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Abstract

We consider general nonlinear dynamical systems in a Banach space with dependence on parameters
in a second Banach space. An abstract theoretical framework for sensitivity equations is developed. An
application to measure dependent delay differential systems arising in a class of HIV models is presented.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The qualitative and quantitative investigation of parameter dependent systems is ubiquitous
in science and engineering. The wide spread desire to treat uncertainty leads to the need to treat
distributions of parameters in diverse applications ranging from classical physiologically based
pharmacokinetics (PBPK) models [6,23,38] to social networks (e.g., the diffusion of ideas in
populations [17]) to random effects and mixing distributions in statistical modeling [24,30–32].
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A powerful tool for the investigation of parameter dependency is the sensitivity matrix. Equations
for the sensitivity of a system with respect to vector parameters are used in optimization and in-
verse problems (least squares, maximum likelihood, standard errors in statistics-[25]), model
discrimination/model selection (dispersion matrix, Fisher information matrix-[20]), as well as
applications in biology [18], mechanics [1,28], and control theory [42]. The large literature in-
cludes a number of books devoted to both elementary and advanced aspects of sensitivity [22,
26–28,36,42].

With the recently growing interest in incorporating uncertainty into models and systems,
the need to employ dynamics with probabilistic structures has received increased emphasis.
In particular, systems with probability measures embedded in the dynamics (problems involv-
ing aggregate dynamics as discussed in [6]) have become important in applications in biology
[3,5,6], electromagnetics [7] and hysteretic [10,11,19,29,33] and polymeric [12,13,15] materials.
These systems have the form

ẋ(t) = F
(
t, x(t),P

)
,

where P is a probability distribution or measure. In fact such systems are not new and arise
in relaxed or chattering control problems [34,35,37,39–41] wherein the controls are probability
measures. Indeed, such systems date back to the seminal work of L.C. Young on generalized
curves in the calculus of variations [43,44].

In [3], Banks and Bortz consider systems which depend on parameterized probability mea-
sures P = P(ν,σ 2) and develop a framework for sensitivities with respect to the mean ν and
variance σ 2 in the context of delay differential systems for HIV. Here we present a theory treat-
ing general Banach space parameters which include a general class of probability densities. The
example we discuss entails a nonparametric density version of the HIV example treated in [3].

Specifically, we study the sensitivity equation of the ordinary differential equation

ẋ(t) = f
(
t, x(t),μ

)
, t � t0,

x(t0) = x0, (1)

where f : R+ × X × M → X and X and M are complex Banach spaces. We wish to show for
the parameter μ in a Banach space M, the Frechet derivative of the solution x with respect to μ,
∂

∂μ
x(t, t0, x0,μ) = y(t), exists and satisfies the equation

ẏ(t) = fx

(
t, x(t, t0, x0,μ),μ

)
y(t) + fμ

(
t, x(t, t0, x0,μ),μ

)
, t � t0,

y(t0) = 0. (2)

Here we define the notation that is used throughout this paper. Let X and M be two complex
Banach spaces and for x ∈ X, μ ∈ M, we denote by |x|, |μ|, the norm of x and the norm of μ,
respectively. The space of bounded linear operators from X onto Y is denoted by B(X,Y ). We let
C[A,B] represent the class of continuous functions from set A into set B . For a function f : R+×
X × M → X, the Frechet derivatives with respect to x and μ, if they exist, are represented by
fx(t, x,μ) and fμ(t, x,μ) and belong to B(X,X) and B(M,X), respectively.
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2. Theory

Consider the abstract differential equation (1) where f : R+ × X ×M → X is a continuous
mapping; it is clear that for t � t0, a solution x(t, t0, x0,μ) of (1) satisfies the integral equation

x(t, t0, x0,μ) = x0 +
t∫

t0

f
(
s, x(s, t0, x0,μ),μ

)
ds, t � t0. (3)

In order to study the sensitivity of solutions of (1), one first must establish that the solution of (1)
exists and is unique. The proofs follow from standard differential equation arguments (e.g., see
[21]) using successive approximations. Therefore, we define the successive approximations for
system (1) to be the functions, x0, x1, . . . , given recursively by

x0(t, t0, x0,μ) = x0,

xk+1(t, t0, x0,μ) = x0 +
t∫

t0

f
(
s, xk(s, t0, x0,μ),μ

)
ds, t � t0, (4)

for k = 0,1,2, . . . .

