-sequence. Clearly $\left(x_{4 n-1} y_{4 n-1}\right)\left(x_{2} y_{2}\right)=x_{1} y_{1}$. Verifying that $\left\{x_{i} y_{i}\right\}$ is an R-sequence is straightforward with the following observations:
(i) $k_{n-1}^{-1} e=k_{1}^{-1} k_{2}$ and $e^{-1} k_{2}=k_{n-1}^{-1} k_{1}$, so $\left\{y_{i}^{-1} y_{i+1}\right\}_{i=1}^{4 n-1}$ (with $y_{4 n}=y_{1}$) is the sequence $k_{1}^{-1} k_{2}, k_{2}^{-1} k_{3}, \ldots, k_{n-2}^{-1} k_{n-1}, k_{1}^{-1} k_{2}, k_{n-1}^{-1} k_{1}, k_{2}^{-1} k_{3}, k_{3}^{-1} k_{4}, \ldots, k_{n-2}^{-1} k_{n-1}$, $k_{n-1}^{-1} k_{1}, e, e, k_{1}^{-1} k_{2}, k_{2}^{-1} k_{3}, \ldots, k_{n-2}^{-1} k_{n-1}, k_{1}^{-1} k_{2}, e, k_{n-1}^{-1} k_{1}, k_{2}^{-1} k_{3}, k_{3}^{-1} k_{4}, \ldots, k_{n-2}^{-1}$ $k_{n-1}, k_{n-1}^{-1} k_{1}$.
(ii) If x_{m} is the first element of the first copy of one of the repeated 3-element sequences in $\left\{x_{i}\right\}$, then $y_{m}=k_{3}$, and the sequence $\{a, b, a b\}$ is itself an R-sequence.

Lemma 4. $\mathscr{Z}_{2} \times \mathscr{Z}_{2^{n}}$ is R^{*}-sequenceable for $n \geqslant 1, n \neq 2$.

Proof of Lemma 4. Any sequence of the nonidentity elements of $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$ is an R^{*} sequence. $\mathscr{Z}_{2} \times \mathscr{Z}_{8} \cong\left\langle a, b \mid a^{8}=b^{2}=e, a b=b a\right\rangle$ has the R^{*}-sequence $b a^{7}, b, a^{5}, a^{3}, b a^{6}$, $b a, a^{2}, a^{6}, b a^{5}, b a^{2}, a^{4}, b a^{4}, b a^{3}, a^{7}, a$. The relevant triple is $b a^{4}, b a^{3}$ and a^{7}.

For $n \geqslant 4, \mathscr{Z}_{2} \times \mathscr{Z}_{2^{n}} \cong\left\langle a, b \mid a^{2^{n}}=b^{2}=e, a b=b a\right\rangle$, an R^{*}-sequence can be read from the successive rows of this $2 m \times 8$ matrix, where $m=2^{n-3}$:

$b a^{8 m-1}$	b	$a^{3 m}$	$a^{5 m}$	$b a^{8 m-2}$	$b a$	a^{m-2}	$a^{7 m+2}$
$b a^{8 m-3}$	$b a^{2}$	$a^{3 m-2}$	$a^{5 m+2}$	$b a^{8 m-4}$	$b a^{3}$	a^{m-4}	$a^{7 m+4}$
			\vdots				
$b a^{7 m+3}$	$b a^{m-4}$	$a^{2 m+4}$	$a^{6 m-4}$	$b a^{7 m+2}$	$b a^{m-3}$	a^{2}	$a^{8 m-2}$
$b a^{7 m+1}$	$b a^{m-2}$	$a^{2 m+2}$	$a^{6 m-2}$	$b a^{7 m}$	$b a^{m-1}$	$a^{8 m-1}$	a
$b a^{7 m-1}$	$b a^{m}$	$a^{6 m-1}$	$a^{2 m+1}$	$b a^{7 m-2}$	$b a^{m+1}$	$a^{8 m-3}$	a^{3}
$b a^{7 m-3}$	$b a^{m+2}$	$a^{6 m-3}$	$a^{2 m+3}$	$b a^{7 m-4}$	$b a^{m+3}$	$a^{8 m-5}$	a^{5}
			\vdots				
$b a^{5 m+3}$	$b a^{3 m-4}$	$a^{4 m+3}$	$a^{4 m-3}$	$b a^{5 m+2}$	$b a^{3 m-3}$	$a^{6 m+1}$	$a^{2 m-1}$
$b a^{5 m+1}$	$b a^{3 m-2}$	$a^{4 m+1}$	$a^{4 m-1}$	$b a^{5 m}$	$b a^{3 m-1}$	$a^{2 m}$	$a^{6 m}$
$b a^{5 m-1}$	$b a^{3 m}$	$a^{4 m}$	-	$b a^{5 m-2}$	$b a^{3 m+1}$	$a^{2 m-2}$	$a^{6 m+2}$
$b a^{5 m-3}$	$b a^{3 m+2}$	$a^{4 m-2}$	$a^{4 m+2}$	$b a^{5 m-4}$	$b a^{3 m+3}$	$a^{2 m-4}$	$a^{6 m+4}$
			\vdots				
$b a^{4 m+1}$	$b a^{4 m-2}$	$a^{3 m+2}$	$a^{5 m-2}$	$b a^{4 m}$	$b a^{4 m-1}$	a^{m}	$a^{7 m}$

