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We generalize the Donsker–Varadhan minimax formula for the
principal eigenvalue of a uniformly elliptic operator in nondiver-
gence form to the first principal half-eigenvalue of a fully nonlin-
ear operator which is concave (or convex) and positively homo-
geneous. Examples of such operators include the Bellman operator
and the Pucci extremal operators. In the case that the two principal
half-eigenvalues are not equal, we show that the measures which
achieve the minimum in this formula provide a partial characteri-
zation of the solvability of the corresponding Dirichlet problem at
resonance.
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1. Introduction

Consider a nondivergence form uniformly elliptic operator

L = −aij(x)∂i∂ j + b j(x)∂ j + c(x) (1.1)

in a smooth, bounded domain Ω ⊆ Rn . The celebrated minimax formula of Donsker and Varadhan
[9,10] states that the principal eigenvalue λ1(L,Ω) of L can be expressed by the minimax formula

λ1(L,Ω) = min
μ∈M(Ω̄)

sup
u∈C2+(Ω̄)

∫
Ω

(
Lu

u

)
(x)dμ(x). (1.2)
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Here M(Ω̄) denotes the space of Borel probability measures on Ω̄ , and C2+(Ω̄) is the set of positive
C2 functions on Ω̄ . The minimum in (1.2) is achieved by a unique probability measure μ, given by

dμ(x) = ϕ1(x)ϕ∗
1 (x)dx,

where ϕ1 is the principal eigenfunction of L, and ϕ∗
1 is the principal eigenfunction of the adjoint

operator L∗ , normalized according to

∫
Ω

ϕ1(x)ϕ∗
1 (x)dx = 1.

Consequently, we may characterize the solvability of the boundary value problem

{
Lu = λ1(L,Ω)u + f in Ω,

u = 0 on ∂Ω,
(1.3)

in terms of the measure μ. According to the Fredholm alternative, there exists a solution of the
problem (1.3) if and only if

0 =
∫
Ω

f (x)ϕ∗
1 (x)dx =

∫
Ω

f

ϕ1
dμ. (1.4)

Let {Lk}k∈A be a family of linear, uniformly elliptic operators in nondivergence form. Lions [14] was
the first to study the principal half-eigenvalues of the Hamilton–Jacobi–Bellman operator

H
(

D2u, Du, u, x
) := inf

k∈A

{
Lku

}
. (1.5)

He demonstrated the existence of an eigenvalue λ+
1 (H,Ω) corresponding to a positive eigenfunc-

tion ϕ+
1 > 0 and another eigenvalue λ−

1 (H,Ω) corresponding to a negative eigenfunction ϕ−
1 < 0.

The numbers λ±
1 (H,Ω) are called principal eigenvalues, half-eigenvalues, or demi-eigenvalues of the

operator H . While in general λ+
1 (H,Ω) �= λ−

1 (H,Ω), the concavity of H ensures that the inequality
λ+

1 (H,Ω) � λ−
1 (H,Ω) is satisfied.

The principal half-eigenvalues have many properties analogous to the principal eigenvalue of a
linear operator. The operator H satisfies the comparison principle in the domain Ω if and only if
λ+

1 (H,Ω) > 0. The Dirichlet problem

{
H

(
D2u, Du, u, x

) = λu + f in Ω,

u = 0 on ∂Ω,
(1.6)

has a unique solution u ∈ W 2,∞(Ω) for any given smooth function f if λ < λ+
1 (H,Ω). Moreover, (1.6)

has a unique nonpositive solution for any given smooth nonpositive f if and only if λ < λ−
1 (H,Ω).

These solutions can be expressed as the value functions of an optimal stochastic control problem
associated with the operators Lk .

In [14], these facts were proved using mostly stochastic methods. Recently, several authors [4,5,13,
15] employed PDE methods to generalize the results of [14] to more general elliptic operators. Ishii
and Yoshimura [13] have shown that an operator F = F (D2u, Du, u, x) possesses two principal half-
eigenvalues assuming only that F is uniformly elliptic and positively homogeneous jointly in its first
three arguments (see Theorem 2.2), and established related comparison principles and existence for
the Dirichlet problem. Similar results have been independently obtained by Birindelli and Demengel
[4,5], who considered degenerate, singular operators like the p-Laplacian, and Quaas and Sirakov [15],
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who studied nonlinear operators which are also convex or concave in u, but may be only measurable
in x.

In this paper, we will generalize the minimax formula (1.2) to the first principal eigenvalue of
an operator that is concave (or convex), as well as uniformly elliptic and positively homogeneous.
Motivated by the solvability condition (1.4), we will show that the probability measure(s) attaining
the minimum provide a partial answer to the question of existence of solutions to the corresponding
Dirichlet problem.

Theorem 1.1. Suppose that Ω ⊆ Rn is a smooth bounded domain, and F is a nonlinear operator satisfying
(F1), (F2), (F3), and (F4), below. Then the principal half-eigenvalue λ+

1 (F ,Ω) satisfies the minimax formula

λ+
1 (F ,Ω) = min

μ∈M(Ω̄)
sup

ϕ∈C2+(Ω̄)

∫
Ω

F (D2ϕ(x), Dϕ(x),ϕ(x), x)

ϕ(x)
dμ(x). (1.7)

Moreover, for each probability measure μ ∈ M(Ω̄) which attains the minimum in (1.7), there exists a function
ϕ∗

μ ∈ Ln/(n−1)(Ω) such that ϕ∗
μ > 0 a.e. in Ω and dμ = ϕ∗

μϕ+
1 dx.

