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a b s t r a c t

From a biological point of view, we consider a prey–predator-type free diffusion fishery
model with stage-structure and harvesting. First, we study the stability of the nonnegative
constant equilibria. In particular, the effect of harvesting on the stability of equilibria
is discussed and supported with numerical simulation. Then, employing the upper and
lower solution method, we show that when the wave speed is large enough there exists a
traveling wavefront connecting the zero solution to the positive equilibrium of the system.
Numerical simulation is also carried out to illustrate the main result.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As we know, the exploitation of biological resources and harvesting of population species are commonly practiced
in fishery, forestry and wildlife management. Harvesting has a strong impact on the dynamic evolution of a population
[1–18]. In particular, stage-structure models have received much attention in recent years [5,6,10,11,13–16]. Based on
predator–prey or host–parasite relationships, some researchers have used models of differential equations and difference
equations to study a stage-structured population model with or without time delays (see, for example, [5,16]). They have
focused on the effect of stage-structure on the dynamical behavior of the systems. In the absence of harvesting, a population
can be free of extinction risk. However, harvesting can lead to the incorporation of a positive extinction probability and,
therefore, to potential extinction in finite time. If a population is subject to a positive extinction rate then harvesting can
drive the population density to a dangerously low level at which extinction becomes sure no matter how the harvester
affects the population afterwards. Fishery, an ancient human tradition, has satisfied the food needs ofmankind for thousands
of years and has become economically, socially and culturally fundamental. Today, however, these fish are in trouble
as their populations are being depleted to dangerously low levels and that necessitates further discussion in order to
understand short- and long-term exploitation patterns [13]. Predator–prey systems incorporatedwith harvesting have been
discussed by many authors with most of the research concentrating on optimal exploitation guided entirely by profits from
harvesting [6,11,14]. But, in [2,3], Brauer and Soudack studied a class of predator–prey models under a constant rate of
harvesting and under a constant quota of harvesting of both species simultaneously.

On the other hand, species have the natural tendency to move from areas of bigger population concentration to those of
smaller population concentration. This kind of diffusion process is called free diffusion and it is not considered in the above
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mentioned references. In the literature, many researchers have directly introduced the free diffusion to ODEs and DDEs and
have also explainedwhy to do so. To name a few, see [19–32]. Moreover, suchmodels or similar models with delays and free
diffusion have also arisen from a variety of situations like infectious disease dynamics, porous medium, chemical reaction,
and engineering control theory.

Based on the above discussion, it is necessary to consider stage-structured populationmodelswith diffusion and harvest-
ing. This is the purpose of this paper. In particular,we study the following delayed reaction–diffusion systemwith harvesting,

ut − d1uxx = ru

1 −

u
k


−

αuv
1 + au + bv

− q1E1u,

vt − d2vxx = b0e−γ τv(x, t − τ)−


d0 −

βu
1 + au + bv


v − q2E2v,

(1.1)

where u = u(x, t) and v = v(x, t) represent the density of prey and adult predator at position x at time t , respectively. The
biological meanings of the constants and terms are as follows.

• r: intrinsic growth rate of prey
• k: carrying capacity of prey
• b0: birth rate of predator
• d0: maximum death rate of predator in the absence of food
• d1, d2: diffusion coefficients
•

αuv
1+au+bv : functional response known as the Beddington–DeAngelis response

•
βuv

1+au+bv : growth rate due to predation
• b0e−γ τv(x, t − τ): transformation of juveniles to adults, which represent the juveniles who were born at time t − τ and

survive at time t (with the immature death rate γ )
• q1E1u, q2E2v: catch rate functions based on the catch-per-unit-effort hypothesis, where q1 and q2 respectively represent

the catch-ability coefficients of the prey and predator while E1 and E2 respectively denote the harvesting efforts for the
prey and predator.

A similarmodel to system (1.1) without diffusion and stage-structurewas studied in [4]. Note that the harvesting rates there
are constant and hence are independent of the densities of the prey and predator.