Lemma 1 (Existence and Uniqueness of Solutions). Let f : R+ × X × M → X be continuous
and ∣∣f (t, x1,μ) − f (t, x2,μ)

∣∣ � C|x1 − x2| (5)

for some constant C > 0. Then the successive approximations xk converge uniformly for t ∈
[t0, T ] to a unique solution x of (1) such that x(t0, t0, x0,μ) = x0.

Proof. Since the arguments are quite standard, we only outline the steps. For a given interval
I = [t0, T ] where t ∈ I , define

Λk(t, t0, x0,μ) = ∣∣xk+1(t, t0, x0,μ) − xk(t, t0, x0,μ)
∣∣.

Then one can use induction to establish for constants M and C

Λk(t, t0, x0,μ) � MCk(t − t0)
k+1

(k + 1)! . (6)

It follows that the partial sum

xn(t, t0, x0,μ) = x0 +
n−1∑
k=0

(
xk+1(t, t0, x0,μ) − xk(t, t0, x0,μ)

)
converges uniformly to a continuous function x on [t0, T ]. If one then passes to the limit in
Eq. (4), one obtains that x must satisfy Eq. (3).

To establish uniqueness of the solution, one uses Gronwall’s inequality and (5) in the
usual manner to bound the difference in any two possible solutions by zero. Details are given
in [14]. �
Lemma 2 (Continuous Dependence of Solutions on Parameters). Let f ∈ C[R+ × X × M,X]
and for μ = μ0, let x(t, t0, x0,μ0) be a solution of

ẋ = f (t, x,μ0), x(t0) = x0, (7)



H.T. Banks, H.K. Nguyen / J. Math. Anal. Appl. 323 (2006) 146–161 149
existing on [t0, T ]. Assume further that

lim
μ→μ0

f (t, x,μ) = f (t, x,μ0), (8)

uniformly in (t, x) and for (t, x1,μ), (t, x2,μ) ∈ R+ × X ×M,∣∣f (t, x1,μ) − f (t, x2,μ)
∣∣ � C|x1 − x2| (9)

for some constant C > 0. Then the differential system

ẋ = f (t, x,μ), x(t0) = x0, (10)

has a unique solution x(t, t0, x0,μ) satisfying

lim
μ→μ0

x(t, t0, x0,μ) = x(t, t0, x0,μ0), t ∈ [t0, T ]. (11)

Proof. On any interval [t0, T ], the existence and uniqueness of the solution is provided in
Lemma 1. We first wish to show continuous dependence of solutions on μ. Let t ∈ [t0, T ] and
define, z(t,μ,μ0) = x(t, t0, x0,μ) − x(t, t0, x0,μ0), we have∣∣z(t,μ,μ0)

∣∣ = ∣∣x(t, t0, x0,μ) − x(t, t0, x0,μ0)
∣∣

�
t∫

t0

∣∣f (
s, x(s, t0, x0,μ),μ

) − f
(
s, x(s, t0, x0,μ0),μ0

)∣∣ds

=
t∫

t0

∣∣f (
s, x(s, t0, x0,μ),μ

) − f
(
s, x(s, t0, x0,μ0),μ

)

+ f
(
s, x(s, t0, x0,μ0),μ

) − f
(
s, x(s, t0, x0,μ0),μ0

)∣∣ds

�
t∫

t0

{∣∣f (
s, x(s, t0, x0,μ),μ

) − f
(
s, x(s, t0, x0,μ0),μ

)∣∣
+ ∣∣f (

s, x(s, t0, x0,μ0),μ
) − f

(
s, x(s, t0, x0,μ0),μ0

)∣∣}ds

�
t∫

t0

C
∣∣x(s, t0, x0,μ) − x(s, t0, x0,μ0)

∣∣ds

+
t∫

t0

∣∣f (
s, x(s, t0, x0,μ0),μ

) − f
(
s, x(s, t0, x0,μ0),μ0

)∣∣ds.