Let V (F ,Ω) ⊆ M(Ω̄) denote the subset of probability measures attaining the minimum in (1.7).
In contrast to the situation for linear operators, V (F ,Ω) is not a singleton set in general (see Exam-
ple 4.2 below). Our next result is a partial characterization of the solvability of the Dirichlet problem

{
F
(

D2u, Du, u, x
) = λ+

1 (F ,Ω)u + f in Ω,

u = 0 on ∂Ω,
(1.8)

expressed in terms of V (F ,Ω).

Theorem 1.2. Let Ω and F be as in Theorem 1.1, and f ∈ C(Ω) ∩ Ln(Ω). Then the inequality

max
μ∈V (F ,Ω)

∫
Ω

f ϕ∗
μ dx � 0 (1.9)

is necessary for the solvability of the Dirichlet problem (1.8). Suppose in addition that

λ+
1 (F ,Ω) < λ−

1 (F ,Ω). (1.10)

Then the strict inequality

max
μ∈V (F ,Ω)

∫
Ω

f ϕ∗
μ dx < 0 (1.11)

is sufficient for the solvability of the Dirichlet problem (1.8).

The hypothesis (1.10) is relatively generic for a nonlinear operator. For example, the Bellman oper-
ator H given by (1.5) fails to satisfy (1.10) only if the linear operators belonging to the family {Lk}k∈A
share the same principal eigenvalue and principal eigenfunction. See [14, Remark II.6] or [1, Exam-
ple 3.11].

In the borderline case that

max
μ∈V (F ,Ω)

∫
f ϕ∗

μ dx = 0,
Ω
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solutions of (1.8) may or may not exist; see Example 4.3 below. We also wish to mention the work of
Sirakov [17], who has studied the existence and nonuniqueness of solutions of (1.8) in the case that
λ+

1 (F ,Ω) < λ < λ−
1 (F ,Ω).

Soon after submitting this article for publication, I became aware of the recent, very interesting
work of Felmer, Quaas, and Sirakov [11], which contains results similar to Theorem 1.2. In particular,
using topological techniques, they have shown that under assumption (1.10), for each fixed function
h ∈ Ln(Ω), there exists a number t∗ = t∗(h) such that the Dirichlet problem (1.8) has a solution for
f := h − tϕ+

1 provided that t > t∗ , and has no solution if t < t∗ . Using Theorem 1.2, we see that t∗
can be expressed by

t∗(h) = max
μ∈V (F ,Ω)

∫
Ω

hϕ∗
μ dx. (1.12)

Moreover, in [11] there is much information about the set of solutions along the curves ft = h − tϕ+
1 .

In particular, results in [11] together with (1.12) imply that if (1.10) and (1.11) hold, a solution of
(1.8) is unique. The preprint [11] also contains results for the Dirichlet problem in the case that
λ+

1 (F ,Ω) < λ � λ−
1 (F ,Ω), and to which my methods do not obviously apply.

This paper is organized as follows. In Section 2 we state our hypotheses and review some known
results for the principal half-eigenvalues of fully nonlinear operators. Section 3 contains the proofs of
Theorems 1.1 and 1.2. In Section 4 we give a sufficient condition for the set V (F ,Ω) of minimizing
measures to be a singleton set, and study a couple of simple examples.

2. Preliminaries

2.1. Notation and hypotheses

Throughout this paper, we take Ω to be a bounded, smooth, and connected open subset of Rn . Let
Sn denote the set of n-by-n real symmetric matrices. We denote the space of Radon measures on Ω̄

by R(Ω̄), and the set of probability measures on Ω̄ by

M(Ω̄) = {
μ ∈ R(Ω̄): μ � 0 and μ(Ω̄) = 1

}
.

For any k ∈ N, set

Ck+(Ω̄) = {
u ∈ Ck(Ω̄): u > 0 on Ω̄

}
.

For r, s ∈ R, define r ∧ s = min{r, s} and r ∨ s = max{r, s}. If r ∈ R, then we write r+ = r ∨ 0 and
r− = −(r ∧ 0). For M ∈ Sn and 0 < γ � Γ , define the uniformly elliptic operators

P +
γ ,Γ (M) = sup

A∈�γ ,Γ �

[− trace(AM)
]

and P −
γ ,Γ (M) = inf

A∈�γ ,Γ �

[− trace(AM)
]
,

where the set �γ ,Γ � ⊆ Sn consists of the symmetric matrices the eigenvalues of which lie in the
interval [γ ,Γ ]. The nonlinear operators P +

γ ,Γ and P −
γ ,Γ are the Pucci extremal operators.

We impose the following standing assumptions. Our nonlinear operator F is a function

F : Sn × Rn × R × Ω̄ → R

satisfying the following:
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(F1) For each K > 0, there exist a constant B K and a positive constant 1
2 < ν � 1, depending on K ,

such that

∣∣F (M, p, z, x) − F (M, p, z, y)
∣∣ � B K |x − y|ν(|M| + 1

)
for all M ∈ Sn , p ∈ Rn , z ∈ R, and x, y ∈ Ω̄ satisfying |p|, |z| � K .

(F2) There exist constants δ1, δ0 > 0 and 0 < γ � Γ such that

P −
γ ,Γ (M − N) − δ1|p − q| − δ0|z − w| � F (M, p, z, x) − F (N,q, w, x)

� P +
γ ,Γ (M − N) + δ1|p − q| + δ0|z − w|

for all M, N ∈ Sn , p,q ∈ Rn , z, w ∈ R, x ∈ Ω̄ .
(F3) F is positively homogeneous of order one, jointly in its first three arguments; i.e.,

F (tM, tp, tz, x) = t F (M, p, z, x) for all t � 0

and all M ∈ Sn , p ∈ Rn , z ∈ R, x ∈ Ω̄ .
(F4) F is concave jointly in its first three arguments; i.e., the map

(M, p, z) �→ F (M, p, z, x) is concave

for every x ∈ Ω̄ .