There have been intensive developments in the theory of traveling wave solutions of partial differential equations since
the 1970s. It was found that traveling waves can well model the oscillatory phenomenon and the propagation with finite
speed of nature. For example, traveling wave solutions described that material transferred from one equilibrium to another
equilibrium state in Physics, the concentration of the substance changed in a Chemical reaction, the species invaded and the
spread of infectious diseases in Biology. Of particular importance is that traveling wave solutions for the information carried
was never changed in the spread process. As we know that an increasing attention has been paid to traveling waves for
reaction–diffusion model modeling a variety of biological phenomena in the recent years. Therefore, in this paper, we will
study the existence of a traveling wavefront of (1.1). In order to study traveling wavefronts, we need to analyze the stability
of the nonnegative constant equilibria first.

The rest of the paper is organized as follows. We first use linearized method to study the stability of the nonnegative
constant equilibria of (1.1) in Section 2. The effect of harvesting is discussed and demonstrated with numerical simulations.
Then, applying the method of upper and lower solutions, we establish the existence of the traveling wavefronts of (1.1) in
Section 3, which is demonstrated with a numerical example.

2. Asymptotical stability of the nonnegative constant equilibria

It is easy to verify that (1.1) has at most three nonnegative constant equilibria. C0(0, 0) is always one of them; if

(H1)

r > q1E1

then one has another boundary equilibria C1


k

1 −

q1E1
r


, 0


; moreover, the positive equilibrium C2(c∗

1 , c
∗

2 ) exists if
(H1)–(H3) are satisfied. Here

(H2)

d0 + q2E2 > b0e−γ τ ,

(H3)

0 <
2br∆

kαβ − akα∆
<

a
β
∆+

b
α
(r − q1E1)− 1,

and
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c∗

1 =

a
β
∆+

b
α
(r − q1E1)− 1 +


a
β
∆+

b
α
(r − q1E1)− 1

2
+

4br
kαβ∆

2br
kα

,

c∗

2 =
[β − a∆]c∗

1 −∆

∆
,

where∆ = d0 + q2E2 − b0e−γ τ .
The linearized system of (1.1) about a nonnegative constant equilibrium (u∗, v∗) is

ut = d1uxx +


r −

2ru∗

k
− q1E1 −

αv∗(1 + bv∗)

(1 + au∗ + bv∗)2


u −

αu∗(1 + au∗)

(1 + au∗ + bv∗)2
v,

vt = d2vxx + b0e−γ τv(x, t − τ)−


d0 + q2E2 −

βu∗(1 + au∗)

(1 + au∗ + bv∗)2


v +

βv∗(1 + bv∗)

(1 + au∗ + bv∗)2
u. (2.1)

System (2.1) admits nontrivial solutions of the form

c1
c2


eλt+iσ x if and only if

αβu∗v∗(1 + au∗)(1 + bv∗)

(1 + au∗ + bv∗)4
+


λ+ d1σ 2

− r +
2ru∗

k
+ q1E1 +

αv∗(1 + bv∗)

(1 + au∗ + bv∗)2


×


λ+ d2σ 2

− b0e−γ τ−λτ
+ d0 + q2E2 −

βu∗(1 + au∗)

(1 + au∗ + bv∗)2


= 0. (2.2)

where λ is a complex number and σ is a real number (see, for example, [20] and the references therein). In the following,
we discuss the stability of the possible equilibria one by one.

2.1. Asymptotical stability of C0(0, 0)

In this case, Eq. (2.2) reduces to

(λ+ d1σ 2
− r + q1E1)(λ+ d2σ 2

− b0e−γ τ−λτ
+ d0 + q2E2) = 0.

Thus either

λ+ d1σ 2
− r + q1E1 = 0 (2.3)

or

λ+ d2σ 2
− b0e−γ τ−λτ

+ d0 + q2E2 = 0. (2.4)

It follows from (2.3) that

λ+ d1σ 2
= r − q1E1.

Then Reλ < 0 if r < q1E1 while there exists at least one (λ0, σ0) satisfying (2.3) such that Reλ0 > 0 if r > q1E1, i.e., (H1)
holds.