Let us define g(s,μ) by

g(s,μ) = ∣∣f (
s, x(s, t0, x0,μ0),μ

) − f
(
s, x(s, t0, x0,μ0),μ0

)∣∣
and note that g(s,μ) → 0 uniformly in s as μ → μ0 from the assumption on f in Eq. (8). It
follows

∣∣z(t,μ,μ0)
∣∣ �

T∫
g(s,μ)ds +

t∫
C

∣∣x(s, t0, x0,μ) − x(s, t0, x0,μ0)
∣∣ds. (12)
t0 t0
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When we apply Gronwall’s inequality and take the limit as μ → μ0 on both sides of (12), we
obtain

lim
μ→μ0

∣∣z(t,μ,μ0)
∣∣ � lim

μ→μ0

( T∫
t0

g(s,μ)ds

)
eC(t−t0) = 0

and thus

lim
μ→μ0

x(t, t0, x0,μ) = x(t, t0, x0,μ0).

This completes the proof. �
Lemma 3 (Mean Value Theorem). Let f ∈ C[R+ × X ×M,X] and

(i) If fx(t, x,μ) exits and is continuous for x ∈ X, then for x1, x2 ∈ X, μ ∈M, t � 0,

f (t, x1,μ) − f (t, x2,μ) =
1∫

0

fx

(
t, sx1 + (1 − s)x2,μ

)
(x1 − x2) ds.

(ii) If fμ(t, x,μ) exists and is continuous for μ ∈ M, then for μ1,μ2 ∈M, x ∈ X, t � 0,

f (t, x,μ1) − f (t, x,μ2) =
1∫

0

fμ

(
t, x, sμ1 + (1 − s)μ2

)
(μ1 − μ2) ds.

Proof. First we consider (i). Let

G(s) = f
(
t, sx1 + (1 − s)x2,μ

)
, 0 < s � 1,

and using the chain rule of Frechet derivatives, we have

G′(s) = fx

(
t, sx1 + (1 − s)x2,μ

)
(x1 − x2).

Note that G(s) is well defined since X is a convex space. Integrating G′(s) for s ∈ (0,1], we
obtain G(1) − G(0) which is equivalent to f (t, x1,μ) − f (t, x2,μ) and hence we have (i).

The proof of (ii) is very similar to the proof of (i) and hence we omit it. �
Theorem 1. Suppose the function f (t, x,μ) of (1) has a continuous Frechet derivative
fx(t, x,μ) with respect to x and fμ(t, x,μ) with respect to μ with∣∣fx(t, x,μ)

∣∣ � M0 and
∣∣fμ(t, x,μ)

∣∣ � M1

for some constant M0 > 0 and M1 > 0. Then the Frechet derivative y(t) = ∂
∂μ

x(t, t0, x0,μ)

exists with y(t) in B(M,X) and satisfying the equation

ẏ(t) = fx

(
t, x(t, t0, x0,μ),μ

)
y(t) + fμ

(
t, x(t, t0, x0,μ),μ

)
, t � t0,

y(t0) = 0. (13)

Proof. Since fx ∈ C[R+ × X × M,B(X,X)], fμ ∈ C[R+ × X × M,B(M,X)], applying
Lemma 1, we find that the differential system (13) has a unique solution which we denote by
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y(t). For a fixed μ ∈ M, μ + h ∈ M, and t ∈ [t0, T ], we let m(t,μ,h) = x(t, t0, x0,μ + h) −
x(t, t0, x0,μ). Then

m(t,μ,h) =
t∫

t0

{
f

(
s, x(s, t0, x0,μ + h),μ + h

) − f
(
s, x(s, t0, x0,μ),μ

)}
ds.

From the Frechet differentiability of f with respect to x ∈ X and μ ∈M, we have

f
(
t, x(t, t0, x0,μ + h),μ + h

) − f
(
t, x(t, t0, x0,μ),μ

)
= f

(
t, x(t, t0, x0,μ + h),μ + h

) − f
(
t, x(t, t0, x0,μ + h),μ

)
+ f

(
t, x(t, t0, x0,μ + h),μ

) − f
(
t, x(t, t0, x0,μ),μ

)
= fμ

(
t, x(t, t0, x0,μ + h),μ

)
(μ + h − μ) + w1(h)

+ fx

(
t, x(t, t0, x0,μ),μ

)[
x(t, t0, x0,μ + h) − x(t, t0, x0,μ)

] + w2
(
m(t,μ,h)

)
,

where

|w1(h)|
|h| → 0 and

|w2(m(t,μ,h))|
|m(t,μ,h)| → 0

as |h|, |m(t,μ,h)| → 0, respectively. Consequently, we define g1(t, h) and g2(t, h) by

g1(t, h) = |w1(h)|
|h| , (14)

g2(t, h) = |w2(m(t,μ,h))|
|m(t,μ,h)| , (15)

and hence g1(t, h) and g2(t, h) → 0 uniformly in t as |h| → 0.

