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HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vac-
cine. Regions of the viral genome conserved in sequence and across time may represent the “Achilles’
heel” of HIV. In this study, highly conserved T-cell epitopes were selected using immunoinformatics tools
combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed
in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes.
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These epitopes were experimentally validated for HLA binding and immunogenicity with PBMCs from
HIV-infected patients in Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an
IFN� response in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as
HLA-A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time, clades, and
geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity
and would be appropriate for inclusion in a globally relevant HIV vaccine.
AIA vaccine

. Introduction

The development of a safe and efficacious HIV vaccine is believed
o be essential for stopping the AIDS pandemic [1–3]. Two major
actors confounding vaccine design have been the extensive viral
iversity of HIV-1 worldwide and the ongoing evolution and adap-
ation of virus sequences to HLA class I molecules driven by CD8+
ytotoxic T-cell (CTL)-mediated immune pressure [4,5]. In addi-
ion, the insufficient understanding of the complex roles of innate
nd adaptive immune responses in natural infection, as well as
he immune correlates of protection, has made developing a vac-
ine capable of responding to these changes difficult. Indeed, the
ariability of HIV-1 may in part help explain the failure of recent
IV-1 candidate vaccines to elicit immune responses that recognize

ontemporaneous circulating virus stains. Neither the AIDSVAX
accine [6–8], designed to generate antibody responses, nor the
erck AD5 [9,10], designed to raise T-cell responses, was able to

∗ Corresponding author at: EpiVax, Inc., 146 Clifford Street, Providence, RI 02903,
nited States. Tel.: +1 401 272 2123; fax: +1 401 272 7562.
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prevent infection or alter disease among high-risk HIV-negative
individuals. It has been suggested that these failures may be due to
the inability of these vaccines to elicit cross-reactive broadly neu-
tralizing antibodies and sufficient breadth and magnitude of T-cell
responses at mucosal portals of entry [11–13]. The RV144 vaccine
trial demonstrated modest success, leading to a 31% lowered rate
of HIV-1 infection in a specific subset of vaccinees versus placebo
groups [14]. While the correlates of immunity of that trial remain
to be understood, viral diversity is likely to be at least partially
responsible for the limited coverage.

HIV-1-specific CD4+ T helper cells and CD8+ cytotoxic T cells
have been shown to play a central role in control of the virus fol-
lowing infection [15–21]. CD4+ T helper cells are essential for the
generation of both humoral and cellular responses against the virus
[22,23], while cytotoxic T cells play an important role in the res-
olution of acute viremia and in control of persistent HIV-1 viral
replication [17,24]. Recent longitudinal studies following first CD8+
CTL responses to founder virus in early infection have defined a

narrow window of opportunity for the CTL response to control
infection and revealed multiple evolutionary pathways utilized by
the virus during acute infection to retain replicative fitness [25–28].
Moreover, roles for both cytolytic function of CD8+ T cells during

https://core.ac.uk/display/82030566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.vaccine.2012.10.042
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:AnnieD@EpiVax.com
dx.doi.org/10.1016/j.vaccine.2012.10.042
http://creativecommons.org/licenses/by-nc-nd/3.0/
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onproductive infection and noncytolytic functions (e.g., MIP-1�,
IP-1�, IFN�, TNF�, and IL-1) in resolution of peak viremia have

een identified [29,30]. Therefore, vaccines that stimulate virus-
pecific T-cell responses may  be able to boost humoral immune
esponses and may  also delay the progression of HIV-1 to AIDS in
nfected individuals. A robust T-cell response will be a necessary
omponent of any successful HIV vaccine; however, the ability of

 vaccine to account for the extraordinary viral diversity of HIV-1
ontinues to be a challenge. This diversity extends not only to T-
ell epitope differences across clades, but also to isolates from a
umber of diverse clades that occupy a single geographic area [31].

One approach to address the problem of HIV-1 diversity is to
evelop multiple vaccines. These vaccines could be developed on a
lade-by-clade basis, whereby a single vaccine represents isolates
rom a single clade, or on a geographically specific basis, whereby
accines are derived from isolates commonly circulating in a par-
icular country or region. However, this multiple vaccine approach
aises the question of how many vaccines would be needed to pro-
ect against each of the many clades of HIV. In a time of increasing
lobal connectedness and mobility, the notion of controlling a par-
icular viral population and keeping it geographically sequestered
s unlikely to bear fruit.

In  contrast to region-specific vaccine efforts, our approach is to
evelop a globally effective vaccine. This vaccine would be com-
rised of epitopes targeting specific regions that are conserved
cross clades and regional variations, which are considered to be
he most stable elements of the rapidly changing HIV-1 genome
32,33]. These regions may  represent the “Achilles’ heel” of the
irus, as their persistence across time and space suggests they lie
n regions of the HIV genome that may  be resistant to selective
mmunologic pressure because they ensure viral fitness [34,35].
ther universal vaccine design strategies, such as the Mosaic
accine Constructs and Conserved Elements concepts currently
ndergoing preclinical studies, proffer global coverage based upon
onsensus plus most common variants and Center-Of-Tree deriva-
ion [36–39].

“Protective” HLA class I alleles are associated with CTL responses
hat target conserved regions of the viral genome located in
unctional or structural domains that, when mutated, impart a
ubstantial fitness cost on the virus [40,41]. Population-based stud-
es have shown that the number and rate of reverting mutations

ere highest in conserved residues in GAG, POL, and NEF (at
qual frequency), while escape without reversion occurred in more
ariable regions [42]. Another study found that the highest fit-
ess cost, based upon identification of reverting mutations across
he entire HIV-1 subtype C proteome, occurred in target genes in
he rank order VPR > GAG > REV > POL > NEF > VIF >TAT > ENV > VPU
42]. CD8+ CTL responses broadly targeting GAG have proven to
e important in virus control as well as elite suppression in some

ndividuals possessing “protective” HLA-B*57, HLA-B*5808, and
LA-B*27 alleles [43]. It could be argued that only epitopes that can
ndergo escape reversion mutations will elicit effective antiviral
esponses [44,45].

The  biggest challenge for the rational design of an effective CD8+
 cell vaccine is the identification of HLA-class I-restricted immu-
odominant epitopes in HIV-1 that are under similar structural
nd functional constraint. Therefore, our strategy for HIV-1 vaccine
esign is to select epitopes that can induce broad and dominant
LA-restricted immune responses targeted to the regions of the
iral genome least capable of mutation due to the high cost to
tness and low selective advantage to the virus. Both DeLisi and
ette have shown that epitope-based vaccines containing epitopes

estricted by the six supertype HLA can provide the broadest pos-
ible coverage of the human population [46,47]. Thus epitopes that
re restricted by common HLA alleles and conserved over time in
he HIV genome are good targets for an epitope-based vaccine.
 (2012) 7547– 7560

Previously,  we  described the identification of 45 such HIV-1 epi-
topes for HLA-B7 [32], sixteen for HLA-A3 [48], and immunogenic
consensus sequence epitopes representing highly immunogenic
class II epitopes [49]. In this study, we focus on the identification
and selection of highly conserved and immunogenic HLA-A2 HIV-1
epitopes. The goal is to provide valuable information and strategies
that would contribute to the development of the GAIA vaccine or
any other multi-epitope, pan-HLA-reactive, globally relevant HIV
vaccine.

The HLA-A2 supertype allele is highly prevalent in much of the
world, especially in those geographic areas under severe threat of
HIV-1. It is common among Caucasian North Americans, but slightly
less common in African American (20%) and Hispanic populations
(34%) [50]. In China, where an HIV epidemic is beginning to emerge,
HLA-A2 prevalence is 53.3% [51]. Among the African population,
HLA-A2 frequency ranges from 36% to 63% with Mali, in partic-
ular, at 43% [52]. In this study, we  present data using advanced
immunoinformatics tools to identify highly conserved putative
HLA-A2 epitopes for HIV-1. This analysis was conducted and epi-
topes were selected at two  time points: first in 2002, and again
in 2009. These two  data sets allowed us to assess the persistence
and conservation of the selected epitopes, as the number of avail-
able HIV sequences expanded four-fold over this time period. The
immunogenicity of the 2002 and 2009 selected epitopes were con-
firmed with in vitro assays using blood from HIV-positive subjects
in Providence, Rhode Island, and Bamako, Mali.

2. Materials and methods

2.1.  Selecting a highly conserved HIV-1 sequence data set

2.1.1.  2002 sequence set
The  sequences of all HIV-1 strains published on GenBank

between January 1st, 1990, and June 2002 were obtained.
Sequences posted to GenBank prior to December 31st, 1989, were
excluded based on our observation that early sequences were more
likely to be derived from HIV clade B. Sequences shorter than 80%
and longer than 105% of a given protein’s nominal length were
also excluded. Short sequences were excluded because inclusion of
these fragments skews the selection of conserved epitopes in favor
of regions of particular interest to researchers, such as the CD4 bind-
ing domain or the V3 loop of HIV (unpublished observation). Longer
sequences were excluded because these sequences tend to cross
protein boundaries, confusing the categorization process. A second
dataset was  downloaded from the Los Alamos HIV Database using
the same criteria, and the two  datasets were merged. The combined
2002 dataset contained 10,803 unique entries selected for the next
phase of analysis.

2.1.2.  2009 sequence set
In  June–July 2009, the informatics component was repeated

to assess the extent to which the predicted epitopes had been
maintained in the expanding and evolving set of available viral
sequences. In addition, the EpiMatrix algorithm had undergone
revision which enabled it to be better at eliminating false positives
(see Section 2.1.4 below); this updated EpiMatrix was employed to
analyze the expanded sequence database. The same steps described
above were repeated with the sequences posted between January
1st, 1990, and June 30th, 2009. All other inclusion criteria were

unchanged. Due to the expansion of available HIV sequences, the
combined dataset grew from 10,803 to 43,822 sequences. At this
time we  also performed a retrospective analysis of HIV sequences
by year (Fig. 1) and selected additional epitopes (below).
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Fig. 1. Conservation for this figure was calculated by year of report from GenBank based on sequences available in 2009. Conservation data from this figure may  differ from
conservation reported in the text or in Table 1, as the number of sequences available at the time of peptide selection differs from the number available for analysis in 2009.
Sequences in each plot are listed from most to least conserved in 2009. Vertical lines have been drawn to indicate points at which peptides were identified: peptides 1237,
1247,  1249, 1257, and 1261 were identified in 1997; peptides 1001–1020 were identified in 2002; and peptides 2001–2004 and 3001–3009 were identified in 2009. Ten
peptides per protein sequence were selected at random and conservation calculated as previously described to highlight the high conservation of the epitopes chosen for
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s  compared to 1987, conservation of the epitopes has remained stable.

.1.3. Conservatrix
Conservatrix was used to search the 10,803 protein sequences

rom 2002 and the 43,822 protein sequences from 2009 for seg-
ents that were highly conserved among the input sequences.

onservation evaluated in this way is a good marker for potential
igh value of selected epitopes [53]. For each of the nine HIV genes,
eptides were retained for further analysis if they either were con-
erved in at least 5% of the input sequences or were among the top
000 scoring peptides, whichever criterion was  met  first. All puta-
ive epitopes were checked for human homology by BLAST, and
hose with significant homology were excluded, a protocol that is
tandard in our epitope selection process [53].

.1.4. EpiMatrix
The  EpiMatrix algorithm was used to select peptides in 2002

rom the output of highly conserved 9- and 10-mers produced by
onservatrix [53]. Each amino acid was scored for predicted affinity
o the binding pockets using the EpiMatrix HLA-A2 matrix motif.
ormalized scores were then compared to the scores of known
LA-A2 ligands. Peptides scoring higher than 1.64 on the EpiMa-

rix Z scale (the top 5% of all scores on the normalized scale) were
elected. This cutoff falls within the same Z-score range as pub-
ished HLA-A2 epitopes, and therefore these selected sequences
erve as good predictions of binding to HLA-A2 and represent
he most useful potential candidates for inclusion in an HIV vac-
ine. Although not designed to be so, the selected peptides are
ll predicted to be potentially promiscuous binders, as they are
redicted to bind alleles within the HLA-A2 supertype as well as
any additional MHC-1 alleles. Additionally, epitopes originally

elected in 1997 for their estimated binding potential (EBP) [54]
ere re-screened for putative binding to HLA-A2 using the Epi-

atrix HLA-A2 matrix as described above, The selected peptides
ere validated with in vitro HLA-A2 binding assays, and their abil-

ty to elicit IFN� responses in PBMC cultures from HIV-1 infected
ndividuals was assessed by ELISpot.
early conservation of the ten peptides within each protein. The second y-axis charts
o demonstrate that in spite of the increased number of sequences available in 2009

The  EpiMatrix HLA-A2 matrix motif was  retrained on a more
robust set of A2 epitopes using the expanded set of sequences
available in 2009. This updated matrix is believed to be more accu-
rate than the 2002 matrix and has demonstrated high prediction
accuracy when benchmarked against other prediction tools [55].
The updated EpiMatrix algorithm was  used in 2009 to scan the
expanded number of available HIV sequences for putative bind-
ing to HLA-A2, with the goal of reevaluating previously selected
epitopes and identifying new candidate epitopes to be considered
for inclusion in a global HIV vaccine.