Hypothesis (F2) implies F is uniformly elliptic in the familiar sense that

−γ trace(N) � F (M + N, p, z, x) − F (M, p, z, x)

for every nonnegative definite matrix N ∈ Sn . (In particular, we adopt the sign convention that regards
−
 as elliptic.)

Recall that a positively homogeneous function is concave if and only if it is superlinear. Thus (F3)
and (F4) imply that

F (M + N, p + q, z + w, x) � F (M, p, z, x) + F (N,q, w, x) (2.1)

for all M,n ∈ Sn , p,q ∈ Rn , z, w ∈ R and x ∈ Ω̄ . We may rewrite this as

F (M − N, p − q, z − w, x) � F (M, p, z, x) − F (N,q, w, x), (2.2)

and in particular we have

F (M, p, z, x) � −F (−M,−p,−z, x). (2.3)

We may replace concavity with convexity in the hypothesis (F4) and our results with still hold,
provided that we make appropriate sign changes in our statements. This follows from the simple
observation that if G satisfies (F1)–(F3) but is convex in (M, p, z), then the operator

G̃(M, p, z, x) := −G(−M,−p,−z, x)

satisfies (F1)–(F4).
All differential equations and inequalities, unless otherwise indicated, are assumed to be satisfied

in the viscosity sense. See [8,12] for definitions and an introduction to the theory of viscosity solutions
of second-order elliptic equations.
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We will make use of W 2,p and C2,α estimates for viscosity solutions of concave, second-order
uniformly elliptic equations. See [6,18] for details.

2.2. Principal half-eigenvalues

We now review some known facts regarding principal eigenvalues of F . The results in this subsec-
tion were substantively reported in [14], and have recently been generalized in [1,13,15]. While we
continue to assume that our nonlinear operator F is concave, many of the results in this section hold
for operators satisfying only (F1)–(F3); see [1,13] for details.

The following comparison principle is essential to the theory of principal eigenvalues of nonlinear
operators. It is based on an insight that goes back to the work of Berestycki, Nirenberg, and Varad-
han [3].

Theorem 2.1 (Comparison principle for positively homogeneous operators). Suppose u, v ∈ C(Ω̄) and
f ∈ C(Ω) satisfy

F
(

D2u, Du, u, x
)
� f � F

(
D2 v, D v, v, x

)
in Ω, (2.4)

and that one of the following conditions holds:

(i) f � 0 and u < 0 in Ω , v � 0 on ∂Ω , or
(ii) f � 0 and v > 0 in Ω , u � 0 on ∂Ω .

Then either u � v in Ω , or v ≡ tu for some positive constant t �= 1.

See [1] for a proof of Theorem 2.1.

Theorem 2.2. (See Ishii and Yoshimura [13] or Quaas and Sirakov [15].) There exist functions ϕ+
1 ,ϕ−

1 ∈
C2,α(Ω) such that ϕ+

1 > 0 and ϕ−
1 < 0 in Ω , and which satisfy

⎧⎪⎨
⎪⎩

F
(

D2ϕ+
1 , Dϕ+

1 ,ϕ+
1 , x

) = λ+
1 (F ,Ω)ϕ+

1 in Ω,

F
(

D2ϕ−
1 , Dϕ−

1 ,ϕ−
1 , x

) = λ−
1 (F ,Ω)ϕ−

1 in Ω,

ϕ+
1 = ϕ−

1 = 0 on ∂Ω.

(2.5)

Moreover, the eigenvalue λ+
1 (F ,Ω) (λ−

1 (F ,Ω)) is unique in the sense that if ρ is another eigenvalue of F in
Ω associated with a nonnegative (nonpositive) eigenfunction, then ρ = λ+

1 (F ,Ω) (ρ = λ−
1 (F ,Ω)); and is

simple in the sense that if ϕ ∈ C(Ω̄) is a solution of (2.5) with ϕ in place of ϕ+
1 (ϕ−

1 ), then ϕ is a constant
multiple of ϕ+

1 (ϕ−
1 ).

The principal eigenvalues λ±
1 (F ,Ω) satisfy the maximin formulas

λ+
1 (F ,Ω) = sup

ϕ∈C2+(Ω̄)

inf
x∈Ω

F (D2ϕ(x), Dϕ(x),ϕ(x), x)

ϕ(x)
(2.6)

and

λ−
1 (F ,Ω) = sup

ϕ∈C2 (Ω̄)

inf
x∈Ω

−F (−D2ϕ(x),−Dϕ(x),−ϕ(x), x)

ϕ(x)
. (2.7)
+
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Along with (2.3), these imply that

λ+
1 (F ,Ω) � λ−

1 (F ,Ω).

If Ω ′ � Ω , then we can compare the principal eigenfunctions of F on the domains Ω ′ and Ω and
employ Theorem 2.1 to immediately conclude that

λ±
1 (F ,Ω) < λ±(F ,Ω ′). (2.8)

We will need the following extension of the Alexandroff–Bakelman–Pucci inequality, which was
essentially proven in the convex case by Quaas and Sirakov [15].