Now for y(t) satisfying system (13), we consider

|m(t,μ,h) − y(t)h|
|h| = 1

|h|

∣∣∣∣∣
t∫

t0

{
fμ

(
s, x(s, t0, x0,μ + h),μ

)
h + w1(h)

+ fx

(
s, x(s, t0, x0,μ),μ

)[
m(s,μ,h)

] + w2
(
m(s,μ,h)

)
− fx

(
s, x(s, t0, x0,μ),μ

)
y(s)h − fμ

(
s, x(s, t0, x0,μ),μ

)
h
}
ds

∣∣∣∣∣
�

t∫
t0

|fμ(s, x(s, t0, x0,μ + h),μ) − fμ(s, x(s, t0, x0,μ),μ)| |h|
|h| ds

+
t∫

t0

∣∣fx

(
s, x(s, t0, x0,μ),μ

)∣∣ |m(s,μ,h) − y(s)h|
|h| ds

+
t∫ |w2(m(s,μ,h))|

|h| ds +
t∫ |w1(h)|

|h| ds.
t0 t0
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Next we want to show

|w2(m(t,μ,h))|
|h| � K

|w2(m(t,μ,h))|
|m(t,μ,h)|

for some constant K > 0. Hence, we want to look at

∣∣m(t,μ,h)
∣∣ =

∣∣∣∣∣
t∫

t0

{
fμ

(
s, x(s, t0, x0,μ + h),μ

)
h + w1(h)

+ fx

(
s, x(s, t0, x0,μ),μ

)[
m(s,μ,h)

] + w2
(
m(s,μ,h)

)}
ds

∣∣∣∣∣
�

t∫
t0

{∣∣fμ

(
s, x(s, t0, x0,μ + h),μ

)∣∣|h| + ∣∣w1(h)
∣∣

+ ∣∣fx

(
s, x(s, t0, x0,μ),μ

)∣∣∣∣m(s,μ,h)
∣∣ + ∣∣w2

(
m(s,μ,h)

)∣∣}ds.

From Eqs. (14) and (15), we obtain∣∣w1(h)
∣∣ = g1(t, h)|h|, ∣∣w2

(
m(t,μ,h)

)∣∣ = g2(t, h)
∣∣m(t,μ,h)

∣∣.
Furthermore, with the assumptions that |fx | � M0, |fμ| � M1, the function |m(t,μ,h)| is
bounded by

t∫
t0

{
M1|h| + g1(s, h)|h| + M0

∣∣m(s,μ,h)
∣∣ + g2(s, h)

∣∣m(s,μ,h)
∣∣}ds

�
T∫

t0

M1|h| + g1(s, h)|h|ds +
t∫

t0

(
M0 + g2(s, h)

)∣∣m(s,μ,h)
∣∣ds.

Again, applying Gronwall’s inequality, we obtain∣∣m(t,μ,h)
∣∣ � K|h|,

where K = (
∫ T

t0
{M1 + g1(s, h)}ds)e

∫ T
t0

M0+g2(s,h) ds
where g1(s, h) and g2(s, h) converge to 0

uniformly in s as |h| → 0. It follows

|w2(m(t,μ,h))|
|h| � K

|w2(m(t,μ,h))|
|m(t,μ,h)| .

Hence,

|m(t,μ,h) − y(t)h|
|h| �

t∫
t0

|fμ(s, x(s, t0, x0,μ + h),μ) − fμ(s, x(s, t0, x0,μ),μ)| |h|
|h| ds

+
t∫
M0

|m(s,μ,h) − y(s)h|
|h| ds
t0
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+
t∫

t0

K
|w2(m(s,μ,h))|

|m(s,μ,h)| ds +
t∫

t0

|w1(h)|
|h| ds.