To see that the sequence is an R-sequence, the successive quotients are listed in the successive rows of this matrix:

a	$b a^{3 m}$	$a^{2 m}$	$b a^{3 m-2}$	a^{3}	$b a^{m-3}$	$a^{6 m+4}$	$b a^{m-5}$
a^{5}	$b a^{3 m-4}$	$a^{2 m+4}$	$b a^{3 m-6}$	a^{7}	$b a^{m-7}$	$a^{6 m+8}$	$b a^{m-9}$
			\vdots				
$a^{2 m-7}$	$b a^{m+8}$	$a^{4 m-8}$	$b a^{m+6}$	$a^{2 m-5}$	$b a^{7 m+5}$	$a^{8 m-4}$	$b a^{7 m+3}$
$a^{2 m-3}$	$b a^{m+4}$	$a^{4 m-4}$	$b a^{m+2}$	$a^{2 m-1}$	$b a^{7 m}$	a^{2}	$b a^{7 m-2}$
$a^{2 m+1}$	$b a^{5 m-1}$	$a^{4 m+2}$	$b a^{5 m-3}$	$a^{2 m+3}$	$b a^{7 m-4}$	a^{6}	$b a^{7 m-6}$
$a^{2 m+5}$	$b a^{5 m-5}$	$a^{4 m+6}$	$b a^{5 m-7}$	$a^{2 m+7}$	$b a^{7 m-8}$	a^{10}	$b a^{7 m-10}$
			\vdots				
$a^{6 m-7}$	$b a^{m+7}$	$a^{8 m-6}$	$b a^{m+5}$	$a^{6 m-5}$	$b a^{3 m+4}$	$a^{4 m-2}$	$b a^{3 m+2}$
$a^{6 m-3}$	$b a^{m+3}$	$a^{8 m-2}$	$b a^{m+1}$	$a^{6 m-1}$	$b a^{7 m+1}$	$a^{4 m}$	$b a^{7 m-1}$
$a^{6 m+1}$	$b a^{m}$	-	$b a^{m-2}$	$a^{6 m+3}$	$b a^{7 m-3}$	$a^{4 m+4}$	$b a^{7 m-5}$
$a^{6 m+5}$	$b a^{m-4}$	a^{4}	$b a^{m-6}$	$a^{6 m+7}$	$b a^{7 m-7}$	$a^{4 m+8}$	$b a^{7 m-9}$
			\vdots				
$a^{8 m-7}$	$b a^{7 m+8}$	$a^{2 m-8}$	$b a^{7 m+6}$	$a^{8 m-5}$	$b a^{5 m+5}$	$a^{6 m-4}$	$b a^{5 m+3}$
$a^{8 m-3}$	$b a^{7 m+4}$	$a^{2 m-4}$	$b a^{7 m+2}$	$a^{8 m-1}$	$b a^{5 m+1}$	$a^{6 m}$	$b a^{m-1}$

If $m=6 k+2$, we have $\ldots, b a^{7 m-1-2(4 k+1)}, b a^{m+2(4 k+1)}, a^{6 m-1-2(4 k+1)}, \ldots$ and $\left(b a^{7 m-1-2(4 k+1)}\right)\left(a^{6 m-1-2(4 k+1)}\right)=b a^{14 k+4}=b a^{m+2(4 k+1)}$. If $m=6 k+4$, we have \ldots, $a^{2 m+1+2(4 k+2)}, \quad b a^{7 m-2-2(4 k+2)}, \quad b a^{m+1+2(4 k+2)}, \ldots \quad$ and $\quad\left(a^{2 m+1+2(4 k+2)}\right)$ $\left(b a^{m+1+2(4 k+2)}\right)=b a^{34 k+22}=b a^{7 m-2-2(4 k+2)}$. Thus, the sequence is an R^{*}-sequence for all $n \geqslant 4$.