2.1.5. Epitope selection
An  initial set of 25 peptides, including five epitopes originally

identified in 1997 [54], was  selected in 2002 for putative bind-
ing to HLA-A2 as measured by EpiMatrix score. The 2002 list of
peptides consisted of six epitopes from ENV, four from GAG, nine
from POL, two from VIF, and one each in TAT, NEF, VPR, and VPU.
HIV sequences available in June 2009 were re-evaluated for puta-
tive binding to HLA-A2. This analysis differed from that in 2002 in
two important ways: it used the improved EpiMatrix algorithm and
drew from a database of HIV sequences that had expanded four-fold
since 2002. Thirteen new highly conserved HLA-A2 epitopes were
identified and selected for validation studies, including two pep-
tides from ENV, four from REV, three from VIF, and one each from
GAG, POL, NEF, and VPU. Fourteen epitopes from the 2002 epitope
set were reselected in 2009 for validation in Mali in in vitro stud-
ies based on updated EpiMatrix scores and peptide availability. The
complete list of peptides tested in this report is shown in Table 1.

2.2. Peptide synthesis
Peptides  corresponding to the 2002 epitope selections were
prepared by 9-fluorenylmethoxycarbonyl (Fmoc) synthesis on
an automated Rainin Symphony/Protein Technologies synthesizer
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Table 1
Overview of EpiMatrix-predicted HLA-A2 restricted epitopes for inclusion in the GAIA Vaccine.

Study ID Sequence Conservation in
contemporary
proteins

Earliest infection
year

Countries  covered
(of  239)

Top three clades
represented

EpiMatrix score at
study  inclusion

In vitro soluble
assay  Kd (nM)

% donors responding
positively in ELISpots

Published prior to
selection?  For A2?

Published since
selection  (as of May
2012)?  For A2?

Peptides selected for study in 2002 (2002 EpiMatrix score is reported):
POL 1007 KLAGRWPVKV 40% 1976 55 C, 01 AE, A1 3.55 1.4 0.0% N Y
ENV  1001 GIKPVVSTQL 43% 1976 80 C, B, 01 AE 3.13 – 20.8% N N
GAG  1012 RMYSPVSIL 53% 1976 82 C, B, 01 AE 3.63 1.3 33.3% N Y, A2
ENV 1003 RLRDLLLIV 29% 1979 41 B, BF, 01B 3.05 161.2 6.3% Y, A2 Y, A2
POL  1011 KLVGKLNWA 87% 1976 74 B, C, 01 AE 2.84 1.0 12.5% Y, A2 Y, A2
POL 1006 ALQDSGSEV 46% 1984 61 B, C, 01 AE 3.79 1.9 16.7% N Y, A2
ENV 1005 SLCLFSYHRL 44% 1979 74 B, C, 01 AE 2.91 21.9 25.0% N Y
VPR 1019 ETYGDTWTGV 28% 1982 37 B, C, D 2.49 3.5 8.3% N Y
GAG 1013 ELKSLYNTV 14% 1980 56 B, C, A1 3.57 801.5 20.8% N Y
POL 1247 HLKTAVQMAV 96% 1976 75 B, C, 01 AE 3.58 80.9 31.3% N Y, A2
ENV 1004 TMGAASITL 42% 1976 75 C, B, 01 AE 2.96 6.7 25.0% N Y, A2
ENV  1002 AVLSIVNRV 42% 1979 70 B, C, 01 AE 3.08 2.5 20.8% N Y
POL 1008 ELKKIIGQV 66% 1976 68 B, C, 01 AE 3.43 4783.9 33.3% N Y
VPU  1020 TMVDMGHLRL 1% 1987 6 CD, A2 C, C 3.11 1.0 11.8% N Y
VIF 1018 KISSEVHIPL 25% 1976 51 B, C, D 2.93 140.2 12.5% N N
ENV  1257 NMWQEVGKAM 33% 1979 41 B, C, D 3.05 24.0 25.0% Y, A2 Y, A2
GAG 1014 MLKETINEEA 46% 1980 47 B, 01 A3, D 3.14 1.2 20.8% Y Y
NEF 1015 WLEAQEEEEV 47% 1981 54 B, A1, C 3.32 137.1 6.3% N Y
GAG 1261 SLYNTVATLY 31% 1976 59 B, C, A1 3.89 nt 33.3% Y, A2 Y, A2
POL  1016 GLKKKKSVTV 65% 1982 74 B, C, 01 AE 3.56 1372.5 0.0% Y N
POL 1009 ELAENREIL 84% 1976 75 B, C, 01 AE 3.18 2237.5 12.5% Y, A2 Y
POL 1010 DIQKLVGKL 87% 1976 74 B, C, 01 AE 2.97 – 6.3% N Y
POL 1249 ILKEPVHGVY 71% 1976 69 B, C, 02 AG 4.61 nt 44.4% Y, A2 Y, A2
VIF  1237 DLADQLIHLY 18% 1981 37 B, A1, 02 AG 3.45 42.8 25.0% N Y, A2
TAT 1017 RLEPWKHPG 31% 1981 37 B, BF1, BF 2.19 – 6.3% N N

Peptides  selected for study in 2009 (2009 EpiMatrix score is reported):
ENV 3002 WLWYIKIFI 77% 1976 87 B, C, 01 AE 3.14 nt 12.5% Y, A2 Y, A2
REV 2002 ILVESPTVL 9% 1983 18 B, BF, 03 AB 2.92 58.4 25.0% N N
NEF  3004 LTFGWCFKL 73% 1981 65 B, C, A1 2.92 280.6 25.0% Y, A2 Y, A2
VIF  3008 SLVKHHMYI 35% 1981 54 B, C, 01 AE 2.51 24.5 37.5% Y, A2 Y, A2
REV  2004 PLQLPPLERL 47% 1981 63 B, 01 A3, C 2.51 – 50.0% Y N
POL 3005 YQYMDDLYV 82% 1976 75 B, C, 01 AE 2.30 1.4 37.5% Y, A2 Y
REV  2001 GVGSPQILV 13% 1982 25 B, 01B, BF 2.28 8965.1 37.5% N N
VIF  3007 SLQYLALTA 46% 1976 66 B, C, D 2.19 41.2 37.5% N N
REV 2003 SAEPVPLQL 15% 1983 44 B, C, 02 AG 2.17 – 50.0% Y Y
ENV  3001 QLLLNGSLA 93% 1976 87 A1, B, D 2.04 812.7 37.5% Y N
VPU  3009 KIDRLIDRI 34% 1980 36 B, BF1, BF 1.92 824.1 0.0% N N
GAG  3003 RTLNAWVKV 97% 1976 83 B, C, 07 BC 1.86 nt 25.0% Y, A2 N
VIF 3006 KVGSLQYLA 84% 1976 78 B, C, 01 AE 1.81 463.6 62.5% N N

Thirty-eight peptides were identified as putative A2 epitopes for assessment and potential inclusion in an HIV vaccine; based on this study, 32 peptides were defined as A2 epitopes and 6 as potential A2 epitopes in need of further
definition.  Peptides were selected for this study in 1997 (peptides 1237, 1247, 1249, 1257, and 1261), in 2002 (peptides 1001–1020), or in 2009 (peptides 2001–2004 and 3001–3009) based on their high conservation and high
putative  immunogenicity for A2. The five peptides identified in 1997 were evaluated using the 2002 EpiMatrix HLA-A2 algorithm and selected for study inclusion in 2002. Peptide 1261 (SLYNTVATLY) was chosen to serve as a
positive  control for the in vitro binding assays and CTL assays. All peptides were given a unique identifying number, displayed in column 1. Peptide source proteins are also displayed in column 1: there were 12,233 sequences
from  ENV, 5623 sequences from GAG, 8361 sequences from NEF, 2147 sequences from POL, 2580 sequences from REV, 2348 sequences from TAT, 3242 sequences from VIF, 3850 sequences from VPR, and 3437 sequences from
VPU.  Peptide sequences are shown in column 2. Column 3 shows the percent conservation of each peptide among its respective number of input strains from the year the peptide was selected. The earliest infection year, shown
in  column 4, was based on year of report from LANL or GenBank and may have been identified retroactively from samples collected prior to the discovery of HIV; all of the peptides cover strains present at least as recently as 2009.
Column  5 shows the number of countries in which strains are covered by each of the peptides from a total of 239 countries identified by the GenBank database. Column 6 shows the three clade subtypes most frequently covered
by  each peptide; clades classified as “unknown” were excluded from this analysis. Column 7 displays the peptide’s HLA-A2 EpiMatrix score at the time of study selection in either 2002 or 2009. Column 8 details the results of
in  vitro HLA-A2 binding assays. Kd scores in nM are interpreted as follows: Kd < 5 is a very high-affinity binder; 5 < Kd < 50 is a high-affinity binder; 50 < Kd < 500 is an intermediate-affinity binder; 500 < Kd < 5000 is a low-affinity
binder; and 5000 < Kd is a non-binder. Non-binding peptides are indicated with a dash in this column; peptides not tested in binding assays are denoted by “nt”. Column 9 displays the results of ELISpot assays performed in
Providence  and in Mali, respectively; details can be found in Table 3. Columns 10 and 11 indicate whether the peptide has been published prior to or after selection for our study; if the peptide has been published, this column
also  indicates whether A2 was  included as an allele for which the peptide was  restricted.
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Synpep, Dublin, CA). The peptides were delivered 90% pure as
scertained by HPLC.

Peptides  corresponding to the 2009 epitope selections were
repared by solid-phase Fmoc synthesis on an Applied Biosys-
ems/Perceptive Model Pioneer peptide synthesizer (New England
eptide, Gardner, MA). The peptides were delivered >80% pure as
scertained by HPLC, matrix-assisted laser desorption/ionization
MALDI) mass spectrometry, and UV scan at wavelengths of 220
nd 280 (ensuring purity, mass, and spectrum, respectively).

.3.  Purified HLA class I binding assay

The MHC  class I binding assays were performed as previously
escribed [56]. The HLA class I molecule was incubated at an active
oncentration of 2 nM together with 25 nM human �2 microglob-
lin (�2 m)  and an increasing concentration of the test peptide
t 18 ◦C for 48 h. The HLA molecules were then captured on an
LISA plate coated with the pan-specific anti-HLA antibody W6/32,
nd HLA-peptide complexes were detected with an anti-�2 m spe-
ific polyclonal serum conjugated with horseradish peroxidase
Dako P0174), followed by a signal enhancer (Dako Envision). The
lates were developed, and the colorimetric reaction was  read at
50 nm using a Victor2 Multilabel ELISA reader. Using a standard,
hese readings were converted to the concentration of HLA-peptide
omplexes generated and plotted against the concentration of
est peptide offered. The concentration of peptide required to
alf-saturate (EC50) the HLA was determined. At the limiting
LA concentration used in the assay, the EC50 approximates

he equilibrium dissociation constant, KD. The relative affinities
f peptides, based on a comparison of known HLA-A2 ligands,
ere categorized as high binders (KD < 50 nM), medium binders

50 nM < KD > 500 nM), low binders (500 nM < KD > 5000 nM), and
on-binders (KD > 5000 nM). Binding scores for each of the selected
eptides can be found in Table 1.

.4. Blood samples

Interferon gamma ELISpot assays were performed using periph-
ral blood mononuclear cells (PBMCs) separated by Ficoll density
radient centrifugation of whole blood. HIV-seropositive sub-
ects living in Providence, Rhode Island, and Bamako, Mali, were
ecruited in accordance with all federal guidelines and institutional
olicies. Institutional review boards in Providence and Bamako,
ali, approved the informed consent procedures and research pro-

ocols at each of the sites. Informed consent was obtained prior to
btaining all samples for this study.