Since x(t, t0, x0,μ) is continuously dependent on μ from Lemma 2, we have

lim|h|→0

∣∣fμ

(
t, x(t, t0, x0,μ + h),μ

) − fμ

(
t, x(t, t0, x0,μ),μ

)∣∣ = 0,

which implies∣∣fμ

(
t, x(t, t0, x0,μ + h),μ

) − fμ

(
t, x(t, t0, x0,μ),μ

)∣∣ � g3(t, h),

where g3(t, h) → 0 as |h| → 0. In addition, we apply the inequalities in Eqs. (14) and (15), and
thus obtain

|m(t,μ,h) − y(t)h|
|h| �

t∫
t0

M0
|m(s,μ,h) − y(s)h|

|h| ds

+
T∫

t0

{
g1(s, h) + Kg2(s, h) + g3(s, h)

}
ds. (16)

Hence, using Gronwall’s inequality and taking the limit of (16) as |h| → 0, we have

lim|h|→0

|m(t,μ,h) − y(t)h|
|h|

� lim|h|→0

{ T∫
t0

{
g1(s, h) + Kg2(s, h) + g3(s, h)

}
ds

}
eM0(t−t0) = 0, (17)

which completes the proof. �
Remark. Although in this manuscript we consider, for ease in exposition, a strong assumption
of global Lipschitz on f , we can also readily establish similar results for the case of weaker as-
sumptions involving local Lipschitz conditions on f plus domination of f by an affine function.
Details of this approach can be found in [2, Lemma 2.1]. Many systems of interest in applications
(including the example of [4,5] described below) satisfy these weaker assumptions.

3. A special case

In this section, we consider a special case of Eq. (1) where the parameter of interest is an
element in a convex subset of M. This allows us to extend the results given in [3] to provide sen-
sitivity equations for probability density dependent systems. First, we define p ∈ M = L2(Q)

and x ∈ X where Q = [−r,0] and X = R
4 × L2(−r,0;R

4). Then for x(t) = (v(t), vt ) we con-
sider a system (1) with the right side of the form

f
(
t, x(t),p

) = F
(
t, v(t)

) +
∫
Q

v(t + τ)p(τ) dτ, (18)

where vt denotes the function τ → v(t + τ), τ ∈ [−r,0]. For each x = (η,φ) ∈ X we define
g(x,p) = ∫

φ(t + τ)p(τ) dτ . Then g(x,p) is Frechet differentiable on M = L2(Q) and we

Q
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have g′(x̂, p̂)p = g(x̂,p). Due to our particular interest, we restrict the parameter space to the
sets of probability density functions in L2(Q) and define

Mc =
{
p ∈ L2(Q) | p � 0 and

∫
Q

p(τ) dτ = 1

}
.

Since Mc is a convex subset of M = L2(Q), we may differentiate g with respect to p using
the directional derivative for p, q ∈ Mc. We find that g is differentiable with respect to p in the
direction of (q − p) with

g′(x̂,p)(q − p) = g(x̂, q − p). (19)

Obviously, Eq. (19) implies the directional derivative of g is the Frechet derivative on M re-
stricted to q − p where p,q ∈ Mc. It follows that for Eq. (1) with the right side defined in (18)
for p ∈Mc, the corresponding sensitivity function satisfies the sensitivity Eq. (13) of Section 2.

4. Approximations and numerical results

To apply the theoretical results of Section 2 to a specific system of interest, we derive and
approximate the sensitivity equation of an HIV model that has the structure of the special case
presented in Section 3. We consider an HIV model of distributed delay differential equations
derived and investigated by Banks et al., in [4,5]

V̇ (t) = −cV (t) + nCC(t) − αV (t)T (t) + ηA

0∫
−r

A(t + τ)p1(τ ) dτ,

Ȧ(t) = (rv − δA)A(t) − δY (t)A(t) + αV (t)T (t) − γ

0∫
−r

A(t + τ)p2(τ ) dτ,

Ċ(t) = (rv − δC)C(t) − δY (t)C(t) + γ

0∫
−r

A(t + τ)p2(τ ) dτ,

Ṫ (t) = (ru − δu)T (t) − δY (t)T (t) − αV (t)T (t) + S, for t � 0, (20)

where Y(t) = A(t) + C(t) + T (t). All the parameters and compartments are defined and de-
scribed in Tables 1 and 2. Here p1 and p2 are probability density functions for the time de-
lay τ1 and τ2, respectively, where τ1 < 0 represents the time delay between acute infection
and viral production and τ2 < 0 denotes the delay between acute infectivity and chronic in-
fectivity such that −r < τ1 + τ2 < 0. We employ v = [V,A,C,T ]T and x(t) = (v(t), vt ) ∈
X = R