Theorem 2.3 (ABP inequality). There exists a constant C1 , depending only on Ω , n, γ , Γ , and δ1 , such that for
any λ < λ+

1 (F ,Ω), f ∈ C(Ω) ∩ Ln(Ω), and any subsolution u ∈ C(Ω̄) of

F
(

D2u, Du, u, x
)
� λu + f in {u > 0},

we have the estimate

sup
Ω

u+ � C1
(
1 + (

λ+
1 (F ,Ω) − λ

)−1)(
sup
∂Ω

u+ + ∥∥ f +∥∥
Ln(Ω)

)
. (2.9)

Likewise, for any λ < λ−
1 (F ,Ω), f ∈ C(Ω) ∩ Ln(Ω), and any supersolution u ∈ C(Ω̄) of

F
(

D2u, Du, u, x
)
� λu + f in {u < 0},

we have the estimate

sup
Ω

u− � C1
(
1 + (

λ−
1 (F ,Ω) − λ

)−1)(
sup
∂Ω

u− + ∥∥ f −∥∥
Ln(Ω)

)
. (2.10)

Our analysis in this paper relies crucially on the dependence of the right side of (2.9) on
λ+

1 (F ,Ω) − λ. Because the proof given by Quaas and Sirakov in [15] requires subtle modifications to
achieve this dependence, and for the sake of completeness, we give a complete proof of Theorem 2.3
in Appendix A.

Remark 2.4. Notice that the operator F (D2u, Du, u, x) − λu satisfies the comparison principle in Ω if
and only if λ < λ+

1 (F ,Ω). Indeed, suppose u and v satisfy

{
F
(

D2u, Du, u, x
) − λu � F

(
D2 v, D v, v, x

) − λv in Ω,

u � v on ∂Ω.

Set w := u − v and use (2.2) to get

F
(

D2 w, D w, w, x
) − λw � 0 in Ω.

Now recall that w � 0 on ∂Ω , and employ Theorem 2.3 to conclude that w � 0 in Ω in the case
that λ < λ+

1 (F ,Ω). For λ � λ+
1 (F ,Ω), the principal eigenfunction ϕ+

1 is a witness to the failure of the
comparison principle for the operator F − λ in Ω .
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Proposition 2.5. Suppose that λ < λ+
1 (F ,Ω) and f ∈ C(Ω)∩ Ln(Ω). Then there is a unique viscosity solution

ϕλ, f ∈ C(Ω̄) of the Dirichlet problem

{
F
(

D2ϕλ, f , Dϕλ, f ,ϕλ, f , x
) = λϕλ, f + f in Ω,

ϕλ, f = 0 on ∂Ω.
(2.11)

Moreover, if f � 0 in Ω and f �≡ 0, then

lim
λ↗λ+

1 (F ,Ω)

sup
Ω

∣∣ϕλ, f
∣∣ = +∞, (2.12)

and the normalized function ϕ̃λ, f := ϕλ, f /‖ϕλ, f ‖L∞(Ω) converges uniformly on Ω̄ to the positive principal
eigenfunction ϕ+

1 of F in Ω , as λ → λ+
1 (F ,Ω).

Proof. The existence of solutions can be obtained via a standard argument using the Perron method.
Large multiples of the principal eigenfunctions provide sub- and supersolutions of (2.11), at least for f
vanishing near ∂Ω . For more general f , we can approximate using (2.2) and Theorem 2.3. Uniqueness
follows at once from Remark 2.4. See [1] or [15] for a complete proof.

We now demonstrate (2.12) under the assumption that f � 0 and f �≡ 0. In this case we have
ϕλ, f � 0 and ϕλ, f �≡ 0. Using homogeneity, we see that the function ϕ̃λ, f is a viscosity solution of

F
(

D2ϕ̃λ, f , Dϕ̃λ, f , ϕ̃λ, f , x
) = λϕ̃λ, f + f /

∥∥ϕλ, f
∥∥

L∞(Ω)
in Ω. (2.13)

If (2.12) does not hold, then we may find a subsequence λk → λ+
1 (F ,Ω) and a number 0 < η < ∞

such that

lim
k→∞

∥∥ϕλk, f
∥∥

L∞(Ω)
= η > 0.

Recall that ‖ϕ̃λ, f ‖L∞(Ω) = 1. By using local Cα estimates available for fully nonlinear elliptic equations
(cf. [6]), and taking a further subsequence, we may assume that there exists a function ϕ̃ ∈ C(Ω̄) such
that

ϕ̃λk, f → ϕ̃ locally uniformly on Ω̄ as k → ∞.

Passing to limits in (2.13), we see that ϕ̃ is a viscosity solution of

F
(

D2ϕ̃, Dϕ̃, ϕ̃, x
) = λ+

1 (F ,Ω)ϕ̃ + f /η in Ω.

Since f /η � 0, this contradicts [1, Proposition 6.1]. We have established (2.12). We may now pass to
limits in (2.13) to deduce that ϕ̃ = ϕ+

1 , and that the whole sequence ϕ̃λ, f converges uniformly as
λ → λ+

1 (F ,Ω) to ϕ+
1 . �

Arguing in a similar way as Proposition 2.5, we obtain:

Proposition 2.6. Suppose that λ < λ−
1 (F ,Ω) and f ∈ C(Ω) ∩ Ln(Ω) is such that f � 0. Then there is a

unique nonpositive viscosity solution ϕ̄λ, f ∈ C(Ω̄) of the Dirichlet problem

{
F
(

D2ϕ̄λ, f , Dϕ̄λ, f , ϕ̄λ, f , x
) = λϕ̄λ, f + f in Ω,

ϕ̄λ, f = 0 on ∂Ω.
(2.14)
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Moreover, if f �≡ 0, then

lim
λ↗λ−

1 (F ,Ω)

sup
Ω

∣∣ϕ̄λ, f
∣∣ = +∞, (2.15)

and the normalized function ϕ̄λ, f /‖ϕ̄λ, f ‖L∞(Ω) converges uniformly on Ω̄ to the negative principal eigen-
function ϕ−

1 of F in Ω , as λ → λ−
1 (F ,Ω).