.5. Study cohorts

Patient  study cohorts were from two geographically distinct
ocations: Providence, Rhode Island, and Bamako, Mali. The Provi-
ence study subjects belonged to two cohorts (cohort #1 and cohort
2) of long-term slow or non-progressors (CD4 > 350 for >10 years
ith minimal or no treatment) or from chronically HIV-infected
atients (CD4 > 350 and not on treatment). Subjects in cohort one
ere recruited from an HIV clinic at the Miriam Hospital in Prov-

dence, Rhode Island, and were used to validate epitopes selected
n 2002. Subjects in cohort #2 were HIV-seronegative donors from
he Rhode Island Blood Center (RIBC) and were used to validate epi-
opes initially identified in 1997 and reselected in 2002. Subjects
n cohort #3 were HIV-1 infected, otherwise healthy (CD4 > 350)

olunteers recruited from the Bloc Espoir clinic situated in Sikoro,
amako, Mali; these subjects were used to validate epitopes that
ere either newly identified or reselected for study inclusion in

009.
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HLA typing was performed by the Transplant Immunology
Laboratory at Hartford Hospital and the Faculty of Science and Tech-
nology at the University of Bamako using the Micro SSP HLA  Class
I DNA typing tray (One Lambda Inc., Canoga Park, CA).

2.6.  ELISpot assays

The  frequency of epitope-specific T lymphocytes was deter-
mined using Mabtech® IFN� ELISpot kits according to the
manufacturer’s instructions (Mabtech, Sweden). Washed PBMCs
from each donor were added at 2.5 × 105 cells per well to 96-
well ELISpot plates pre-coated with anti-IFN� antibody. Individual
peptides were added to the ELISpot plate at 10 �g/ml, as well as pos-
itive controls PHA (10 �g/ml) and the CEF peptide pool (10 �g/ml).
In assays done in Mali in 2009–2010, the CEF peptide pool was
replaced with a pool of all tested HIV peptides. Six to twelve wells
of PBMCs per plate were cultured without peptide to measure back-
ground. The ELISpot plates were incubated overnight at 37◦C, and
then washed with PBS. Following the washes, biotinylated anti-
IFN� was  added, followed by streptavidin-HRP. ELISpot plates were
developed by the addition of filtered TMB  substrate. The frequency
of antigen-specific cells was  calculated as the number of spots per
106 PBMCs seeded. Responses were considered positive if the num-
ber of spots was at least twice background and was  also greater
than twenty spots per million cells over background (one response
over background per 50,000 PBMCs). The relatively lower num-
ber of spots seen can be expected when stimulating cells directly
ex vivo with peptide, as compared to the larger responses seen
when cells are stimulated with whole protein or peptide, incubated
for several days, and then re-stimulated. We  considered positive
results obtained by these two criteria to be more stringent. Sta-
tistical significance was determined at p < 0.05 by the two-tailed,
non-parametric Mann–Whitney U-test comparing the number of
spots in the peptide wells with the number of spots in the control
wells.

3. Results

3.1. Epitope mapping and selection

Based on criteria described in the methods, 38 HLA-A2 pep-
tides chosen for this study in 2002 or 2009 had EpiMatrix Z-scores
between 1.81 and 4.61 at the time of selection. Notably, five of these
peptides, initially identified in 1997 for their estimated binding
potential (EBP; precursor to EpiMatrix scores), were selected for the
current study after reanalysis with the 2002 EpiMatrix algorithm,
which revealed EpiMatrix Z-scores ranging from 3.05 to 4.61. Since
HIV sequence space has been well mapped for HLA-A2 epitopes, it is
not surprising that sixteen of the peptides selected using EpiMatrix
had been published when they were selected for inclusion in our
prospective in vitro studies. Five of these sixteen sequences were
previously published as binders to alleles other than HLA-A2 (see
Table 1) but were not reported as epitopes for HLA-A2. Fourteen of
the remaining 22 peptides that were novel at selection have since
been published in the literature after we  performed the analysis
(2002 and 2009); again, this is not surprising and reinforces the
utility of the approach for HLA-A2, which can be applied to other
HLA alleles. In this study, we  were able to identify eight novel, as
yet unpublished HLA-A2 epitopes.

3.2. Conservation of HLA-A2 epitopes over time and sequence
space
Overall stability is evident for each of the A2 epitopes selected
using a dual conservation-putative binding score approach (Fig. 1).
Even as the number of protein sequences has increased significantly
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Fig. 2. Conservation of the HIV HLA-A2 peptides, both individually and in aggregate, across years, countries, and clades. Each row of the matrix denotes a specific peptide,
named by the peptide’s protein of origin and its specific ID number. Each column of the matrix represents a specific year, country, or clade, grouped as indicated. The
percentage coverage of strains is represented on a color gradient, with blue indicating values in the 10th percentile, yellow indicating values in the 40th percentile, and red
indicating values in the 80th percentile. Black boxes indicate that no isolates of the protein were available for that year, clade, or country. The bottom row represents the
aggregate percent coverage for the set of 38 epitopes. Each cell of the matrix represents the percent coverage per peptide, except for the bottom-row cells, which represent
the aggregate percent coverage for the peptide set. Column headers are listed here for space considerations: left to right, the year columns are 1980–2009; aggregate coverage
of  strains by year ranges from 24% (1980) to 58% (1982). The countries left to right are: Afghanistan, Angola, Argentina, Austria, Australia, Belgium, Burkina Faso, Burundi,
Benin, Bolivia, Brazil, Botswana, Belarus, Canada, the Democratic Republic of the Congo, the Central African Republic, Congo, Switzerland, the Ivory Coast, Chile, Cameroon,
China, Colombia, Cuba, Cyprus, Germany, Djibouti, Denmark, Dominica, the Dominican Republic, Ecuador, Estonia, Spain, Ethiopia, Finland, France, Gabon, Great Britain,
Georgia, Greenland, Guinea, Equatorial Guinea, Greece, Hong Kong, Haiti, Indonesia, Israel, India, Italy, Jamaica, Japan, Kenya, Cambodia, South Korea, Kazakhstan, Liberia,
Luxembourg, Mali, Myanmar, Malawi, Malaysia, Namibia, Niger, Nigeria, the Netherlands, Norway, Peru, Paraguay, Qatar, Reunion, Romania, the Russian Federation, Rwanda,
Saudi  Arabia, San Marino, Senegal, Somalia, Chad, Turkey, Trinidad & Tobago, Taiwan, Tanzania, Ukraine, Uganda, the United Kingdom, the United States, Uruguay, Uzbekistan,
Venezuela, Yemen, South Africa, Zambia, and Zimbabwe; aggregate coverage of strains by country ranges from 15% (Equatorial Guinea) to 84% (Malaysia). The clades left
to  right are: 01 AE, 0102A, 01A1, 01ADF2, 01AF2U, 01B, 01BC, 01C, 01DU, 01GHJKU, 02 AG, 02A, 02A1, 02A1U, 02B, 02C, 02D, 02G, 02GK, 02O, 02U, 03 AB, 04 CPX, 05 DF,
06  CPX, 06A1, 07 BC, 07B, 08 BC, 09 CPX, 09A, 09A1KU, 10 CD, 11 CPX, 12 BF, 13 CPX, 13U, 14 BG, 15 01B, 16 A2D, 17 BF, 18 CPX, 19 CPX, 20 BG, 21 A2D, 22 01A1, 23 BG,
23A1, 24 BG, 25 CPX, 27 CPX, 28 BF, 29 BF, 31 BC, 32 06A1, 33 01B, 34 01B, 35 AD, 36 CPX, 37 CPX, 38 BF1, 39 BF, 40 BF, 42 BF, 43 02G, A, A/G, A1, A1A2D, A1B, A1C, A1CD,
A1CDGKU, A1CG, A1D, A1DHK, A1F2, A1G, A1GHU, A1GJ, A1GU, A1U, A2, A2C, A2CD, A2D, A2G, A3, AC, ACD, AD, ADGU, ADU, AE, AF2, AF2G, AG, AGH, AG-Ibng, AGU, AHJU,
AKU, B, B’, B,C, BC, BCF1, BCU, BF, BF1, BG, C, CD, CGU, CRF01 AE, CRF01 AE/B, CRF01-AE, CRF02, CRF02 AG, CRF06 cpx, CRF07 BC, CRF12 BF, CRF15 01B, CRF16 A2D, CRF17 BF,
C U, E, 
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RF21  A2D, CRF25 AGU, CRF34 01B, CRF35 AD, CRF37 cpx, CRF39 BF, CU, D, D/A, D
y clade ranges from 4.5% (O) to 100% (CGU).

ver the period from 1987 to 2009, the prevalence of each epitope
ithin those protein sequences has remained relatively constant.

his data demonstrates that the set of selected HLA-A2 epitopes
s evolutionarily conserved and has now become relatively stable

ithin the diversity of HIV sequences. For each year from 1987
hrough 2009, conservation is calculated retrospectively as the pro-
ortion of each HIV epitope to the total number of sequences within
he epitope’s protein of origin available for that year. Level trends
cross the evolutionary landscape indicate stable targets.

The  most highly conserved HLA-A2 binding peptide found in this
nalysis was GAG-3003 (97% conserved over the evolutionary land-
cape). This epitope, located in GAG p2419-27 TLNAWVKVV (TV9), is

 well-defined HLA-A2-restricted epitope located in helix 1 of the
apsid protein. It overlaps the well-known B*57 IW10 epitope and
ay  be under some functional constraint, although mutations are

olerated in this helix whereas mutations in helices two and eight
re not. CTL targeting the HLA-A2 epitope are subdominant but are
eported to be high avidity [57].

For the selected envelope peptides, ENV-3001 was present in
he greatest proportion of published envelope sequences, repre-
ented in 95% of the 258 envelope sequences available in 1987. By
009, though the number of envelope protein sequences increased
ore than 47-fold to 12,233, the proportion of sequences contain-
ng the ENV-3001 epitope remained at 93% (Fig. 1). For comparison,
AG-1261, which corresponds to the classical immunodominant
LA-A2-restricted GAG p1777-85 SLYNTVATL epitope, has been

hown to be under strong selective pressure in HIV-1-infected
E/A, F, F1, F2, F2KU, G, GKU, H, J, JU, K, L, N, O, and U; aggregate coverage of strains

individuals expressing HLA-A2 and shows significantly less con-
servation (31%). Overall, the HLA-A2 selected epitopes in POL show
the highest conservation. VPR, VPU, and REV epitopes have the low-
est total conservation, which is consistent with the high Shannon
entropy in these protein sequences [58,59].

In the course of this analysis we identified two immunogenic
sequences in GAG, 1012 and 1014, which appear to change in con-
servation over time in an inverse relationship to one another. As
1012 conservation increases, 1014 conservation decreases. While
there is no obvious structural relationship that explains the com-
pensatory mutations (1012 is part of helix 7 and 1014 is part of
helix 4), it is worth noting that Tang et al. have recently proposed
a possible structural connection [60]. It is unlikely that the directly
inverse relationship between GAG sequences is entirely random.

3.3.  Conservation of HLA-A2 epitopes across years, clades, and
countries

The  conservation of the selected A2 epitopes across years,
clades, and countries is shown in Fig. 2. Each column of the matrix
represents the set of HIV proteins that falls into a given category
(year isolated, clade, or country), while each row of the matrix rep-
resents a single 9-mer or 10-mer that was selected as an A2 epitope.

The bottom row of cells represents the aggregate percent coverage
for the set of 38 epitopes. This set of highly conserved A2-restricted
peptides covered between 33% (2007) and 100% (1980) of strains
in a given year, between 15% (Equatorial New Guinea) and 84%
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Malaysia) of strains in a given country, and between 5% (clade O)
nd 100% (clade CGU) of strains in a given clade, with mean con-
ervations of 55%, 48%, and 45%, year, country, clade, respectively.
his represents remarkable breadth of coverage for a limited set
f HLA-A2 epitopes, given the well-known ability of HIV to mutate
way from HLA-A2 [61,62].

.4. In vitro peptide binding to soluble HLA-A2

Thirty-four of the selected peptides were evaluated for binding
o HLA-A2 in vitro using a soluble HLA-A2 binding assay (Table 1).
he remaining four peptides were not tested in these assays due to
imited peptide availability. Fifteen of the 34 peptides tested bound

ith high affinity (44%), seven bound at intermediate affinity (21%),
ix bound at low affinity (18%), and six showed no detectable bind-
ng (18%). We  note as a mark of specificity that in previous binding
tudies, none of eight B7- or A11-restricted peptides [54] and none
f 18 B27-restricted peptides [63] bound to HLA-A2. Fourteen of the
fteen peptides predicted as high-affinity binders generated posi-
ive ELISpot results in PBMCs from HIV-infected subjects. One of the
fteen peptides, POL-1007, did not stimulate any IFN� response in
his cohort in spite of its very high predicted and observed binding
ffinity for A2. This peptide was part of a longer peptide previously
ublished as HIV-VAX-1047, an immunogenic consensus sequence
or MHC  class II binding to DRB 0101 [64].