4 × L2(−r,0;R
4). We let the parameter space M = L2(−r,0) × L2(−r,0) and Mc =

{(p1,p2) ∈ M |p1, p2 � 0 and
∫ 0
−r

p1(τ ) dτ = ∫ 0
−r

p2(τ ) dτ = 1}. Then the HIV system (20)
can be rewritten as an abstract Cauchy problem

ẋ(t) = Ax(t) + f2(t), t � 0,

x(0) = x0, (21)

where r > 0 is finite, f2(t) = ([0,0,0, S]T ,0) ∈ X, and x0 = (η,φ) ∈ X. Here A is a nonlinear
operator such that A :D(A) ⊂ X → X and A(η,φ) = (L(η,φ) + f1(η), d

dτ
φ) where D(A) =

{(η,φ) ∈ X | φ ∈ H 1(−r,0;R
4) and η = φ(0)}. Furthermore, for (η,φ) ∈ R

4 × L2(−r,0;R
4),
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Table 1
Definition and values of in vitro model parameters

Parameters Values Description

c 0.12 infectious viral clearance rate
nA 0.1194 infectious viral production rate for acutely infected cells
nC 1.6644 × 10−6 infectious viral production rate for chronically infected cells
γ 8.7625 × 10−4 rate at which acutely infected cells become chronically infected
rv 0.035 birth-rate for virus infected cells
ru 0.035 birth-rate for uninfected cells
δA 0.0775 death-rate for acutely infected cells
δC 0.0257 death-rate for chronically infected cells
δu 0.0160 death-rate for uninfected cells
δ 5.4495 × 10−13 density dependent overall cell death-rate
α 1.3359 × 10−6 probability of infection
S 0.0 constant rate of target cell replacement

Table 2
Definition of in vitro model compartments

Notations Description

V infectious viral population
A acutely infected cells
C chronically infected cells
T uninfected or target cells
Y total cell population (infected and uninfected)

L(η,φ) =
⎡
⎢⎣

−c 0 nC 0
0 rv − δA 0 0
0 0 rv − δC 0
0 0 0 ru − δu

⎤
⎥⎦η + nA[δ(1,2)](4,4)

0∫
−r

φ(τ )p1(τ ) dτ

+ γ
([δ(3,2)](4,4) − [δ(2,2)](4,4)

) 0∫
−r

φ(τ )p2(τ ) dτ,

f1(η) =

⎡
⎢⎢⎢⎣

−αη1η4

−δ(
∑4

i=2 ηi)η2 + αη1η4

−δ(
∑4

i=2 ηi)η3

−δ(
∑4

i=2 ηi)η4 − αη1η4

⎤
⎥⎥⎥⎦ ,

where [δ(i,j)](4,4) is a 4 × 4 matrix with a one in the (i, j)th component and zeros everywhere
else. In [4,5] the mass action product nonlinearities in f1 are replaced by saturating nonlinear
functions—see the definition of f̄1 in [4,5]. The resulting model then satisfies the required con-
ditions of the theory in Section 2.

We consider here the sensitivity of the system (20) with respect to p1. Similar ideas and cal-
culations can be pursued for sensitivity with respect to p2 or to the pair (p1,p2) ∈ Mc. For
y = [ ∂V

∂p1
, ∂A

∂p1
, ∂C

∂p1
, ∂T

∂p1
]T , we find that the sensitivity equation of the HIV system (20) with re-

spect to p1 is the solution of

ẏ(t, x,p1) = Jv

(
v(t)

)
y(t, x,p1) + g1(t, vt ,p1), t � 0,

y(0) = 0, (22)
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where x(t) = (v(t), vt ),

Jv =
[−c − αT 0 nC −αV

αT rv − δA − δ(2A + C + T ) −δA −δA + αV
0 −δC rv − δC − δ(A + 2C + T ) −δC

−αT −δT −δT ru − δu − δ(A + C + 2T ) − αV

]

and

g1(t, vt ,p1) =
⎡
⎢⎣

nA

∫ 0
−r

A(t + τ)p1(τ ) dτ

0
0
0

⎤
⎥⎦ .