Remark 2.7. We will also require the following property of ϕλ, f which is easily deduced from (2.1)
and Remark 2.4. Namely, if f , g,h ∈ C(Ω) ∩ Ln(Ω) such that h � f + g , then

ϕλ,h � ϕλ, f + ϕλ,g in Ω

for any λ < λ+
1 (F ,Ω). In particular, if f , g and h are nonnegative, then

∥∥ϕλ,h
∥∥

L∞(Ω)
�

∥∥ϕλ, f
∥∥

L∞(Ω)
+ ∥∥ϕλ,g

∥∥
L∞(Ω)

. (2.16)

2.3. Sion’s minimax theorem

The proof of Theorem 1.1, like the original in [9] for linear operators, will employ a minimax
theorem due to Sion [16]. For the convenience of the reader, we will now state this result.

Definition 2.8. Let A and B be sets. A function f : A × B → R is called convex-like in A if, for any
x, y ∈ A and 0 � α � 1, there exists z ∈ A such that

f (z,b) � α f (x,b) + (1 − α) f (y,b) for every b ∈ B.

Similarly, f is called concave-like in B if, for any x, y ∈ B and 0 � α � 1, there exists z ∈ B such that

f (a, z) � α f (a, x) + (1 − α) f (a, y) for every a ∈ A.

Theorem 2.9. (See Sion [16].) Suppose that A is a compact topological space, B is a set, and f : A × B → R is
concave-like in B, and upper semi-continuous and convex-like in A. Then

inf
x∈A

sup
y∈B

f (x, y) = sup
y∈B

inf
x∈A

f (x, y). (2.17)

3. Proof of main results

In this section we will prove Theorems 1.1 and 1.2.

3.1. Proof of Theorem 1.1

Let J : M(Ω̄) × C2+(Ω̄) → R denote the functional

J (μ,ϕ) =
∫
Ω

F (D2ϕ(x), Dϕ(x),ϕ(x), x)

ϕ(x)
dμ(x). (3.1)

We will show now that J satisfies the hypotheses of Theorem 2.9. First, recall that M(Ω̄) is a com-
pact topological space (with respect to the usual weak-star topology), and for each fixed ϕ ∈ C2+(Ω̄)

the map

μ �→ J (μ,ϕ)
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is a continuous and linear on M(Ω̄). In particular, J is continuous and convex-like in M(Ω̄). To see
that J is concave-like in C2+(Ω̄), select u, v ∈ C2+(Ω̄) and 0 < α < 1. A simple calculation reveals that
for w := uα v1−α we have

D w = w

(
α

Du

u
+ (1 − α)

D v

v

)
(3.2)

and

D2 w = w

(
α

D2u

u
+ (1 − α)

D2 v

v
− α(1 − α)

(
Du

u
− D v

v

)
⊗

(
Du

u
− D v

v

))
. (3.3)

The operator P −
γ ,Γ has the property that

P −
γ ,Γ (−p ⊗ p) = γ |p|2

for any p ∈ Rn . Using (F2) and (2.1) we immediately deduce

F
(

D2 w, D w, w, x
)
� w

(
αF (D2u, Du, u, x)

u
+ (1 − α)F (D2 v, D v, v, x)

v

+ γα(1 − α)

u2 v2
|v Du − uD v|2

)
. (3.4)

Therefore

J (μ, w) � α J (μ, u) + (1 − α) J (μ, v)

for any μ ∈ M(Ω̄), confirming that J is concave-like in its second argument.
Recall that for any fixed continuous function g ∈ C(Ω̄),

inf
x∈Ω

g(x) = inf
μ∈M(Ω̄)

∫
Ω

g dμ.

We now employ (2.6) and Theorem 2.9 to deduce that

λ+
1 (F ,Ω) = sup

ϕ∈C2+(Ω̄)

inf
x∈Ω

F (D2ϕ(x), Dϕ(x),ϕ(x), x)

ϕ(x)

= sup
ϕ∈C2+(Ω̄)

inf
μ∈M(Ω̄)

J (μ,ϕ)

= inf
μ∈M(Ω̄)

sup
ϕ∈C2+(Ω̄)

J (μ,ϕ). (3.5)

Select a sequence {μk} ⊆ M(Ω̄) for which

sup
ϕ∈C2+(Ω̄)

J (μk,ϕ) → λ+
1 (F ,Ω).

Up to a subsequence, there exists μ ∈ M(Ω̄) such that μk ⇀ μ weakly in M(Ω̄), and it is immediate
that
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sup
ϕ∈C2+(Ω̄)

J (μ,ϕ) = λ+
1 (F ,Ω).

Thus the infimum in the last line of (3.5) is actually a minimum. We have proven (1.7).
Denote the set of minimizing measures by

V (F ,Ω) =
{
μ ∈ M(Ω̄): sup

ϕ∈C2+(Ω̄)

J (μ,ϕ) = λ+
1 (F ,Ω)

}
. (3.6)

We have just seen that V (F ,Ω) is nonempty. From (2.8) we see that μ(E) > 0 for any μ ∈ V (F ,Ω)

and Borel set E with |E| > 0.
We claim that for any μ ∈ V (F ,Ω) and any nonnegative f ∈ C(Ω) ∩ Ln(Ω),∫

Ω

f

ϕ+
1

dμ � lim inf
λ↗λ+

1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

. (3.7)

We will first demonstrate (3.7) under the assumption that f is smooth and positive on Ω . For each
λ < λ+

1 (F ,Ω), let ϕλ, f and ϕ̃λ, f be as in Proposition 2.5. Then ϕλ, f � 0 in �. Employing the C2,α

and W 2,p estimates, we have ϕλ, f ∈ C2(Ω) ∩ W 2,p(Ω) for every p < ∞. Using μ ∈ V (F ,Ω) and (F2)
we obtain, for any ε > 0,

λ+
1 (F ,Ω) � J

(
μ,ϕλ, f + ε

)
�

∫
Ω

(
λϕλ, f − δ0ε + f

ϕλ, f + ε

)
dμ.