Several peptides elicited positive IFN� ELISpot responses in spite
f their low in vitro HLA-A2 binding affinity (Table 1). It is possible
hat these epitopes were presented in the context of other HLA
lleles in those subjects. In support of this hypothesis, an EpiMatrix
nalysis predicts that several of these epitopes are able to bind to
ther class I alleles. However, as not all of the HLA alleles for each
ubject were identified for this study, we are unable to compare
lternate predicted binding with the subjects’ alleles.

.5.  Subjects

Subjects are listed in Table 2 along with their corresponding
iral loads, CD4 T-cell counts, and years since first identified as
nfected. Subjects were on antiretroviral therapy as indicated. A
riterion for entry into the study was a detectable viral load below
0,000 copies/ml, as we have observed that subjects with unde-
ectable viral loads also have very low CTL responses. Information
n resistance, clinical course, and further details on the stage of dis-
ase was not recorded in the initial study (initiated in 2002). Other
han HIV infection, all subjects were otherwise healthy at the time
hey were recruited.

A  total of 24 HIV-infected subjects were recruited from clin-
cs in Providence, Rhode Island. Sixteen HIV-infected subjects
study subject cohort #1) were recruited from the Miriam Hospital
mmunology Center (Table 2a). Eight HIV-infected subjects (study
ubject cohort #2) were recruited from clinics at Roger Williams
ospital and Pawtucket Memorial Hospital; complete clinical infor-
ation was not available for these donors (Table 2b). Eight HIV-1

ositive subjects (study subject cohort #3), who had been infected
or less than a year and were not receiving ART at the time of enroll-

ent in the study, were recruited from the Bloc Espoir HIV Clinic
n Sikoro, Bamako, Mali (Table 2c).

.6. ELISpot assays

.6.1.  United States and Mali
Immunoreactivity of predicted HLA-A2 epitopes in HIV-infected
ubjects was evaluated in the United States following immunoin-
ormatic analysis in 2002 and in Mali following the 2009 analysis.
wenty-five epitopes were assessed in United States studies,
f which fourteen were selected for testing in Mali, based on
 (2012) 7547– 7560 7553

EpiMatrix  scores, binding assay results, and peptide availability.
Mali studies included an additional thirteen newly identified puta-
tive epitopes, for a total of 27 epitopes assessed there. Of  the
fourteen epitopes tested in both the United States and Mali, eleven
(79%) stimulated a positive IFN� ELISpot response in at least one
patient from each of the geographically distinct areas. Four of five
ENV peptides (80%), three of three GAG peptides (100%), three of
four POL peptides (75%), and the one VIF peptide (100%) tested gen-
erated a positive response in subjects from Providence and Mali. An
additional three peptides—one each in ENV, POL, and VPR—elicited
positive responses in Mali only. The 27 epitopes chosen in 2009
were also assessed in ELISpot assays with five HIV-positive donors
who were confirmed to be HLA-A2 negative. Four of the five donors
(80%) had no positive IFN� responses to any of the 27 peptides
tested; one donor responded to only one of 27 (3.7%) peptides
tested, demonstrating HLA-A2 specificity of the peptides selected
for our present study.

For  the cohorts of chronically HIV-1-infected subjects from both
the Miriam Hospital and the clinic in Bamako, Mali, there was  no
clear association between viral load, CD4 T-cell count, or years of
known HIV infection with responses to HLA-A2 epitopes. In addi-
tion, no clear association was  found between having multiple A2
alleles and the number of epitopes that elicited a detectable IFN�
ELISpot result for a given donor. It is worth noting that, in gen-
eral, the subjects from Mali had an impressive number of epitope
responses compared to the Providence subjects (Table 3a–c). One
patient in this group responded to 25 epitopes, and four others with
low viral loads responded to a mean of eleven epitopes. It is possible
that this is due to the fact that these subjects were recruited for the
study less than a year after they had been identified as HIV-positive
and/or due to the correlate that none of the study participants in
Mali had yet received long-term antiretroviral therapy. Notably, the
one Providence subject (H 0865) who  was  not receiving ART, yet
had a low viral load, responded to eight HLA-A2 epitopes.

3.6.2. Comparison with published HLA-A2 epitopes
The ELISpot analysis reconfirmed eleven epitopes that were

published for HLA-A2 prior to the time of selection for this study
(Table 1). Five of the epitopes that were initially identified and
predicted by our 2002 informatics analysis as entirely novel HLA-
A2 epitopes have subsequently been validated as A2-restricted
epitopes by others (Table 1). These epitopes are ENV-1004 (TMGA-
ASITL) [65], GAG-1012 (RMYSPVSIL) [66], POL-1006 (ALQDSGSEV)
[67], POL-1247 (HLKTAVQMAV) [54], and VIF-1237 (DLADQLIHLY)
[54]. Thus sixteen of the 38 epitopes have been validated by both
our group and by other laboratories as HLA-A2 epitopes. In addition,
assays confirmed five peptides that had been published epitopes
prior to selection for inclusion in our study, although they were
not published in the context of HLA-A2 (Table 1). Four of these
epitopes were immunogenic in ELISpot assays with PBMCs from
HLA-A2 subjects, and while only two  of these epitopes were tested
in in vitro binding assays, both bound to HLA-A2. The fifth epitope,
POL-1016 (GLKKKKSVTV) [67], did not elicit positive IFN� ELISpot
responses in any subjects yet was  shown to bind to HLA-A2 with
low affinity, indicating that this may still be a relevant candidate
for inclusion in a global vaccine (Table 1).

Since their original selection in the 2002 informatics analy-
sis of novel peptides, 14 of the 22 novel epitopes have been
published, nine of which have not been published with HLA-
A2 restriction (Table 1). Of the nine peptides in this group,
eight elicited IFN� ELISpot responses in PBMCs from HIV-1-
infected subjects possessing A2 alleles: ENV-1002 (AVLSIVNRV)

[49], ENV-1005 (SLCLFSYHRL) [49], GAG-1013 (ELKSLYNTV) [68],
NEF-1015 (WLEAQEEEEV) [69], POL-1008 (ELAENREIL) [70], POL-
1010 (DIQKLVGKL) [70], VPR-1019 (ETYGDTWTGV) [71], and
VPU-1020 (TMVDMGHLRL) [70].
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Table 2
HIV-infected subjects (3 cohorts): Immune responses to the HLA-A2-restricted GAIA Vaccine candidate epitopes.

Table 2a Study subject cohort #1 (Providence, RI, USA)
Patient  ID Most  recent

viral  load
Most  recent
CD4  count

Years  since first
identified  as
infected

On  ARV
treatment

Number of positive
epitope  responses

HLA-A  alleles

H 0863 I 102802 <50 809 4 Yes 3/20 A02011, A3001
H  0911 I 120203 <75 321 19 Yes 0/20 A0201
H  0848 I 100702 112 803 7 Yes 0/20 A02022, A03011
H  0865 I 102902 266 689 13 No 8/20 A02011
H 0852 I 100702 372 391 14.3 Yes 0/20  A02011
H 0845 I 100102 535 580  13 Yes 0/20 A02011, A3001
H 0881 I 012803 621 626 17 Yes 0/20 A02011, A29011
H  0834 I 091602 766 430 18 Yes 0/20 A02011, A66011
H  0836 I 091702 847 380 N/A Yes 3/20 A02011, A2901
H  0833 I 010703 1098 1064 2.5 No 1/20 A0201, A0801
H 0856 I 101502 1233 617 14 Yes 0/20 A01011, A02011
H  0854 I 101502 2441 623 8 No 2/20 A02011, A3401
H 0912 I 120303 4177 316 8 Yes 11/20 A0201
H  0840 I 092302 5923 483 7 No 0/20 A02011, A03011
H 0843 I 100102 32,925 428 11 Yes 2/20 A02011, A7401
H  0858 I 011403 77,350 500 10 No 1/20 A02011, A2603

Table  2b Study subject cohort #2 (Providence, RI, USA)
Patient  ID Most recent

viral  load
Most recent
CD4  count

Years since first
identified  as
infected

On ARV
treatment

Number of positive
epitope  responses

HLA-A alleles

0902991 <10,000 >200 N/A N/A 3/5 A2, A30
H0014M <10,000 >200 N/A N/A 3/5 A1, A2
0517001  <10,000 >200 N/A N/A 2/5 A2, A3
H0023M  <10,000 >200 N/A N/A 2/5 A2, A30
0906002  <10,000 >200 N/A N/A 1/5 A2, A3
0829001  <10,000 >200 N/A N/A 0/5 A2, A3
H0007M  <10,000 >200 N/A N/A 0/5 A2, A29
H0204R  <10,000 >200 N/A N/A 0/5 A2

Table  2c Study subject cohort #3 (Bamako, Mali)
Patient ID Most recent

viral  load
Most recent
CD4  count

Years since first
identified  as
infected

On ARV
treatment

Number of positive
epitope  responses

HLA-A alleles

0015267 <25 1218 <1 No 16/27 A0231, A0285, A0286, A9206, A0279
0015299 <400 471 <1 No 13/27 A0208
0018341  2541 689 <1 No 4/27 A0280, A0241, A0208
0018349 4700 674 <1 No 14/27 A0208
0018322  110,000 1443 <1 No 5/27 A0250, A0258, A0265, A0273
0015269 226,000 796 <1 No 2/27 A0209, A0231
0015420  445,000 364 <1 No 0/31 A0263, A0214
0015404  N/A 303 <1 No 25/27 A02, A0285, A0286

Table 2a HIV-1-positive HLA-A2 subjects were recruited at the Miriam Hospital Immunology Center in Providence, Rhode Island. The subjects are listed in column 1 and are
displayed  by lowest viral load to highest viral load, as shown in column 2. Subjects’ most recent CD4 counts are shown in column 3. Column 4 shows the number of years of
known HIV-1 infection for each subject. These subjects were on antiretroviral therapy as indicated in column 5. PBMCs from these subjects were evaluated for IFN� secretion
in  response to each of 20 A2 peptides (1001–1020); the number of epitopes to which each patient responded is shown in column 6. All subjects were HLA-A2-positive, and
HLA-A subtypes are shown in column 7. Fifteen of the 20 peptides stimulated a positive response in at least one subject. Eight of the 16 subjects (50%) responded to at least
one  of the peptides.
Table  2b HIV-1-positive HLA-A2 subjects were recruited at Roger Williams Hospital and Pawtucket Memorial Hospital in Rhode Island, or from clinics in Massachusetts. The
subjects  are listed in column 1. Other than HLA-A typing, no clinical information is available for individual subjects within this cohort. Though viral loads and CD4 counts
(columns 2 and 3, respectively) by donor are unavailable, the criteria for entry into this study cohort were a detectable viral load below 10,000 copies/ml and an absolute
CD4T cell count above 200 cells per Cl. Information on duration of HIV infection and ARV treatment status, displayed in columns 4 and 5, respectively, was not accessible.
PBMCs from these subjects were evaluated for IFN� secretion in response to each of 5 A2 peptides (1237, 1247, 1249, 1257, and 1261); the number of epitopes to which
each patient responded is shown in column 6. All subjects were HLA-A2 positive, and HLA-A subtypes are shown in column 7. Each of the five peptides stimulated a positive
response in at least one subject. Two peptides, 1261 and 1249, generated positive responses in three out of eight subjects (37.5%) and two  peptides, 1257 and 1237, stimulated
a  positive response in two  out of eight subjects (25%). Peptide 1247 was  positive in only one subject in this cohort.
Table 2c HIV-1-positive HLA-A2 subjects were recruited at the Bloc Espoir clinic in Sikoro, Bamako, Mali. The subjects are listed in column 1 and are displayed by lowest
viral load to highest viral load, as shown in column 2. Viral load data was  unavailable for one subject, patient 0015404. Subjects’ most recent CD4 counts are shown in
column 3. Column 4 shows the number of years of known HIV-1 infection for each subject. None of these subjects were on antiretroviral therapy, as indicated in column
5. PBMCs from these subjects were evaluated for IFN� secretion in response to each of 27 A2 peptides (1001, 1002, 1004–1006, 1008, 1011–1014, 1019, 1237, 1247, 1257,
2001–2004, and 3001–3009). PBMCs from one subject (0015420) were tested with the same set of 27 peptides, plus four additional peptides (1007, 1020, 1249, and 1261).
The number of epitopes to which each patient responded is shown in column 6. All subjects were HLA-A2-positive, and HLA-A subtypes are shown in column 7. Twenty-six
of the 27 epitopes (96%) were positive in at least one of eight subjects tested, and seven of eight subjects (87.5%) responded to at least one epitope. One epitope stimulated
positive responses in six subjects (75%), one epitope stimulated positive responses in five subjects (62.5%), six epitopes stimulated positive responses in four subjects (50%),
nine  epitopes stimulated positive responses in 3 subjects (37.5%), eight epitopes stimulated positive responses in two subjects (25%), and one epitope stimulated positive
responses in one subject (12.5%).
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Table 3
Individual donors’ responses to the HLA-A2-restricted GAIA Vaccine candidate epitopes.