In order to solve the sensitivity equation, we obviously need the solution x of system (21). Since
we cannot compute the exact solution x of (21), we approximate x by xN using the linear spline
approximation scheme for delay differential equations developed by Banks and Kappel in [8].
We employ {XN , P N, AN } to be the approximating scheme where XN is the spline subspace
of X, P N is the orthogonal projection of X onto XN , and AN is the approximating operator of A
such that AN = P NAP N . Thus, the approximation to system (21) is described by

ẋN (t) = ANxN(t) + P Nf2(t), t � 0,

xN(0) = P Nx0. (23)

As shown in [5,8], the approximating scheme, {XN , P N, AN }, yields solutions such that
xN(t) → x(t) uniformly in t on a finite interval, as N → ∞ and fixed (p1, p2) ∈ Mc. In or-
der to apply the linear spline approximation scheme, we fix the basis for a subspace XN

1 of
XN to be the piece-wise linear splines. Before we construct the splines, we partition [−r,0]
by tNi = −i(r/N) for i = 0,1, . . . ,N and then define the splines β̂N = (βN(0), βN), where
βN = (eN

0 , eN
1 , . . . , eN

N ) ⊗ In. Here In denotes the n × n matrix and the piecewise linear eN
i ’s are

defined by

eN
i (tNj ) = δij for i, j = 0,1, . . . ,N.

When we restrict AN to XN
1 , we have a matrix representation of AN , which we denote as AN

1 .

Furthermore, we define wN(t) and FN(t) to be xN(t) = β̂NwN(t) and P Nf2(t) = β̂NFN(t),
respectively. It follows that solving for xN(t) in system (23) is equivalent to solving for wN(t)

in the nonlinear ordinary differential equation

ẇN(t) = AN
1 wN(t) + FN(t), t � 0,

wN(0) = wN
0 , (24)

where β̂NwN
0 = P Nx0. When wN are thus obtained, Theorem 3.2 in [8] combined with the re-

sults from [2] guarantees that the product β̂NwN converge uniformly in t on a finite interval
to xN , the solution of system (23). We have only briefly summarized the linear spline approxi-
mation scheme here; for more details on the proof of the results and how to compute AN

1 , P Nx0,
and P Nf2, see [5,8].

When we apply the linear spline approximation scheme to our HIV system, we establish
a 4(N + 1)-dimensional nonlinear ordinary differential equation system. The solution of the
constructed system, wN , is for the generalized Fourier coefficients when we expand the solution
x in terms of (N + 1) piecewise linear spline basis elements. For our simulations, we consider
x0 = (v(0), v(τ )) where

v(0) = [
0,1.5 × 106,0,1.35 × 106]T ,
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Fig. 1. Simulations of vN where the thick solid line corresponds to N = 16, - - - represents N32, -.-.-. represents N = 64,
..... represents N = 128, and the thin solid line is for N = 256.

and v(τ) = 0 for τ ∈ [−r,0). The values of the parameters we use are listed in Table 1. The
functions p1 and p2 are modified Gaussian probability density functions with means τ1 = −22.8
and τ2 = −26, respectively, each with variance 1. Due to the nature of our problem where we
only consider p1 and p2 for τ ∈ [−r,0], we actually use normalized truncated Gaussian density
functions in our computations. That is, we have

pi(τ ) = 1

σ
√

(2π)
e
− (τ−τi )

2

2σ2 for i = 1,2, (25)

where τ1 = −22.8, τ2 = −26, and σ = 1. Further, we normalize the pi so that
∫ 0
−r

pi(τ ) dτ = 1;

i.e., we divide pi by d where d = ∫ 0
−r

pi(τ ) dτ . Applying the Banks–Kappel linear spline ap-
proximation scheme and the corresponding theoretical arguments to the system described above
with fixed p1 and p2, one can obtain that vN = [V N,AN,CN,T N ]T converges as N → ∞.