Rearranging, we obtain∫
Ω

−(δ0 + λ)ε + f

ϕ̃λ, f + ε/‖ϕλ, f ‖L∞(Ω)

dμ �
(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

. (3.8)

Since the integrand is positive for small enough ε > 0, Fatou’s Lemma allows us to send ε → 0 to get

∫
Ω

f

ϕ̃λ, f
dμ �

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

.

Now we pass to the limit λ → λ+
1 (F ,Ω), using Proposition 2.5 and Fatou’s Lemma again, to get (3.7)

in the case that f is positive and smooth.
For general nonnegative f ∈ C(Ω) ∩ Ln(Ω), select a sequence { fk} of smooth, positive functions

such that fk → f pointwise and in Ln(Ω). Using Theorem 2.3 and (2.16), we see that∫
Ω

f

ϕ+
1

dμ � lim inf
k→∞

∫
Ω

fk

ϕ+
1

dμ

� lim inf
k→∞

lim inf
λ↗λ+

1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, fk

∥∥
L∞(Ω)

� lim inf
k→∞

lim inf
λ↗λ+

1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)(∥∥ϕλ, f

∥∥
L∞(Ω)

+ ∥∥ϕλ,| fk− f |∥∥
L∞(Ω)

)
� lim inf

λ↗λ+
1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

+ C1 lim inf
k→∞

‖ fk − f ‖Ln(Ω)

= lim inf
λ↗λ+

1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

.

This demonstrates (3.7).
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According to Theorem 2.3 and (3.7), for any μ ∈ V (F ,Ω) and f ∈ C(Ω) ∩ Ln(Ω), we have the
estimate

∣∣∣∣
∫
Ω

f

ϕ+
1

dμ

∣∣∣∣ �
∫
Ω

| f |
ϕ+

1

dμ � C1‖ f ‖Ln(Ω).

Hence the linear functional

f �→
∫
Ω

f

ϕ+
1

dμ

can be extended to a bounded linear functional on Ln(Ω), and there exists ϕ∗
μ ∈ Ln/(n−1)(Ω) such

that

dμ(x) = ϕ+
1 (x)ϕ∗

μ(x)dx.

Recall that μ(E) > 0 for any Borel set E of positive Lebesgue measure. Thus the set {ϕ∗
μ = 0} is of

zero Lebesgue measure. This completes the proof of Theorem 1.1.

Remark 3.1. The principal eigenvalue λ+
1 (F ,Ω) also satisfies the relaxed minimax formula

λ+
1 (F ,Ω) = min

ψ
sup
ϕ

‖ψ‖−1
L1(Ω)

∫
Ω

F (D2ϕ, Dϕ,ϕ, x)

ϕ
ψ dx, (3.9)

where the minimum is taken over all positive ψ ∈ Ln/(n−1)(Ω) and the maximum over positive func-
tions ϕ ∈ W 2,n(Ω) ∩ C0+(Ω̄).

3.2. Proof of Theorem 1.2

We will assume without loss of generality that

λ+
1 (F ,Ω) = 0,

so that the Dirichlet problem (1.8) reads{
F
(

D2u, Du, u, x
) = f in Ω,

u = 0 on ∂Ω.
(3.10)

Define the set

S(F ,Ω) = {
f ∈ C(Ω) ∩ Ln(Ω): there exists ϕ ∈ W 2,n(Ω) such that ϕ � 0 in Ω

and F
(

D2ϕ, Dϕ,ϕ, x
)
� f in Ω

}
. (3.11)

Owing to the superlinearity (2.1) of F , it is immediate that S(F ,Ω) is a convex cone in C(Ω). For
each n � p < ∞, let S p(F ,Ω) denote the L p(Ω)-closure of S(F ,Ω)∩ L p(Ω), and let S∞(F ,Ω) denote
the C(Ω̄)-closure of S(F ,Ω) ∩ C(Ω̄).

Theorem 1.2 follows from Propositions 3.2, 3.4 and 3.5, below.

Proposition 3.2. Assume that f ∈ C(Ω) ∩ Ln(Ω). The Dirichlet problem (3.10) is solvable provided that
f ∈ S(F ,Ω) and λ−

1 (F ,Ω) > 0. On the other hand, if (3.10) has a solution, then f − ε ∈ S(F ,Ω) for any
ε > 0.
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Proof. Suppose λ−
1 (F ,Ω) > 0, and there exists a nonnegative function ϕ ∈ W 2,n(Ω) such that

F
(

D2ϕ, Dϕ,ϕ, x
)
� f in Ω. (3.12)

According to Proposition 2.6, there exists a unique nonpositive solution ψ ∈ W 2,n(Ω) of the Dirichlet
problem

{
F
(

D2ψ, Dψ,ψ, x
) = −| f | in Ω,

ψ = 0 on ∂Ω.

Since ψ � 0 � ϕ on Ω̄ , the existence of a solution u ∈ W 2,n(Ω) of (3.10) follows from the standard
Perron method for viscosity solutions and the W 2,p estimates (see Winter [18]).

On the other hand, suppose that u is a solution of (3.10). According to the W 2,p estimates,
u ∈ W 2,n(Ω). Let ε > 0, and select a compact subset K ⊆ Ω such that u � −ε on Ω \ K . Select
k > 0 so large that u + kϕ+

1 � 0 on K . Set ϕ := u + kϕ+
1 + ε. Then ϕ � 0 on Ω̄ and

F
(

D2ϕ, Dϕ,ϕ, x
)
� f − δ0ε in Ω.