Table 3a Study subject cohort #1: GAIA Vaccine candidate HLA-A2-restricted epitope ELISpot results (USA)
Peptide ID Sequence H  0863 H 0865 H 0836 H 0833 H 0854 H 0912 H 0843 H 0858 Total

responses
per epitopeA02011

A3001
A02011 A02011;

A2901
A0201;
A0801

A02011;
A3401

A0201 A02011;
A7401

A02011;
A2603

ENV 1001 GIKPVVSTQL – – – – 75 903 – – 2/16
ENV 1002 AVLSIVNRV  – 54 – – – 279 – – 2/16
ENV 1003  RLRDLLLIV – – – – – 389 – – 1/16
ENV  1004 TMGAASITL – 303 – – – 139 – – 2/16
ENV  1005 SLCLFSYHRL – – – – – – – – 0/16
GAG  1012 RMYSPVSIL 46 117 43 – – 199 – – 4/16
GAG 1013 ELKSLYNTV 33 22 – – – – – 129 3/16
GAG 1014 MLKETINEEA – 331 – –  – 106 – – 2/16
NEF 1015  WLEAQEEEEV – – – – – – 25 – 1/16
POL  1006 ALQDSGSEV – – – – – – – – 0/16
POL 1007  KLAGRWPVKV – – – – – – – – 0/16
POL  1008 ELKKIIGQV 33 99 – – 43 76 30 – 5/16
POL  1009 ELAENREIL – 25 – 23 – – – – 2/16
POL  1010 DIQKLVGKL – – 64 – – – – – 1/16
POL  1011 KLVGKLNWA – – – – – 49 – – 1/16
POL  1016 GLKKKKSVTV – – – – – – – – 0/16
TAT 1017 RLEPWKHPG – – – – – 29 – – 1/16
VIF  1018 KISSEVHIPL – 32 – – – 36 – – 2/16
VPR 1019  ETYGDTWTGV – – – – – – – – 0/16
VPU  1020 TMVDMGHLRL – – 33 – – 46 – – 2/16

Total  responses per donor 3/20 8/20 3/20 1/20 2/20 11/20 2/20 1/20

Table  3b Study subject cohort #2: GAIA Vaccine candidate HLA-A2-restricted epitope ELISpot results (USA)

Peptide ID Sequence 0902991  H0014M 0517001 H0023M 0906002 Total
responses
per epitopeA2 A1 A2 A2 A2

A30  A2 A3 A30 A3
B39  B8 B44 B35 B8

Cw16 Cw05 B49 B51
Cw07 Cw04 Cw01

Cw07 Cw07

ENV 1257 NMWQEVGKAM 333 – 72 – – 2/8
GAG 1261 SLYNTVATLY – 290 – 204 121 3/8
POL  1247 HLKTAVQMAV – 230 – – – 1/8
POL  1249 ILKEPVHGVY 2380 – 117 172 – 3/8
VIF  1237 DLADQLIHLY 190 43 – – – 2/8

Total  responses per donor 3/5 3/5 2/5 2/5 1/5

Table 3c Study subject cohort #3: GAIA Vaccine candidate HLA-A2-restricted epitope ELISpot results (Mali)

Peptide ID Sequence 0015267 0015299 0018341 0018349 0018322 0015269 0015404 Total
responses
per epitopeA0231 A0208 A0280 A0208 A0250 A0209 A02

A0285 A0241  A0258 A0231 A0285
A0286  A0208 A0265 A0286
A9206  A0273
A0279

ENV 1001 GIKPVVSTQL – 53 – 37 – – 111 3/8
ENV  1002 AVLSIVNRV 77 49 – – – – 39 3/8
ENV  1004 TMGAASITL 91 – 25 40 – – 102 4/8
ENV  1005 SLCLFSYHRL 61 65 26 34 48 – 74 6/8
ENV  1257 NMWQEVGKAM – – – 40 – – 63 2/8
ENV  3001 QLLLNGSLA – 37 – – 53 – 63 3/8
ENV  3002 WLWYIKIFI – – – – – – 63 1/8
GAG  1012 RMYSPVSIL 64 28 – 54 – – 66 4/8
GAG 1013 ELKSLYNTV 21 – – – – – 83 2/8
GAG  1014 MLKETINEEA 52 49 – – – – 54 3/8
GAG  3003 RTLNAWVKV 28 – – – – – 43 2/8
NEF  3004 LTFGWCFKL – – 80 – – – 88 2/8
POL  1006 ALQDSGSEV 20 – – – 39 22 71 4/8
POL 1008 ELKKIIGQV –  77 – 21 – – 71 3/8
POL  1011 KLVGKLNWA – 27 – – – – 43 2/8
POL  1247 HLKTAVQMAV 103 56 – 33 – – 59 4/8
POL  3005 YQYMDDLYV 39 – – 53 – – 122 3/8
REV  2001 GVGSPQILV 101 – – – 28 – 62 3/8
REV  2002 ILVESPTVL 23 – – – – – 35 2/8
REV 2003 SAEPVPLQL 20 25 – 25 – – 50 4/8
REV  2004 PLQLPPLERL 139 36 – 37 – – 59 4/8
VIF 3006 KVGSLQYLA 35 33 – 36 27 – 63 5/8
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Table 3 (Continued )

Table 3c Study subject cohort #3: GAIA Vaccine candidate HLA-A2-restricted epitope ELISpot results (Mali)

Peptide ID Sequence 0015267  0015299 0018341 0018349 0018322 0015269 0015404 Total
responses
per  epitopeA0231 A0208 A0280 A0208 A0250 A0209 A02

A0285  A0241 A0258 A0231 A0285
A0286  A0208 A0265 A0286
A9206 A0273
A0279

VIF 3007  SLQYLALTA – – 53 45 – – 43 3/8
VIF  3008 SLVKHHMYI 33 – – 40 – – 82 3/8
VIF  1237 DLADQLIHLY – 91 – 41 – – – 2/8
VPR  1019 ETYGDTWTGV – – – – – 47 34 2/8
VPU  3009 KIDRLIDRI – – – – – – – 0/8

Total  responses per donor 16/27 13/27 4/27 14/27 5/27 2/27 25/27

Table 3a Peptide IDs and sequences are shown in columns 1 and 2, respectively. The ID number for each PBMC donor is shown at the top of columns 3–10, and each donor’s
HLA-A alleles are noted directly under the corresponding ID number. Subject IDs in this table have been shortened from those displayed in Table 2a For simplicity, the
table shows only the ELISpot responses that meet a cutoff of at least twice the number of background spots and at least 20 spots per million cells over background. ELISpot
responses that fall below this cutoff point are indicated with a dash mark. Fifteen of the 20 A2 peptides tested with these donors were positive by ELISpot in at least one
subject. Eight donors (H 0911, H 0848, H 0852, H 0845, H 0881, H 0834, H 0856, and H 0840) whose PBMCs did not elicit responses with any of the peptides tested have
been omitted from this table; clinical information for these subjects can be found in Table 2a
Table  3b: Peptide IDs and sequences are shown in columns 1 and 2, respectively. The ID number for each PBMC donor is shown at the top of columns 3–7, and each donor’s
HLA-A alleles are noted directly under the corresponding ID number. PBMCs from these subjects were evaluated for IFN� secretion  in response to each of five A2 peptides
(1237, 1247, 1249, 1257, and 1261). For simplicity, the table shows only the ELISpot responses that meet a cutoff of at least twice the number of background spots and at
least  20 spots per million cells over background. ELISpot responses that fall below this cutoff point are indicated with a dash mark. All five of the A2 peptides tested with
these donors listed in the table were positive by ELISpot in at least one subject. Three donors (0829001, H0007M, and H0204R) whose PBMCs did not elicit responses with
any  of the peptides tested have been omitted from this table. These subjects were positive for the following HLA alleles: 0829001 (A2, A3, B7, B58, Cw07), H0007M (A2, A29,
B15,  B44, Cw03, Cw16), and H0204R (A2, B40, B57, Cw03, Cw07).
Table  3c Peptide IDs and sequences are shown in columns 1 and 2, respectively. The ID number for each PBMC donor is shown at the top of columns 3–10, and each donor’s
HLA-A alleles are noted directly under the corresponding ID number. For simplicity, the table shows only the ELISpot responses that meet a cutoff of at least twice the number
of  background spots and at least 20 spots per million cells over background. ELISpot responses that fall below this cutoff point are indicated with a dash mark; blank spaces
were left for epitopes that were not tested with a given donor’s PBMCs. Twenty-six of the 27 A2 peptides tested with these donors were positive by ELISpot in at least one
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ubject. One donor (0015420) whose PBMCs did not elicit responses with any of th
an be found in Table 2c. Four additional peptides (1007, 1020, 1261, and 1249) w
een excluded from this table.

And finally, eight of the selected HLA-A2 epitopes are still
ovel for HIV-1 at the time of submission. The following pep-
ides were confirmed to be immunogenic in IFN� ELISpot assays
n PBMC cultures from our HIV-1 infected cohorts: ENV-1001
GIKPVVSTQL) in both Providence, RI and Bamako, Mali; TAT-
017 (RLEPWKHPG) and VIF-1018 (KISSEVHIPL) in Providence;
nd REV-2001 (GVGSPQILV), REV-2002 (ILVESPTVL), VIF-3006
KVGSLQYLA), VIF-3007 (SLQYLALTA), and VPU-3009 (KIDRLIDRI)
n Bamako. Epitope VPU-3009 did not elicit any positive IFN�
LISpot responses and has yet to be described as an HIV-1 epitope
n other publications even though it bound to HLA-A2 in vitro; this

ay  due to the size of the study cohort or to false positive selection
y our immunoinformatics tools.

. Discussion

A  globally relevant vaccine for HIV-1 continues to remain elu-
ive due to the dynamic and extraordinary diversity of the virus.
irus-specific cytotoxic T-cell responses have been shown to play

 vital role in the control of primary and chronic HIV-1 infec-
ion [16,20,17,72,73], and while T-cell epitopes continuously evolve
nder immune pressure, early work showed fitness costs limited
iral escape from CTL [34]. These findings suggest that a vaccine
apable of raising CTL to the most conserved epitopes would have
he most success at slowing or halting the progression of disease.
his supports our firm belief that critical highly conserved, high-
ffinity epitopes available for vaccine design lie in restricted regions
f the HIV genome that are resistant to selective pressure, where
utations are slow to evolve and exact a cost on virus replicative
tness. We  have called these epitopes the “Achilles’ heel” epitopes
f HIV [32]. Due to HIV viral evolution in response to pressure from
LA-restricted immune responses, many highly immunogenic T-
ell epitopes may  be disappearing from the HIV genome, while
tides tested has been omitted from this table; clinical information for this subject
ly tested in this subject, but as they did not elicit any ELISpot response, they have

highly  conserved regions of the genome may  also evolve to escape
human immune response [74,75].

In the work presented here, we have employed immunoinfor-
matics methods to search available HIV sequences for both highly
conserved and immunogenic HLA-A2 epitopes. Using this balanced
strategy of selecting for both conservation and immunogenicity,
38 total putative A2 epitopes were chosen and then tested in
assays with PBMCs from HIV-1 infected subjects in two geograph-
ically distinct areas (Providence, Rhode Island, and Bamako, Mali).
This approach to epitope selection is contrasted with alternative
approaches in Fig. 3. By way of comparison, if the peptide selections
had been made to maximize EpiMatrix score but not conserva-
tion, we would have obtained a set of peptides from regions of
the genome that are highly immunogenic but poorly conserved,
covering only 33% of isolates (left bars). If we  had instead selected
peptides maximizing only for conservation, we might have arrived
at a maximally conserved but not very immunogenic set, in this
case 87% coverage of isolates with very low mean EpiMatrix score
of −0.34 (middle bars). Choosing peptides at random would yield
a set that covers approximately 24% of HIV isolates but has very
poor potential immunogenicity (data not shown). Thus, as illus-
trated in Fig. 3, a balanced approach, such as the one used for the
epitopes described here, leads to the selection of epitopes that are
both immunogenic and highly conserved.