For (2.4), first we assume that d0 + q2E2 < b0e−γ τ . Let

fσ (λ) = λ+ d2σ 2
− b0e−γ τ−λτ

+ d0 + q2E2.

Then fσ (0) = d2σ 2
− b0e−γ τ

+ d0 + q2E2 and hence there exists a σ1 > 0 such that fσ1(0) < 0. Noting that fσ1(λ) → ∞ as
λ → ∞, we know that there exists a λ1 > 0 such that (λ1, σ1) satisfying (2.4). Now, we assume that d0 + q2E2 > b0e−γ τ ,
i.e., (H2) holds. We claim that λ < 0 for all (λ, σ ) satisfying (2.4). Otherwise, suppose that there exists a (λ2, σ2) satisfying
(2.4) such that Reλ2 ≥ 0. Then

Reλ2 + d2σ 2
2 + d0 + q2E2 ≤ |λ2 + d2σ 2

2 + d2 + q2E2| = |b0e−γ τ−λ2τ | ≤ b0e−γ τ ,

which is impossible as d0 + q2E2 > b0e−γ τ . This proves the claim.
In summary, we have proved the following result.

Theorem 2.1. The equilibrium C0(0, 0) is (locally) asymptotically stable if and only if r < q1E1 and (H2) holds.

2.2. Asymptotical stability of C1(k(1 −
q1E1
r ), 0)

Recall that C1 exists only when (H1) holds. At C1


k

1 −

q1E1
r


, 0


, Eq. (2.2) holds if and only if either
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λ+ d1σ 2
+ r − q1E1 = 0 (2.5)

or

λ+ d2σ 2
− b0e−γ τ−λτ

+ d0 + q2E2 −
βk(r − q1E1)

r + ak(r − q1E1)
= 0. (2.6)

Obviously, Reλ < 0 if (λ, σ ) satisfies (2.5) as r > q1E1. Applying similar arguments as those for (2.4), we can show that
Reλ < 0 for all (λ, σ ) satisfying (2.6) if d0 + q2E2 −

βk(r−q1E1)
r+ak(r−q1E1)

> b0e−γ τ and there exists at least one (λ3, σ3) satisfying

(2.6) such that Reλ3 > 0 if d0 + q2E2 −
βk(r−q1E1)

r+ak(r−q1E1)
< b0e−γ τ .

To summarize, we have shown

Theorem 2.2. Assume that (H1) holds. Then (1.1) has an equilibrium C1


k

1 −

q1E1
r


, 0


. Moreover, C1 is (locally)

asymptotically stable if and only if d0 + q2E2 −
βk(r−q1E1)

r+ak(r−q1E1)
> b0e−γ τ .

2.3. Asymptotical stability of C2(c∗

1 , c
∗

2 )

When C2 exists, one can show that c∗

1 >
ak
βr (r − q1E1). At C2(c∗

1 , c
∗

2 ), we have from (2.2) that

αβc∗

1 c
∗

2 (1 + ac∗

1 )(1 + bc∗

2 )

(1 + ac∗

1 + bc∗

2 )
4

+


λ+ d1σ 2

− r +
2rc∗

1

k
+ q1E1 +

αc∗

2 (1 + bc∗

2 )

(1 + ac∗

1 + bc∗

2 )
2


×


λ+ d2σ 2

− b0e−γ τ−λτ
+ d0 + q2E2 −

βc∗

1 (1 + ac∗

1 )

(1 + ac∗

1 + bc∗

2 )
2


= 0. (2.7)

Obviously, if (λ, σ ) satisfies (2.7) then λ+ d1σ 2
− r +

2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2 ≠ 0. Thus we rewrite (2.7) as

λ = −

αβc∗1 c
∗
2 (1+ac∗1 )(1+bc∗2 )
(1+ac∗1+bc∗2 )

4

λ+ d1σ 2 − r +
2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2

− d2σ 2
+ b0e−γ τ−λτ

− d0 − q2E2 +
βc∗

1 (1 + ac∗

1 )