Thus f − δ0ε ∈ S(F ,Ω) for each ε > 0. �
Remark 3.3. If f ∈ C(Ω) ∩ L p(Ω) for some p > n, then a solution u of (3.10) satisfies u ∈ C1(Ω̄).
Revising the argument above and using Hopf’s Lemma, we see that f ∈ S(F ,Ω).

We will now characterize S p(F ,Ω) in terms of V (F ,Ω).

Proposition 3.4. For each n � p < ∞,

S p(F ,Ω) =
{

f ∈ L p(Ω): max
μ∈V (F ,Ω)

∫
Ω

f ϕ∗
μ dx � 0

}
.

Likewise,

S ∞(F ,Ω) =
{

f ∈ C(Ω̄): max
μ∈V (F ,Ω)

∫
Ω

f ϕ∗
μ dx � 0

}
.

Proof. According to elementary Banach space theory, a closed convex cone is the intersection of the
half-spaces that contain it. Thus we have

S p(F ,Ω) =
⋂

g∈E p

{
f ∈ L p(Ω):

∫
Ω

f g dx � 0

}
(3.13)

for each n � p < ∞, where we have defined

E p :=
{

g ∈ L p/(p−1)(Ω):
∫
Ω

f g dx � 0 for every f ∈ S(F ,Ω) ∩ L p(Ω)

}
.

Similarly, if we set

E∞ :=
{
ν ∈ R(Ω̄):

∫
f dν � 0 for every f ∈ S(F ,Ω) ∩ C(Ω̄)

}
,

Ω
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then

S ∞(F ,Ω) =
⋂

ν∈E∞

{
f ∈ C(Ω̄):

∫
Ω

f dν � 0

}
.

It is clear that E p ⊆ Eq for n � p � q � ∞, under the standard inclusion L p(Ω) ⊆ R(Ω̄).
We claim that

E∞ ⊆ {
ν ∈ R(Ω̄): dν = cϕ∗

μ dx for some μ ∈ V (F ,Ω), c � 0
}
. (3.14)

Select ν ∈ E∞ . Since S(F ,Ω) contains every nonpositive function in C(Ω̄), the measure ν � 0. As-
sume that ν �≡ 0. Define a probability measure μ ∈ M(Ω̄) by

dμ := c−1ϕ+
1 (x)dν, c :=

∫
Ω

ϕ+
1 dν.

We will show that μ belongs to V (F ,Ω). Select a test function ϕ ∈ C2+(Ω̄). For each 0 < α < 1 and
ε > 0, define

wα,ε := ϕα
(
ϕ+

1 + ε
)1−α

and

hα,ε := F
(

D2 wα,ε, D wα,ε, wα,ε, x
)
.

Then wα,ε ∈ C2+(Ω̄), hα,ε ∈ C(Ω̄), and by (3.4) we have

hα,ε �
[
α

F (D2ϕ, Dϕ,ϕ, x)

ϕ
+ (1 − α)

F (D2ϕ+
1 , Dϕ+

1 ,ϕ+
1 + ε, x)

ϕ+
1 + ε

]
wα,ε.

Using ν ∈ E∞ and (2.1) we have

0 � 1

α

∫
Ω

hα,ε dν

�
∫
Ω

F (D2ϕ, Dϕ,ϕ, x)

ϕ
wα,ε dν + 1 − α

α

∫
Ω

F (D2ϕ+
1 , Dϕ+

1 ,ϕ+
1 + ε, x)

ϕ+
1 + ε

wα,ε dν

�
∫
Ω

F (D2ϕ, Dϕ,ϕ, x)

ϕ
wα,ε dν + 1 − α

α

∫
Ω

λ+
1 (F ,Ω)

ϕ+
1

ϕ+
1 + ε

wα,ε dν

− 1 − α

α

∫
Ω

δ0ε

ϕ+
1 + ε

wα,ε dν.

Recall that λ+
1 (F ,Ω) = 0, and rearrange to obtain
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∫
Ω

F (D2ϕ, Dϕ,ϕ, x)

ϕ
wα,ε dν � 1 − α

α

∫
Ω

δ0ε

(ϕ+
1 + ε)α

ϕα dν

� 1 − α

α

∫
Ω

δ0ε
1−αϕα dν.

We may now send ε → 0 to deduce that∫
Ω

F (D2ϕ, Dϕ,ϕ, x)

ϕ
ϕα

(
ϕ+

1

)1−α
dν � 0.

Now pass to the limit α → 0 to get

∫
Ω

F (D2ϕ, Dϕ,ϕ, x)

ϕ
dμ � 0.

It follows that μ ∈ V (F ,Ω), as desired. We have demonstrated (3.14).
On the other hand, select that μ ∈ V (F ,Ω) and f ∈ S(F ,Ω). We will show that∫

Ω

f ϕ∗
μ dx � 0. (3.15)

Select ϕ ∈ W 2,n(Ω) such that ϕ � 0, and

F
(

D2ϕ, Dϕ,ϕ, x
)
� f in Ω.

For s > 0, define ws := ϕ+
1 + sϕ , and notice that

0 �
∫
Ω

F (D2 ws, D ws, ws, x)

ws
dμ

�
∫
Ω

F (D2ϕ+
1 , Dϕ+

1 ,ϕ+
1 , x) + sF (D2ϕ, Dϕ,ϕ, x)

ϕ+
1 + sϕ

dμ

�
∫
Ω

sf

ϕ+
1 + sϕ

dμ.

Thus ∫
Ω

f ϕ∗
μ

(
ϕ+

1

ϕ+
1 + sϕ

)
dx � 0.