The importance of this approach for vaccine design is under-
scored by the re-evaluation of our 2002 selections that was
performed in 2009, at which time we also searched for new, highly
conserved epitopes. The relative conservation of the selected epi-
topes in spite of the dramatic expansion of the number of available

HIV sequences (4-fold over the intervening seven years) suggests
that these selected peptides may  lie in positions of the viral pro-
tein that are essential for functional or structural integrity of the
virus and which would compromise viral fitness. For example,
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Fig. 3. The 38 highest scoring A2-restricted peptides from the HIV sequence were
identified based on their 2009 EpiMatrix score for binding to HLA-A2, and their
scores  were averaged; on the left side of the graph, the conservation for these pep-
tides was calculated based on the average of the sequences available for analysis
from  GenBank for each peptide in 2009. As shown on the left, though these pep-
tides  are high scoring, their overall conservation is low, indicating that they would
likely not be good candidates for inclusion in an HIV vaccine. This analysis was then
reversed to identify and take the average of the 38 most highly conserved peptides,
and  EpiMatrix scores for these peptides were calculated and averaged, as shown
in the middle of the graph. Despite the high conservation of these peptides, the
low EpiMatrix scores indicate they would be unlikely to be immunogenic, render-
ing  them ineffective in the context of an HIV vaccine. The approach outlined in the
current study combines these two approaches, selecting peptides that are the most
immunogenic and conserved. This approach allows for the identification of peptides
t
b

G
d
p
g
t
o
a
t
u
v
v

w
a
M
l
s
H
n
m
t
i

l
t
S
t
e
a
c
i
c
c

tification as an HLA-A2 epitope. The third epitope for which no
hat are both immunogenic and conserved, leading to a set of epitopes that would
e  the most useful for inclusion in a pan-HLA-reactive global HIV vaccine.

AG-3003, located in GAG p2419-27 TLNAWVKVV (TV9), is a well-
efined HLA-A2-restricted epitope located in helix 1 of the capsid
rotein and may  be under some functional constraint [57]. Indeed,
oing further back than 2002, as shown in Fig. 1, many of our epi-
opes have remained present and conserved in the same proportion
f sequences since the first sequence of HIV was  recorded. The
pproach utilized in the current study, which limits selections to
hose regions that are both conserved and immunogenic, may  have
ncovered the “Achilles’ heel” of the HIV genome. In addition, this
accine strategy excludes epitopes that elicit decoy responses to the
ast majority of HLA class I alleles seen during natural infection.

Furthermore, we tested our theory by validating the epitopes
ithin a population (Providence, Rhode Island, or Bamako, Mali)

nd across geographic space (cohorts in both the United States and
ali). While the number of subjects tested in these two  separate

ocations is too small to draw population-based conclusions with
tatistical significance between ELISpot results and either in vitro
LA-A2 binding or percent conservation in protein of origin, we
ote that the observed responses on two continents point to the
erit of the approach and suggest that the approach may  be used

o identify highly conserved, immunogenic HIV epitopes. Testing
n larger cohorts will be an important aspect of future studies.

Seventy-nine percent (79%) of the 14 peptides tested in both
ocations were positive in at least one subject in each region. Given
hat the most common subtypes of HIV-1 are clade B in the United
tates and clade A in Mali, this remarkable overlap in terms of pep-
ide recognition supports the hypothesis that immunogenicity of
pitopes selected for this study would not be limited by location
nd would be important for inclusion in a globally relevant vac-
ine. That hypothesis is supported by the broad analysis shown

n Fig. 2 and by the validation of some of the peptides in other
ountries [73,76,78,86,87]. In examining the Providence and Mali
ohorts, there are observable differences in the ELISpot responses.
 (2012) 7547– 7560 7557

Some  of these differences may  be related to the different disease
statuses of these groups at the time of enrollment in the study. For
convenience (because few newly infected subjects were being iden-
tified), subjects in the Providence cohort were selected based on
their willingness to participate and the stability of their HIV infec-
tion (Table 2a and b). In contrast, the subjects in Mali had been
identified as HIV positive less than one year prior to the start of
the study (Table 2c), though as these donors were recruited from a
clinic that had just recently opened, it is possible that HIV infection
could have been present for longer periods without detection. The
detection of immune response to these epitopes regardless of phase
of disease suggests that epitope conservation between peptide and
patient sequence is more important than stage of disease.

Seventy-five percent (75%) of the A2 peptides tested in Provi-
dence were positive in at least one subject, and notably, seven of
the eight subjects who  did not respond to these epitopes had been
on long-term antiretroviral therapy (ART). Lower viral loads due to
ART diminishes responses to viral epitopes, and lack of response
in these subjects does not detract from the value of these epitopes
[76,77]. Providence subjects 0865 and 0912 had the most responses
to the A2 epitopes, with eight and eleven responses, respectively.
The broad immune responses of subject 0865 was not surprising, as
this subject was  known to be a long-term non-progressor who had
been infected for over ten years while maintaining low viral load
and normal CD4+ T cell count without the use of ART. This further
validates the importance of broad immune response tied to sur-
vival. And though subject 0912 responded to the most A2 epitopes,
this patient’s viral load and CD4+ T cell counts were more consis-
tent with active disease. Information on ART adherence, resistance,
clinical course, and disease stage for this patient was not available
for this study.

In  general, ELISpot responses to the A2 epitopes in the Mali
subjects were indicative of the broad immune responses seen dur-
ing the early stages of HIV infection (Table 2c). Subjects 15404,
15267, and 18349 demonstrated the broadest immune responses,
responding to more than 50% of the epitopes; these subjects had
relatively low viral loads and normal CD4+ T cells counts, consistent
with early immune control. One study subject responded to more
than 90% of the epitopes tested; although the most recent viral load
was not available for this particular donor during the study time
period, this type of immune response could also be expected in ear-
lier stages of infection. Due to delays in diagnosis, not all subjects
recruited in Mali after their first positive HIV test were identified as
HIV infected at an early stage of disease. The one subject who did
not respond to any of the 31 epitopes tested in ELISpot assays (data
not shown) had a very high viral load (445,000 copies/ml) and low
CD4+ T cell count that would be more typical of chronic, untreated
infection, a condition that also contributes to lack of response, likely
leading to the lack of positive IFN� responses in ELISpot assays.

While  95% of the selected epitopes were positive in at least
one subject in either Providence or Mali, no single epitope was
immunodominant within cohorts or across cohorts. This lack of
immunodominance illustrates the importance of including a broad
array of epitopes for the development of a globally relevant vac-
cine [78–80]. There were only three predicted epitopes that did
not elicit a positive response in this set of peptides; two  of these
epitopes (POL-1007 and POL-1016) have been published by other
groups, one as a class II epitope and the other for a different HLA
restriction (Table 1), calling into question the possibility that either
these epitopes were not correctly predicted (by EpiMatrix) or were
not properly processed or presented on HLA-A2. POL-1007 did bind
with very high affinity to HLA-A2 in vitro, which supports its iden-
response was  detected is a novel epitope identified in our 2009
analysis, VPU-3009. The lack of immune response to this epitope
may be a function of its low binding affinity to HLA-A2.
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Epitope-based vaccines containing epitopes restricted by six
supertype” HLA, such as HLA-A2, are believed to be the best
pproach to generate broad T-cell responses with the greatest pos-
ible coverage of the human population [47,48]. In this paper, we
dentified 38 potential HLA-A2 epitopes for inclusion in our GAIA or
ther pan-HLA-reactive HIV-1 vaccines, and of these, 36 are good
andidates. In work published previously, our group selected and
onfirmed epitopes immunogenic for HLA-B7 [32] and HLA-A3 [48],
nd a prior publication by our group describes the validation of
romiscuous “immunogenic consensus sequence” class II epitopes

n Providence and Bamako [49]. In addition to their remarkable con-
ervation across years, the utility of the HLA-A2 epitopes described
ere is also supported by their aggregate conservation of 48% and
5% across countries and clades, respectively (Fig. 2). While it
ppears that HLA-A2 haplotypes are less equipped to fight HIV
ue to a low binding affinity for conserved epitopes, Altfeld et al.
ave demonstrated that HLA-A2 can contribute to CTL responses in
cutely HIV-1-infected individuals [81]. Furthermore, the fact that
his study identified immunogenic, highly conserved A2 epitopes
rings hope to the field.

Other  groups have made important strides in developing and
valuating vaccines that are designed to achieve broad coverage
f HIV strains, but these vaccines are derived with a focus only
n highly conserved regions of HIV consensus with the design of

 novel protein, or mosaic protein approach [82–84]. We would
redict that some of the epitopes contained within those regions
ould be less immunogenic than the ones described here and bet-

er quality epitopes could potentially be reverse engineered into the
osaic sequence. Recently, Perez et al. identified nine “super-type-

estricted” epitopes recognized in a diverse group of HIV-1-positive
ubjects; however, a single-epitope vaccine or an oligo-epitope vac-
ine, such as one based on a handful of epitopes, risks selection of
iral escape variants and might allow re-infection with viral vari-
nts [85,86]. Going forward our strategy will be to continue to use

 balanced approach, identifying vaccine candidate epitopes based
n both high conservation and predicted immunogenicity while
lso validating them in vitro in more than one cohort. We  believe
hat the insertion of multiple highly conserved T-cell epitopes, as
dentified here, in a single HIV vaccine construct would result in
roader T-cell responses that would improve the breadth of the

mmune response [87].
In this study, we have examined a large number of viral genomes

epresentative of global HIV-1 sequences across an evolutionary
ontinuum to determine the most highly conserved sequences
cross the entire viral proteome. Protective HLA class I alleles
ssociated with slow virus growth select epitopes that are highly
mmunogenic, where escape mutations impart a substantial cost to
eplicative fitness. Based upon this principle we have identified epi-
opes that are highly conserved and likewise have a weak selective
volutionary advantage. Furthermore, we have validated HLA-A2
lass I binding and immunogenicity (i.e., proteasomal processing
nd TCR recognition) of these peptides in both acute and chronically
IV-1-infected individuals.

Since  this was a cross-sectional study of both chronic and early
nfected individuals to evaluate immunogenicity, it was  not pos-
ible to determine when these responses arose during the course
f infection or what role they played in control of viral replication.
tudies have shown that CTL responses measured within individ-
als differ significantly between acute and chronic infection, and
arly CTL responses are most predictive of disease course [25,88].
t is encouraging that in the Mali cohort of early infected individuals
ot receiving ART, four of eight patients controlling virus showed

ignificant breadth of response (13–25 epitopes), while patients
ith more chronic infection (Providence) also responded. Thus

hronicity of HIV infection does not preclude immune response to
ighly conserved epitopes.
 (2012) 7547– 7560

It is well known that epitopes restricted by few HLA class I
alleles confer variable degrees of protection during natural infec-
tion, underscoring the need to design a vaccine that elicits immune
responses that are substantially better than those seen during nat-
ural infection. The identification of “Achilles’ heel” epitopes in this
study is an important first step. The biggest challenge for HIV vac-
cine design is to identify epitopes restricted by other HLA  class
I and class II alleles and adopt new immunization strategies and
adjuvants that may  lead to an effective way to prime the T-cell
immune responses of these individuals against conserved epitopes
that would impart a substantial fitness cost on the virus and control
or prevent infection.

In  summary, the challenges faced in HIV vaccine design neces-
sitate a balanced approach to epitope identification, combining
computational tools with experimental strategies. Our step-by-
step immunoinformatics approach has successfully screened large
amounts of sequence data and defined epitopes that are likely to
accelerate vaccine development. On the other hand, the experi-
mental approach described here does highlight the need to further
validate some of the in silico predictions, as a few of our candi-
dates did not prove to be immunogenic in in vitro assays despite
binding with high affinity to HLA-A2. The approach described here
appears to be an effective means of further triaging sequences to
distil the best vaccine immunogen candidates, particularly in terms
of their conservation over time, which would provide valuable
information and strategies for groups developing multi-epitope,
pan-HLA-reactive vaccines for HIV and other pathogens. In this
paper, we have identified 38 highly conserved immunogenic T-cell
epitopes. The combination of the remarkable conservation and high
immunogenicity of these epitopes over time and space supports
their potential inclusion in a globally relevant HIV vaccine.