(1 + ac∗

1 + bc∗

2 )
2
. (2.8)

We claim that µ < 0 if (λ, σ ) = (µ+ iν, σ ) satisfies (2.8). Otherwise, suppose that there exists a (µ4 + iν4, σ4) satisfying
(2.8) such that µ4 ≥ 0. Then direct computation gives us

0 ≤ µ4 = −
αβc∗

1 c
∗

2 (1 + ac∗

1 )(1 + bc∗

2 )

(1 + ac∗

1 + bc∗

2 )
4

×

µ4 + d1σ 2
4 − r +

2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2
µ4 + d1σ 2 − r +

2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2

2
+ ν24

− d2σ 2
4 + b0e−γ τ−µ4τ cos(ν4τ)− d0 − q2E2 +

βc∗

1 (1 + ac∗

1 )

(1 + ac∗

1 + bc∗

2 )
2

≤ −
αβc∗

1 c
∗

2

(1 + ac∗

1 + bc∗

2 )
4

×

2rc∗1
k + q1E1 − r +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2
µ4 + d1σ 2

4 − r +
2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2

2
+ ν24

+ b0e−γ τ
− d0 − q2E2 +

βc∗

1

1 + ac∗

1 + bc∗

2

≤ −
αβc∗

1 c
∗

2

(1 + ac∗

1 + bc∗

2 )
4

×

rc∗1
k −

αc∗2
1+ac∗1+bc∗2

+
αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2
µ4 + d1σ 2

4 − r +
2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2

2
+ ν24

= −
αβc∗

1 c
∗

2

(1 + ac∗

1 + bc∗

2 )
4

×

rc∗1
k −

αac∗1 c
∗
2

(1+ac∗1+bc∗2 )
2

µ4 + d1σ 2
4 − r +

2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2

2
+ ν24

< −
αβc∗

1 c
∗

2

(1 + ac∗

1 + bc∗

2 )
4

×

rc∗1
k −

a
β
(r − q1E1)

µ4 + d1σ 2
4 − r +

2rc∗1
k + q1E1 +

αc∗2 (1+bc∗2 )
(1+ac∗1+bc∗2 )

2

2
+ ν24

< 0

as c∗

1 >
ak
βr (r − q1E1) > 0, a contradiction. This proves the claim. As a result, we have proved.
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Fig. 1. E1 = E2 = 1.25.

Fig. 2. E1 = E2 = 1.235.

Theorem 2.3. Assume that (H1)–(H3) hold. Then (1.1) has a positive equilibrium C2, which is locally asymptotically stable.

Theorems 2.1–2.3 tell us that the harvesting efforts affect not only the existence of equilibria but also the stability of
them. Therefore, it is possible to use E1 and E2 as controls to make the system approach a required state. Let us support this
with some numerical simulations.

Fix r = 2, k = 100, α = 0.4, a = 5, b = 20, β = 0.24, q1 = 1.584, q2 = 1.854, d0 = 0.1, d1 = 3, d2 = 2
and b0e−0.001γ

= 2.36. All these parameters are biologically realistic (see [14]). If we take E1 = E2 = 1.25, then the
assumptions of Theorem 2.2 hold and hence the equilibrium C1(1, 0) is asymptotically stable. Fig. 1 illustrates this with the
initial conditions u(x, 0) = 2 + sin(x2), v(x, 0) = x2 + 1. On the other hand, if we take E1 = E2 = 1.235 then (H1) holds
but d0 + q2E2 −

βk(r−q1E1)
r+ak(r−q1E1)

< b0e−γ τ . Thus it follows from Theorem 2.2 that the equilibrium C1(2.2, 0) is unstable. This is
supported with the same initial conditions (see Fig. 2).

3. Traveling wavefronts solution with large wave speed

A traveling wave solution of (1.1) is a special translation invariant solution of the from (u(x, t), v(x, t)) = (φ1(x +

ct), ψ2(x+ ct))with wave speed c. Various methods including the monotone iteration technique [23,28,31] and the degree
theory [21,26] have been adopted to study the existence of traveling wave solutions to reaction–diffusion systems with
delays.