This convergence is illustrated computationally in Fig. 1 for the fixed p1 and p2 given above. We
note that these solutions require quadratures on the integral terms involving the p1 and p2. We
used the Runge–Kutta method in MATLAB’s ODE23 for solution of our approximate ordinary
differential equations (24) and (26) below.

Since we only have xN , the approximations of x, we must approximate the solutions of the
sensitivity Eq. (22). Moreover, it is of interest to further approximate the densities p1 in the func-
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Fig. 2. Simulations of yN,M for a fixed N = 32, where ..... represents M = 50, -.-.-. represents M = 100, - - - corresponds
to M = 200, and the solid line represents M = 400.

tionals g1 with finite-dimensional parameterized densities pM
1 . (This type of approach is useful

in inverse problems when one must estimate the densities.) In this case, we desire convergence of
solutions yN,M , the solution of (22) with approximations xN and pM

1 in place of x and p1, to y.

To illustrate with an example, we define pM
1 (τ ) = ∑M

i=1 aM
i lMi (τ ), such that pM

1 → p1, where
the lMi ’s are the usual piecewise linear splines (see for example [9]). We enforce the probabil-

ity density constraints pM
1 � 0 and

∫ 0
−r

∑M
i=1 aM

i lMi (τ ) dτ = 1. It is obvious that when xN → x

and pM
1 → p1, we have Jv(v

N) → Jv(v) and g1(t, v
N
t ,pM

1 ) → g1(t, vt ,p1) as N,M → ∞.

Therefore, the sensitivity function y can be approximated by the solution of

ẏN,M(t) = Jv

(
vN(t)

)
yN,M(t) + g

N,M
1 (t), t � 0,

yN,M(0) = 0, (26)

where

g
N,M
1 (t) =

⎡
⎢⎣

nA

∫ 0
−r

AN(t + τ)pM
1 (τ ) dτ

0
0

⎤
⎥⎦ .
0
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Fig. 3. Simulations of yN,M for a fixed M = 256, where ..... represents N = 32, -.-.-. represents N = 64, - - - corresponds
to N = 128, and the solid line is for N = 256.

Using standard arguments with the convergence xN → x, pM
1 → p1, one can readily establish

that yN,M → y as N,M → ∞. Similar convergence arguments can be made for the solutions
xN,M of the system (23) with the pi ’s approximated by pM

i ’s. We note that this is precisely
the type of convergence results required to establish method stability in inverse problems (see
[9,16]).

To illustrate our statement on convergence of yN,M , we first fix N = 32 and solve Eq. (26)
for different values of M . As graphed in Fig. 2, we have yN,M converges for a fixed N = 32
as M → ∞. Next we fix M = 256 and solve Eq. (26) for different values of N . We depict the
solution yN,M for M = 256 and different values of N in Fig. 3 where it is evident that yN,M

converges for M = 256 and N → ∞.

5. Concluding remarks

In this paper we have given a general theoretical sensitivity framework for abstract systems in
a Banach space with dynamics that depend on vector (Banach) space parameters. We then show
that this includes a sensitivity theory for systems that depend on probability densities wherein a
natural space for the parameters is M = L2. We also demonstrated how one could treat theoreti-
cally and computationally examples with distributed delays in the context of this framework. The
example we presented illustrates the connection between the efforts here and those in [3] where
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parameterized distributions are considered. In some sense, one can consider our present efforts
as an infinite-dimensional extension of standard sensitivity theories for finite-dimensional vector
parameters.

Our current theory readily accommodates measures that are absolutely continuous with re-
spect to Lebesgue measure (i.e., measures with a probability density). An important generaliza-
tion of our efforts would allow treatment of measures with an absolutely continuous component
and a saltus component of the form

P(τ) =
k∑

i=1

piΔτi
(τ ) +

τ∫
−r

p(ξ) dξ

or

dP (τ) =
k∑

i=1

piδτi
(τ ) dτ + p(τ) dτ,

where Δτ is the Dirac measure with atom or mass at τ . We are currently pursuing such a theory
in which the parameter space is no longer a Banach space, but rather a metric space that is based
on a combination of the Prohorov metric topology (see [6]) and the L2 topology (or possibly the
weak L2 topology for compatibility with the Prohorov metric-see [15]).
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