Acknowledgement

Conflict of interest: Anne S. De Groot and William Martin are
senior officers and majority shareholders at EpiVax, Inc., a pri-
vately owned vaccine design company located in Providence, Rhode
Island, USA. Leonard Moise holds options in EpiVax, Inc. Anne S. De
Groot is also the founder and CSO of GAIA Vaccine Foundation a
not-for-profit that will distribute the GAIA HIV Vaccine to develop-
ing countries when it is completed. GAIA Vaccine Foundation also
provides material and technical support to the Hope Center Clinic
where the HIV subjects were recruited.

Contributions of the authors: Ousmane A. Koita directed the
research being performed at the Laboratory of Applied Molec-
ular Biology, University of Bamako, Mali. Lauren Levitz, John
Rozehnal, and Kotou Sangare performed the assays in Bamako
and assisted with the reporting and interpretation of the results.
Karamoko Tounkara, Sounkalo M.  Dao, Youssouf Koné, and
Zoumana Koty recruited subjects for the ELISpot assays performed
in Mali. Matthew T. Ardito and William D. Martin performed the
immunoinformatics analysis and contributed to the design of the
immunoinformatics analysis, the selection of the epitopes, and the
interpretation and reporting of the results. Leonard Moise analyzed
data and contributed to writing the manuscript. Anne S. De Groot
conceived of the overall approach, supervised the research pro-
gram, coordinated the international effort, interpreted the results,
and wrote the paper with Christine Boyle and Lauren Levitz, who
also reviewed the current literature and assisted with compari-
son of our results to other published work. The authors wish to
acknowledge the efforts of: Bill Jesdale and Julie McMurry, who

contributed to the research program described here at its incep-
tion; Charles Carpenter, Fadi Mansourati, Gail Skowron, Kenneth H.
Mayer, and Michelle Lally, who  assisted with subject identification
in Providence; and Jeffery Ahlers, who reviewed the manuscript



ine 30

a
s
F
t
t
g
a
p
A

A

f
j

R

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L. Levitz et al. / Vacc

nd provided invaluable suggestions for improvement prior to
ubmission. Mali Rochas, executive director of the GAIA Vaccine
oundation in Providence, provided instrumental assistance with
he coordination of this international research program. And finally,
he study would not have been possible without the willing and
enerous participation of HIV-infected individuals in Providence
nd Mali; to them, we  are especially grateful. This study was sup-
orted by National Institutes of Health Research Grant: NIH R01
I050528, R43 AI 46212, and R21 AI 45416 (PI: A.S. De Groot).

ppendix  A. Supplementary data

Supplementary data associated with this article can be
ound, in the online version, at http://dx.doi.org/10.1016/
.vaccine.2012.10.042.

eferences

[1] Graham BS. Clinical trials of HIV vaccines. Annu Rev Med  2002;53:207–21.
[2] Ho DD, Huang Y. The HIV-1 vaccine race. Cell 2002;110(2):135–8.
[3]  Korber BT, Letvin NL, Haynes BF. T-cell vaccine strategies for human immuno-

deficiency virus, the virus with a thousand faces. J Virol 2009;83(17):8300–14.
[4] Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, Addo M,

et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature
2009;458(7238):641–5.

[5] Rousseau CM,  Daniels MG,  Carlson JM,  Kadie C, Crawford H, Prendergast A, et al.
HLA class I-driven evolution of human immunodeficiency virus type 1 subtype
c proteome: immune escape and viral load. J Virol 2008;82(13):6434–46.

[6] McCarthy M.  HIV vaccine fails in phase 3 trial. Lancet 2003;361(9359):755–6.
[7] Cohen J. Public health. AIDS vaccine trial produces disappointment and confu-

sion. Science 2003;299(5611):1290–1.
[8] Hoag H. Mixed results win HIV vaccine a guarded response. Nature

2003;421:877.
[9] Vaccination and Enrollment Are Discontinued in Phase II Trials of Merck’s

Investigational HIV Vaccine Candidate. Merck & Co. 2007 September 21.
http://www.merck.com/newsroom/press releases/

10] Kresge KJ. What Next? As data analysis for the STEP trial gets underway, some
other trials are placed in a temporary holding pattern. IAVI Report. 2007;11(5).
http://www.iavireport.org/

11] Catanzaro AT, Koup RA, Roederer M,  Bailer RT, Enama ME,  Moodie Z, et al.
Vaccine Research Center 006 Study Team. Phase 1 safety and immunogenicity
evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-
defective recombinant adenovirus vector. J Infect Dis 2006;194(12):1638–49.

12] Dubey S, Clair J, Fu TM,  Guan L, Long R, Mogg R, et al. Detection of HIV vaccine-
induced cell-mediated immunity in HIV-seronegative clinical trial participants
using an optimized and validated enzyme-linked immunospot assay. J Acquir
Immune Defic Syndr 2007;45(1):20–7.

13] Rolland M,  Tovanabutra S, deCamp AC, Frahm N, Gilbert PB, Sanders-Buell E,
et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from the
STEP trial. Nat Med  2011;17(March (3)):366–71.

14]  Rerks-Ngarm S, Pitisuttihum P, Nitayaphan S, et al. Vaccination with
ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med
2009;361(23):2209–20.

15]  Letvin NL. Strategies for an HIV vaccine. J Clin Invest 2002;110(1):15–20.
16] Borrow P, Lewicki H, Hahn BH, Shaw GM,  Oldstone MB.  Virus-specific CD8+

cytotoxic T-lymphocyte activity associated with control of viremia in primary
human immunodeficiency virus type 1 infection. J Virol 1994;68(9):6103–10.

17] Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ.  Cytotoxic-T-cell
responses,  viral load, and disease progression in early human immunodefi-
ciency virus type 1 infection. N Engl J Med  1997;337(18):1267–74.

18]  Rosenberg ES, Billingsley JM,  Caliendo AM,  Boswell SL, Sax PE, Kalams SA,
et al. Vigorous HIV-1-specific CD4+ T-cell responses associated with control
of viremia. Science 1997;278:1447–50.

19] Schmitz JE, Kuroda MJ,  Santra S, Sasseville VG, Simon MA,  Lifton MA,  et al.
Control of viremia in simian immunodeficiency virus infection by CD8+ lym-
phocytes. Science 1999;283(5403):857–60.

20] Goulder PJ, Brander C, Tang Y, Tremblay C, Colbert RA, Addo MM,  et al. Evolu-
tion and transmission of stable CTL escape mutations in HIV infection. Nature
2001;412(6844):334–8.

21]  Ferre AL, Hunt PW,  McConnell DH, Morris MM,  Garcia JC, Pollard RB, et al.
HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong,
polyfunctional mucosal CD4+ T-cell responses. J Virol 2010;84(November
(21)):11020–9.

22] Shedlock DJ, Shen H. Requirement for CD4 T-cell help in generating functional

CD8 T-cell memory. Science 2003;300:337–9.

23] Rosa DS, Ribeiro SP, Almeida RR, Mairena EC, Postól E, Kalil J, Cunha-
Neto E. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous
polyfunctional, long-lived CD4+ and CD8+ T cell responses. PLoS One
2011;6(February (2)):e16921.

[

 (2012) 7547– 7560 7559

24]  Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W,  et al. Tem-
poral association of cellular immune responses with the initial control of
viremia in primary human immunodeficiency virus type 1 syndrome. J Virol
1994;68(7):4650–5.

25]  Ferrari G, Korber B, Goonetilleke N, Liu MKP, Turnbull EL, et al. Relationship
between functional profile of HIV-1 specific CD8T Cells and epitope variability
with the selection of escape mutants in acute HIV-1 infection. PLoS Pathog
2011;7(2):e1001273.

26]  Troyer RM,  McNevin J, Liu Y, Zhang SC, Krizan RW,  Abraha A, et al. Variable
fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL)
response. PLoS Pathog 2009;5(April (4)):e1000365.

27] Streeck H, Jolin JS, Qi Y, Yassine-Diab B, Johnson RC, Kwon DS, et al. Human
immunodeficiency virus type 1-specific CD8+ T-cell responses during primary
infection are major determinants of the viral set point and loss of CD4+ T cells.
J Virol 2009;83(August (15)):7641–8.

28] Brumme ZL, John M,  Carlson JM,  Brumme  CJ, Chan D, Brockman MA,  et al.
HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef
proteins. PLoS One 2009;4(August (8)):e6687.

29]  Dembek CJ, Kutscher S, Heltai S, Allgayer S, Biswas P, Ghezzi S, et al. Nef-specific
CD45RA+ CD8+ T cells secreting MIP-1beta but not IFN-gamma are associated
with nonprogressive HIV-1 infection. AIDS Res Ther 2010;7(July):20.

30] Wong JK, Strain MC,  Porrata R, Reay E, Sankaran-Walters S, et al. In Vivo CD8+ T-
Cell suppression of SIV viremia is not mediated by CTL clearance of productively
infected cells. PLoS Pathog 2010;6(1):e1000748.

31] Allen TM,  Altfeld M,  Geer SC, Kalife ET, Moore C, O’Sullivan KM,  et al. Selec-
tive escape from CD8+ T-cell responses represents a major driving force of
human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals
constraints on HIV-1 evolution. J Virol 2005;79(21):13239–49.

32]  De Groot AS, Rivera DS, McMurry JA, Buus S, Martin W. Identification of
immunogenic HLA-B7 Achilles’ Heel epitopes within highly conserved regions
of HIV. Vaccine 2008;26:305–7.

33] Matthews PC, Leslie AJ, Katzourakis A, Crawford H, Payne R, Prendergast A,
et al. HLA footprints on human immunodeficiency virus type 1 are associated
with interclade polymorphisms and intraclade phylogenetic clustering. J Virol
2009;83(May (9)):4605–15.

34] Peyerl FW,  Bazick HS, Newberg MH,  Barouch DH, Sodroski J, Letvin NL. Fit-
ness costs limit viral escape from cytotoxic T lymphocytes at a structurally
constrained epitope. J Virol 2004;78(24):13901–10.

35] Frahm N, Korber BT, Adams CM,  Szinger JJ, Draenert R, Addo MM,  et al.
Brander C Consistent cytotoxic-T-lymphocyte targeting of immunodominant
regions in human immunodeficiency virus across multiple ethnicities. J Virol
2004;78(5):2187–200.

36]  Korber BT, Letvin NL, Haynes BF. T-cell vaccine strategies for human
immunodeficiency virus, the virus with a thousand faces. J Virol 2009
Sep;83(17):8300–14.

37]  Rolland M,  Nickle DC, Mullins JI. HIV-1  group M con-
served  elements vaccine. PLoS Pathog 2007;3(11):e157,
http://dx.doi.org/10.1371/journal.ppat.0030157.

38]  Fischer W,  Liao HX,  Haynes BF, Letvin NL, Korber B. Coping with viral diversity in
HIV vaccine design: a response to Nickle et al. PLoS Comput Biol 2008;4(1):e15,
http://dx.doi.org/10.1371/journal.pcbi.0040015.

39] Nickle DC, Jojic N, Heckerman D, Jojic V, Kirovski D, et al. Comparison of
immunogen designs that optimize peptide coverage: reply to Fischer et al. PLoS
Comput Biol 2008;4(1):e25, http://dx.doi.org/10.1371/journal.pcbi.0040025.

40] Wang YE, Li B, Carlson JM,  Streeck H, Gladden AD, Goodman R, et al. Protective
HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associ-
ated with viral escape mutations located in highly conserved regions of human
immunodeficiency virus type 1. J Virol 2009;83(4):1845–55.

41]  Yang OO, Daar ES, Ng HL, Shih R, Jamieson BD. Increasing CTL targeting of
conserved sequences during early HIV-1 infection is correlated to decreasing
viremia. AIDS Res Hum Retroviruses 2011;27(April (4)):391–8.

42] Rousseau C, Daniels Mg Carlson JM,  Kadie C, Crawford H, Prendergast A,
Matthews P, et al. HLA class I-driven evolution of human immunodeficiency
virus type 1 subtype C proteome immune escape and viral load. J Virol
2008;82(13):6434–46.

43]  Julg B, Williams KL, Reddy S, Bishop K, Qi Y, Carrington M,  et al. Enhanced
anti-HIV functional activity associated with Gag-specific CD8 T-cell responses.
J Virol 2010;84(June (11)):5540–9.

44] Duda A, Lee-Turner L, Fox J, Robinson N, Dustan S, Kaye S, et al. SPARTAC
Trial Investigators. HLA-associated clinical progression correlates with epi-
tope reversion rates in early human immunodeficiency virus infection. Virol
2009;83(February (3)):1228–39.