In this section, we use the approach introduced in [33] to establish the existence of traveling wave solutions connecting
the zero solution to the positive equilibrium C2(c∗

1 , c
∗

2 )with large wave speeds. To seek such a pair of traveling wavefronts
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of (1.1), we substitute u(x, t) = φ1(s) and v(x, t) = φ2(s), where s = x + ct , into (1.1) to obtain

d1φ′′

1 (s)− cφ′

1(s)+ rφ1(s)

1 −

1
k
φ1(s)


−

αφ1(s)φ2(s)
1 + aφ1(s)+ bφ2(s)

− q1E1φ1(s) = 0,

d2φ′′

2 (s)− cφ′

2(s)+ b0e−γ τφ2(s − cτ)− d0φ2(s)+
βφ1(s)φ2(s)

1 + aφ1(s)+ bφ2(s)
− q2E2φ2(s) = 0,

φi(−∞) = 0, φi(∞) = c∗

i , i = 1, 2. (3.1)

Now, we follow the approach of Canosa [33] to construct a uniformly valid asymptotic approximation to the wavefronts
for large values of the wave speed c. Suppose that c is large enough. Then ϵ = 1/c2 is a small parameter. We aim to seek a
pair of solutions to (3.1) of the form

φ1(s)
φ2(s)


=


ψ1(η)
ψ2(η)


with η =

√
ϵs = s/c.

Then (3.1) becomes

ϵd1ψ ′′

1 (η)− ψ ′

1(η)+ rψ1(η)−
r
k
ψ2

1 (η)− q1E1ψ1(η)−
αψ1(η)ψ2(η)

1 + aφ1(η)+ bφ2(η)
= 0,

ϵd2ψ ′′

2 (η)− ψ ′

2(η)+ b0e−γ τψ2(η − τ)− d0ψ2(η)+
βψ1(η)ψ2(η)

1 + aψ1(η)+ bψ2(η)
− q2E2ψ2(η) = 0,

ψi(−∞) = 0, ψi(+∞) = c∗

i , i = 1, 2. (3.2)

Denote

ψi(η, ϵ) = ψi0(η)+ ϵψi1(η)+ ϵ2ψi2(η)+ · · · , i = 1, 2,

and substitute them into (3.2). It turns out that ψ10(η) and ψ20(η) satisfy

ψ ′

10(η) = rψ10(η)−
r
k
ψ2

10(η)− q1E1ψ10(η)−
αψ10(η)ψ20(η)

1 + aφ10(η)+ bφ20(η)
,

ψ ′

20(η) = b0e−γ τψ20(η − τ)− d0ψ20(η)− q2E2ψ20(η)+
βψ10(η)ψ20(η)

1 + aψ10(η)+ bψ20(η)
,

ψi0(−∞) = 0, ψi0(+∞) = c∗

i , i = 1, 2. (3.3)

For simplicity of notation, we still denote ψ10(η), ψ20(η) by φ1(s), φ2(s), respectively. Then (3.3) becomes

φ′

1(s) = rφ1(s)−
r
k
φ2
1(s)− q1E1φ1(s)−

αφ1(s)φ2(s)
1 + aφ1(s)+ bφ2(s)

,

φ′

2(s) = b0e−γ τφ2(s − τ)− d0φ2(s)− q2E2φ2(s)+
βφ1(s)φ2(s)

1 + aφ1(s)+ bφ2(s)
,

φi(−∞) = 0, φi(+∞) = c∗

i , i = 1, 2. (3.4)

Now, we are ready to state and prove the following result by the upper and lower solution technique developed in [31].

Theorem 3.1. Assume that (H1)–(H3) hold. Then (1.1) has a traveling wavefront connecting (0, 0) to (c∗

1 , c
∗

2 ).