Theorem. If G is a non-cyclic abelian 2-group, then G is R-sequenceable. Moreover, if $|G| \neq 8$, then G is R^{*}-sequenceable.

Proof. If $|G|=8$, the result follows from Lemma 2. Otherwise, we use induction on n, where $|G|=2^{n}$. For n even, the base of the induction is $n=2$, so that $G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{2}$, which is R^{*}-sequenceable by Lemma 1. For n odd, the base of the induction is $n=5$, so that either $G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2}, G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{4}, G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{8}$, $G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{4} \times \mathscr{Z}_{4}, G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{16}$ or $G \cong \mathscr{Z}_{4} \times \mathscr{Z}_{8}, \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2} \times \mathscr{Z}_{2}$ is R^{*}-sequenceable by Lemma 1. $\mathscr{Z}_{2} \times \mathscr{Z}_{16}$ is R^{*}-sequenceable by Lemma 4. The other groups are extensions of $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$ by $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$. Let H_{1}, H_{2}, H_{3} be the cosets, other than $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$ itself, of $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$, and let h_{1}, h_{2}, h_{3} be elements of H_{1}, H_{2}, H_{3}, respectively, such that $h_{1} h_{3}=h_{2}$. This is possible since H_{1}, H_{2}, H_{3} must be an R^{*}-sequence of $G /\left(\mathscr{Z}_{2} \times \mathscr{Z}_{4}\right)$. Let the subgroup of G isomorphic to $\mathscr{Z}_{2} \times \mathscr{Z}_{4}$ be generated by a and b with $a^{4}=b^{2}=e, a b=b a$. Then the following is an R^{*}-sequence: $h_{1}, h_{2}, b a^{2} h_{3}, a, b a h_{2}$, $b a h_{3}, a^{2} h_{1}, a h_{1}, b h_{1}, b a^{2} h_{2}, b a^{3} h_{3}, b a^{2}, b, b a^{3} h_{2}, a^{2} h_{3}, a^{3} h_{1}, b a h_{1}, a^{2} h_{2}, a h_{3}, b a^{3}, a^{3}$, $a h_{2}, a^{3} h_{3}, b a^{2} h_{1}, b a^{3} h_{1}, a^{3} h_{2}, b h_{3}, b a, a^{2}, b h_{2}, h_{3}$. The relevant triple is $b a^{3} h_{1}, a^{3} h_{2}$ and $b h_{3}$.

To complete the induction, we assume the result is true for n. Let $|G|=2^{n+2}$. If $G \cong \mathscr{Z}_{2} \times \mathscr{Z}_{2^{n+1}}, G$ is R^{*}-sequenceable by Lemma 4. Otherwise, G is an extension of $\mathscr{Z}_{2} \times \mathscr{Z}_{2}$ by a noncyclic abelian 2-group H, and $|H|=2^{n}$. Since H is R^{*}-sequenceable by assumption, G is R^{*}-sequenceable by Lemma 3 .

Since Friedlander et al. [2] have shown that an abelian group whose Sylow 2 -subgroup is R^{*}-sequenceable is itself R^{*}-sequenceable, we have the following corollary.

Corollary. An abelian group whose Sylow 2-subgroup is noncyclic and not of order 8 is R^{*}-sequenceable.

Acknowledgment

This paper was written at the University of Minnesota, Duluth, under the direction of Professor Joseph Gallian. Donald Keedwell read a preliminary version of the paper and made several helpful suggestions that are incorporated in this version. The research was supported by NSF grant DMS 8709428.

References

[1] J. Dénes and A.D. Keedwell, Latin squares: new developments in the theory and applications, Ann. Discrete Math. 46 (1991).
[2] R.J. Friedlander, B. Gordon and M.D. Miller, On a group sequencing problem of Ringel, Proc. 9th S-E Conf. Combinatorics, Graph Theory and Computing, Congr. Numer. XXI (1978) 307-321.
[3] M. Hall and L.J. Paige, Complete mappings of finite groups, Pacific J. Math. 5 (1955) 541-549.
[4] A.D. Keedwell, On R-sequenceability and R_{h}-sequenceability of groups, Ann. Discrete Math. 18 (1983) 535-548.
[5] G. Ringel, Cyclic arrangements of the elements of a group, Notices Amer. Math. Soc. 21 (1974) A95-96.
[6] C. Wang, On the R-sequenceability of dicyclic groups, preprint.