45] Ahlers JD, Belyakov IM.  Lessons learned from natural infection: focusing
on the design of protective T cell vaccines for HIV/AIDS. Trends Immunol
2010;31(March (3)):120–30.

46] Zhang C, Cornette JL, Berzofsky JA, DeLisi C. The organization of human
leucocyte antigen class I epitopes in HIV genome products: implica-
tions for HIV evolution and vaccine design. Vaccine 1997;15(12–13):
1291–302.

47]  Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised

and updated classification. BMC  Immunol 2008;9:1–15.

48] De  Groot AS, Levitz L, Ardito MT,  Skowron G, Mayer KH, Buus S, Boyle CM,  Martin
WD.  Further progress on defining highly conserved immunogenic epitopes for
a  global HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes. Hum Vaccin
Immunother 2012;8(July (7)).

http://dx.doi.org/10.1016/j.vaccine.2012.10.042
http://dx.doi.org/10.1016/j.vaccine.2012.10.042
http://www.merck.com/newsroom/press_releases/
http://www.iavireport.org/
dx.doi.org/10.1371/journal.ppat.0030157
dx.doi.org/10.1371/journal.pcbi.0040015
dx.doi.org/10.1371/journal.pcbi.0040025


7 ine 30

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

560 L. Levitz et al. / Vacc

49] Koita OAD, Dabitao I, Mahamadou M,  Tall AS, Dao A, Tounkara H, et al. Confir-
mation of immunogenic consensus sequence HIV-1 T-cell epitopes in Bamako,
Mali and Providence, Rhode Island. Hum Vaccines 2006;2(3):119–28.

50] Ellis JM,  Henson V, Slack R, Ng J, Hartzman RJ, Katovich Hurley C. Frequencies
of HLA-A2 alleles in five U.S. population groups. Predominance of A*02011 and
identification of HLA-A*0231. Hum Immunol 2000;61(3):334–40.

51] Gong X, Gui X, Zhang Y, Tien P. Screening for CD8 cytotoxic T lymphocytes
specific for Gag of human immunodeficiency virus type1 subtype B’ Henan
isolate from China and identification of novel epitopes restricted by the HLA-A2
and HLA-A11 alleles. J Gen Virol 2006;87(Pt 1):151–8.

52] Lyke KE, Burges RB, Cissoko Y, Sangare L, Kone A, Dao M,  et al.
HLA-A2 supertype-restricted cell-mediated immunity by peripheral blood
mononuclear cells derived from Malian children with severe or uncompli-
cated Plasmodium falciparum malaria and healthy controls. Infect Immun
2005;73(September (9)):5799–808.

53] De Groot AS, Bosma A, Chinai N, Frost J, Jesdale BM,  et al. From genome to
vaccine: in silico predictions, ex vivo verification. Vaccine 2001;19:4385–95.

54] DeGroot AS, Jesdale B, Martin W,  Saint Aubin C, Sbai H, Bosma A, et al. Mapping
cross-clade HIV-1 vaccine epitopes using a bioinformatics approach. Vaccine
2003;21:4486–504.

55] De Groot AS, Martin W.  Reducing risk, improving outcomes: bioengineering
immunogenic protein therapeutics. Clin Immunol 2009;131:189–201. Epub
2009 March 6.

56] Sylvester-Hvid C, Kristensen N, Blicher T, Ferre H, Lauemoller SL, Wolf XA, et al.
Establishment of a quantitative ELISA capable of determining peptide-MHC
class I interaction. Tissue Antigens 2002;59(40):251–8.

57]  Schaubert KL, Price DA, Frahm N, Li J, Ng HL, Joseph A, et al. Availability of
a diverselt avid CD8+ T cell repertoire specific for the subdominant HLA-A2-
restricted HIV-1 Gag p 2419-27 epitope. J Immunol 2007;178(12):7756–66.

58] Altfeld M,  Addo MM,  Shankarappa R, Lee PK, Allen TM,  Yu XG, et al. Enhanced
detection of human immunodeficiency virus type 1-specific T-cell responses to
highly variable regions by using peptides based on autologous virus sequences.
J Virol 2003;77(13):7330–40.

59]  Otto O. Candidate vaccine sequences to represent intra- and inter-clade HIV-1
variation. PLoS One 2009;4(10):e7388.

60] Tang C, Ndassa Y, Summers NF. Structure of the N-terminal 283-
residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol
2002;9(7):537–43.

61]  Iversen AK, Stewart-Jones G, Learn GH, Christie N, Sylvester-Hviid C, Armitage
AE, et al. Conflicting selective forces affect T cell receptor contacts in an
immunodominant human immunodeficiency virus epitope. Nat Immunol
2006;7(February (2)):179–89.

62] Nguyen L, Chaowanachan T, Vanichseni S, McNicholl JM, Mock PA, Nelson R,
et al. Frequent human leukocyte antigen class I alleles are associated with
higher viral load among HIV type 1 seroconverters in Thailand. J Acquir Immune
Defic Syndr 2004;37(October (2)):1318–23.

63]  Schafer JRA, Jesdale BM,  George JA, Kouttab NM,  De Groot AS. Prediction of well-
conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. Vaccine
1998;16(19):1880–4.

64]  DeGroot AS, Marcon L, Bishop EA, Kutzler M,  Weiner DB, Martin W.  HIV vac-
cine development by computer assisted design: the GAIA vaccine. Vaccine
2005;23:2136–48.

65] Corbet S, Nielsen HV, Vinner L, Lauemoller S, Therrien D, Tang S, et al.
Optimization and immune recognition of multiple novel conserved HLA-A2,
human immunodeficiency virus type 1-specific CTL epitopes. J Gen Virol
2003;84:2409–21.

66]  Thakar MR,  Bhonge LS, Lakhashe SK, Shankarkumar U, Sane SS, Kulkarni SS, et al.
Cytolytic T lymphocytes (CTLs) from HIV-1 subtype C-infected Indian patients
recognize CTL epitopes from a conserved immunodominant region of HIV-1
Gag and Nef. J Infect Dis 2005;192(5):749–59.

67] Bernard NF, Pederson K, Chung F, Ouellet L, Wainberg MA,  Tsoukas CM.

HIV-specific cytotoxic T-lymphocyte activity in immunologically normal HIV-
infected persons. AIDS 1998;12(16):2125–39.

68] Goonetilleke N, Liu MK,  Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV,
et al. The first T cell response to transmitted/founder virus contributes to the
control of acute viremia in HIV-1 infection. J Exp Med 2009;206(6):1253–72.

[

 (2012) 7547– 7560

69]  Wang Z, Liu HW,  Hong KX, Yu ZJ, Chen JP, Ruan YH, et al. Complete
human  immunodeficiency virus-1 specific T lymphocyte response to Chinese
human immunodeficiency virus-1 B/C chronic infectors. Biomed Environ Sci
2009;22(December (6)):522–8.

70] Kiepiela P, Nqumbela K, Thobakagale C, Ramduth D, Honeyborne I, Mood-
ley E, et al. CD8+ T-cell responses to different HIV proteins have discordant
associations with viral load. Nat Med  2007;13(1):46–53.

71] Boutwell CL, Essex M.  Identification of HLA class I-associated amino acid
polymorphisms in the HIV-1C proteome. AIDS Res Hum Retroviruses
2007;23(1):165–74.

72] Schmitz E, Kuroda MJ,  Santra S, Sasseville VG, Simon MA,  Lifton MA,  et al.
Control of viremia in simian immunodeficiency virus infection by CD8+ lym-
phocytes. Science 1999;283:857–60.

73] Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Novak MA,  Monard S, et al. Quantita-
tion of HIV-1-specific cytotoxic T-lymphocytes and plasma load of viral RNA.
Science 1998;279:2130–6.

74] Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, Addo M,  et al. Adap-
tation of HIV-1 to human leukocyte antigen class I. Nature 2009;458(April
(7238)):641–5.

75] Leslie A, Kavanagh D, Honeyborne I, Pfafferott K, Edwards C, Pillay T, et al.
Transmission and accumulation of CTL escape variants drive negative asso-
ciations between HIV polymorphisms and HLA. J Exp Med 2005;201(March
(6)):891–902.

76] Karlsson AC, Chapman JM,  Heiken BD, Hoh  R, Kallas EG, Martin JN, et al.
Antiretroviral drug therapy alters the profile of human immunodeficiency virus
type 1-specific T-cell Responses and shifts the immunodominant cytotoxic
T-lymphocyte response from Gag to Pol. J Virol 2007;81(20):11543–8.

77] Ogg G, Jin X, Bonhoeffer S, Moss P, Nowak MA,  Monard S, et al. Decay
kinetics of HIV-specific CTL after combination antiretroviral therapy. J Virol
1999;73:797–800.

78]  Goulder PJR, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA, et al. Late
escape from an immunodominant-cytotoxic T-lymphocyte response associ-
ated with progression to AIDS. Nat Med  1997;3(2):212–7.

79]  Im EJ, Hong JP, Roshorm Y, Bridgeman A, Letourneau S, Lijestrom P, et al. Pro-
tective efficacy of serially up-ranked subdominant CD8+ T cell epitopes against
virus challenge. PLoS Pathog 2011;7(5):e1002041.

80] Wilson CC, McKinney D, Anders M,  MaWhinney S, Forster J, Crimi C, et al.
Development of a DNA vaccine to induce cytotoxic T lymphocyte responses
to multiple conserved epitopes in HIV-1. J Immunol 2003;15:5611–23.

81] Altfeld M,  Allen TM,  Kalife ET, Frahm N, Addo MM,  Mothe BR, et al. The majority
of currently circulating human immunodeficiency virus type 1 clade B viruses
fail to prime cytotoxic T-lymphocyte responses against an otherwise immuno-
dominant HLA-A2-restricted epitope: implications for vaccine design. J Virol
2005;79(April (8)):5000–5.

82] Letourneau S, Im E-J, Mashishi T, Brereton C, Bridgeman A, Yang H, et al.
Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One
2007;2(10):e984.

83] Fischer W,  Perkins S, Theiler T, Bhattacharya K, Yusim K, Funkhouser R, et al.
Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global
HIV-1 variants. Nat Med  2007;13:100–6.

84] Santra S, Liao H-X, Zhang R, Muldoon M,  Watson S, Fischer W,  et al. Mosaic
vaccines elicit CD8+ T lymphocyte responses in monkeys that confer enhanced
immune coverage of diverse HIV strains. Nat Med  2010;16(3):324–8.

85] Perez CL, Larsen MV,  Gustafsson R, Norstrom MM,  Atlas A, Nixon DF, et al.
Broadly immunogenic HLA class I supertype-restricted elite CTL epitopes recog-
nized in a diverse population infected with different HIV-1 subtypes. J Immunol
2008;180(7):5092–100.

86]  Borrow P, Shaw GM.  Cytotoxic T-lymphocyte escape viral variants: how impor-
tant are they in viral evasion of immune clearance in vivo. Immunol Rev
1998;164:37–51.

87]  Liu Y, McNevin J, Rolland M,  Zhao H, Deng W,  Maenza J, et al. Conserved HIV-1

epitopes continuously elicit subdominant cytotoxic T-lymphocyte responses. J
Infect  Dis 2009;200(12):1825–33.

88] Goulder PJ, Altfeld MA,  Rosenberg ES, Nguyen T, Tang Y, Eldridge RL, et al.
Substantial differences in specificity of HIV-specific cytotoxic T cells in acute
and chronic HIV infection. J Exp Med  2001;193(2):181–94.


	Conservation of HIV-1 T cell epitopes across time and clades: Validation of immunogenic HLA-A2 epitopes selected for the G...
	1 Introduction
	2 Materials and methods
	2.1 Selecting a highly conserved HIV-1 sequence data set
	2.1.1 2002 sequence set
	2.1.2 2009 sequence set
	2.1.3 Conservatrix
	2.1.4 EpiMatrix
	2.1.5 Epitope selection

	2.2 Peptide synthesis
	2.3 Purified HLA class I binding assay
	2.4 Blood samples
	2.5 Study cohorts
	2.6 ELISpot assays

	3 Results
	3.1 Epitope mapping and selection
	3.2 Conservation of HLA-A2 epitopes over time and sequence space
	3.3 Conservation of HLA-A2 epitopes across years, clades, and countries
	3.4 In vitro peptide binding to soluble HLA-A2
	3.5 Subjects
	3.6 ELISpot assays
	3.6.1 United States and Mali
	3.6.2 Comparison with published HLA-A2 epitopes


	4 Discussion
	Acknowledgement
	Appendix A Supplementary data
	References