Proof. The proof is divided into the following two steps.
Step I: Verify a quasi-monotonicity condition. For this purpose, we define the functional fc(φ) = (fc1(φ), fc2(φ))T by

fc1(φ) = rφ1(0)−
r
k
φ2
1(0)− q1E1φ1(0)−

αφ1(0)φ2(0)
1 + aφ1(0)+ bφ2(0)

,

fc2(φ) = b0e−γ τφ2(−τ)− d0φ2(0)− q2E2φ2(0)+
βφ1(0)φ2(0)

1 + aφ1(0)+ bφ2(0)
.

(3.5)

For arbitrary (φ1, φ2)
T and (ψ1, ψ2)

T
∈ C([−τ , 0],R2) such that

0 ≤ ψ(s) ≤ φ(s) ≤ c∗
:= (c∗

1 , c
∗

2 ) for s ∈ [−τ , 0]

and

φ2(0)− ψ2(0) < θ(φ1(0)− ψ1(0)) for some θ > 0
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we have

fc1(φ)− fc1(ψ) = (r − q1E1)(φ1(0)− ψ1(0))−
r
k
(φ1(0)+ ψ1(0))(φ1(0)− ψ1(0))

−


αφ1(0)φ2(0)

1 + aφ1(0)+ bφ2(0)
−

αψ1(0)ψ2(0)
1 + aψ1(0)+ bψ2(0)


≥


r − q1E1 −

2rc∗

1

k


(φ1(0)− ψ1(0))− α(φ2(0)(φ1(0)− ψ1(0))+ ψ1(0)(φ2(0)− ψ2(0)))

≥


r − q1E1 −

2rc∗

1

k
− αc∗

1θ − αc∗

2


(φ1(0)− ψ1(0)),

which implies

fc1(φ)− fc1(ψ)+ δ1(φ1(0)− ψ1(0)) ≥ (δ1 + r − q1E1 −
2rc∗

1

k
− αc∗

1θ − αc∗

2 )(φ1(0)− ψ1(0))

≥ 0,

provided that δ1 is chosen such that δ1 > −r + q1E1 +
2rc∗1
k + αc∗

1θ + αc∗

2 . Similarly, we can get

fc2(φ)− fc2(ψ)+ δ2(φ2(0)− ψ2(0)) ≥ (δ2 − d0 − q2E2)(φ2(0)− ψ2(0)) ≥ 0,

provided that δ2 is chosen such that δ2 > d0 + q2E2. This proves the quasi-monotonicity condition.
Step II: Establish the existence of a pair of upper and lower solutions. To achieve this, we look for wavefront solutions of
(3.1) in the following profile set

Γ =


φ =


φ1(s)
φ2(s)


∈ C(R,R2) :

(i) φ is component-wise nondeceasing in R,
(ii) lim

s→−∞
φ(s) = 0, lim

s→∞
φ(s) = c∗


.

Note that r +αc∗

2 − q1E1 > 0 and b0e−γ τ
+βc∗

1 − d0 − q2E2 > 0. Choose λ such that λ > max{r +αc∗

2 − q1E1, b0e−γ τ
+

βc∗

1 − d0 − q2E2}. Define

φ1(s) = min{c∗

1e
λs, c∗

1 } and φ2(s) = min{c∗

2e
λs, c∗

2 }.

Then φ = (φ1(s), φ2(s))T ∈ Γ . We distinguish two cases to show that (φ1(s), φ2(s))T is a pair of upper solutions to (3.4).
Case I: s < 0. It is easy to see that

φ1(s) = c∗

1e
λs, φ2(s) = c∗

2e
λs and φ2(s − τ) = c∗

2e
λ(s−τ).

Thus

φ′

1(s)− rφ1(s)+
r
k
φ2
1(s)+ q1E1φ1(s)−

αφ1(s)φ2(s)
1 + aφ1(s)+ bφ2(s)

≥ λc∗

1e
λs

− rc∗

1e
λs

+
r
k
c∗

1e
2λs

+ q1E1c∗

1e
λs

− αc∗

1 c
∗

2e
2λs

≥ c∗

1e
λs


λ− r +

r
k
c∗

1e
λs

+ q1E1 − αc∗

2e
λs


≥ c∗

1e
λs(λ− r + q1E1 − αc∗

2 ) > 0.

Similarly,

φ′

2(s)− b0e−γ τφ2(s − τ)+ d0φ2(s)+ q2E2φ2(s)−
βφ1(s)φ2(s)

1 + aφ1(s)+ bφ2(s)

≥ λc∗

2e
λs

− b0e−γ τ c∗

2e
λ(s−τ)

+ d0c∗

2e
λs

+ q2E2c∗

2e
λs

− βc∗

1 c
∗

2e
2λs

≥ c∗

2e
λs(λ− b0e−γ τ

+ d0 + q2E2 − βc∗

1 ) > 0.

Case II: s ≥ 0. We have

φi(s) = c∗

i (i = 1, 2), φ2(s − τ) =


c∗

2 , if s ≥ τ ,

c∗

2e
λ(s−τ), if s < τ,

which implies that

φ2(s − τ) ≤ c∗

2 for s ≥ 0.

Therefore,

φ′

1(s)− rφ1(s)+
r
k
φ2
1(s)+ q1E1φ1(s)+

αφ1(s)φ2(s)
1 + aφ1(s)+ bφ2(s)

= −rc∗

1 +
r
k
c∗

1 + q1E1c∗

2 +
αc∗

1 c
∗

2

1 + ac∗

1 + bc∗

2

= 0,
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Fig. 3. Existence of traveling wavefront of system (1.1).

and

φ′

2(s)− b0e−γ τφ2(s − τ)+ d0φ2(s)+ q2E2φ2(s)−
βφ1(s)φ2(s)

1 + aφ1(s)+ bφ2(s)

≥ −b0e−γ τ c∗

2 + d0c∗

2 + q2E2c∗

2 −
βc∗

1 c
∗

2

1 + ac∗

1 + bc∗

2

= 0.

The above discussion tells us that (φ1(s), φ2(s))T is an upper solution to (3.4).
Now, define

ψ1(s) =


εeλ1s, if s < 0
ε, if s ≥ 0 and ψ2(s) = 0, (3.6)

where

0 < ε < min

c∗

1 ,
k
r
(r − λ1 − q1E1)


, (3.7)

and the positive λ1 satisfies

0 < λ1 < r − q1E1. (3.8)

Using (3.6)–(3.7) we have

ψ ′

1(s)− rψ1(s)+
r
k
ψ2

1 (s)+ q1E1ψ1(s)+
αψ1(s)ψ2(s)

1 + aψ1(s)+ bψ2(s)
= ε


−r +

r
k
ε + q1E1


< 0

if s ≥ 0 and

ψ ′

1(s)− rψ1(s)+
r
k
ψ2

1 (s)+ q1E1ψ1(s)+
αψ1(s)ψ2(s)

1 + aψ1(s)+ bψ2(s)

= εeλ1s

λ− r +

r
k
εeλ1s + q1E1


≤ εeλ1s


λ− r +

r
k
ε + q1E1


< 0

if s ≤ 0. This proves that (ψ1(s), ψ2(s))T is a pair of lower solutions to (3.4).
So far, we have verified all the assumptions in the theory developed in [31]. Therefore, there exists at least one solution in

the set Γ , that is, system (1.1) has a traveling wavefront solution connecting (0, 0) to (c∗

1 , c
∗

2 ). This completes the proof. �

To conclude this paper, we now give an example to illustrate Theorem 3.1. Take r = 2, k = 100, α = 0.4, a = 5,
b = 15, β = 0.24, q1 = 0.994, q2 = 1.004, d0 = 0.36, b0e−0.001γ

= 2.36, and E1 = E2 = 2. Straightforward calculations
show that system (1.1) has the trivial steady state E0(0, 0) and the positive steady state E∗(0.1, 0.1). One can easily check
that (H1)–(H3) are satisfied. Therefore, by Theorem 3.1, system (1.1) has a traveling wavefront solution connecting (0, 0) to
(0.1, 0.1) (see Fig. 3).
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