Now we may let s → 0 to get (3.15). We have shown that{
cϕ∗

μ: μ ∈ V (F ,Ω), c � 0
} ⊆ En.

Combining with (3.14), we have that

E p = {
cϕ∗

μ: μ ∈ V (F ,Ω), c � 0
}

for all n � p < ∞, as well as equality in (3.14). The result now follows from (3.13). �
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The necessity of (1.9) for the solvability of the Dirichlet problem (1.8) follows at once from Propo-
sitions 3.2 and 3.4. The sufficiency of (1.10) and (1.11) is obtained from the next proposition.

Proposition 3.5. Suppose that λ−
1 (F ,Ω) > 0, and f ∈ C(Ω) ∩ Ln(Ω) is such that

max
μ∈V (F ,Ω)

∫
Ω

f ϕ∗
μ dx < 0.

Then f ∈ S(F ,Ω).

Proof. Suppose first that f ∈ C(Ω̄). According to Proposition 3.4, the function f + ε ∈ S ∞(F ,Ω) for
every sufficiently small ε > 0. Hence there exists g ∈ S(F ,Ω) such that ‖g − ( f + ε)‖L∞(Ω) � ε. In
particular, g � f . Thus f ∈ S(F ,Ω).

For general f ∈ C(Ω) ∩ Ln(Ω), we may assume without of generality that f is bounded below.
Select α > 0 small enough that

max
μ∈V (F ,Ω)

∫
Ω

( f + α)ϕ∗
μ dx < 0.

For each ε > 0, define

f ε := f ∧ ε−1.

Then f ε + α ∈ S(F ,Ω) for each ε > 0. Fix ε > 0 so small that

∥∥ f − f ε
∥∥

Ln(Ω)
� α/2C1,

where C1 is as in Theorem 2.3. Consider the function ϕ := ϕ−1, f − f ε
, which satisfies

{
F
(

D2ϕ, Dϕ,ϕ, x
) = −ϕ + f − f ε in Ω,

ϕ = 0 on ∂Ω.

According to Theorem 2.3, 0 � ϕ � 2C1‖ f − f ε‖Ln(Ω) � α, and thus

F
(

D2ϕ, Dϕ,ϕ, x
)
� f − f ε − α in Ω.

Therefore, f − f ε − α ∈ S(F ,Ω). It follows that

f = (
f ε + α

) + (
f − f ε − α

) ∈ S(F ,Ω). �
Remark 3.6. Suppose u and v are solutions of (1.8) such that u(x̃) > v(x̃) at some point x̃ ∈ Ω . Using
the concavity and homogeneity of F , we see that the function w := u − v satisfies

F
(

D2 w, D w, w, x
)
� λ+

1 (F ,Ω)w in Ω.

Comparing w with ϕ+
1 and applying Theorem 2.1, we deduce that w ≡ tϕ+

1 for some constant t > 0.
Thus the difference of any two solutions of (1.8) is a multiple of the principal eigenfunction, and in
particular does not change sign in Ω . According to the hypothesis (1.10) and Theorem 2.3, there exists
a constant C such that any solution of (1.8) is bounded below by −C . Therefore, if (1.8) is solvable,
then it possesses a minimal solution.
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As an application of our techniques, we offer the following refinement of (3.7):

Proposition 3.7. Suppose f ∈ C(Ω) ∩ Ln(Ω) is nonnegative and let ϕλ, f be as in Proposition 2.5. Then

max
μ∈V (F ,Ω)

∫
Ω

f

ϕ+
1

dμ = lim
λ↗λ+

1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

. (3.16)

Proof. Assume without loss of generality that f �≡ 0. Define

k := max
μ∈V (F ,Ω)

∫
Ω

f

ϕ+
1

dμ

and

l := lim sup
λ↗λ+

1 (F ,Ω)

(
λ+

1 (F ,Ω) − λ
)∥∥ϕλ, f

∥∥
L∞(Ω)

.

Suppose on the contrary that k < l. Select 0 < ε � (l − k)/2. According to Proposition 3.5, there exists
a supersolution u > 0 of

F
(

D2u, Du, u, x
)
� λ+

1 (F ,Ω)u + f − (k + ε)ϕ+
1 + δ in Ω,

provided δ > 0 is sufficiently small. We may write (2.11) as

F
(

D2ϕλ, f , Dϕλ, f ,ϕλ, f , x
) = λ+

1 (F ,Ω)ϕλ, f + f − (
λ+

1 (F ,Ω) − λ
)
ϕλ, f in Ω.

Take a subsequence λ j → λ+
1 (F ,Ω) such that

l = lim
j→∞

(
λ+

1 (F ,Ω) − λ j
)∥∥ϕλ j , f

∥∥
L∞(Ω)

.

According to Proposition 2.5,

(
λ+

1 (F ,Ω) − λ j
)
ϕλ j , f → lϕ+

1 uniformly in Ω. (3.17)

Hence for j sufficiently large,

(
λ+

1 (F ,Ω) − λ j
)
ϕλ j , f � (k + ε)ϕ+

1 − δ/2.

Thus the function w := ϕλ j , f − u satisfies the inequality

F
(

D2 w, D w, w, x
) − λ+

1 (F ,Ω)w � −δ/2 in Ω.

Since w � 0 on ∂Ω , we may apply Theorem 2.1 to deduce that w � 0 in Ω . Hence for j sufficiently
large,

ϕλ j , f � u in Ω,

in contradiction to (2.12). Hence l � k. �
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4. Examples

Theorems 1.1 and 1.2 suggest that, in analogy with linear operators, we should interpret the func-
tions ϕ∗

μ as one-sided “principal eigenfunctions of the adjoint of the linearization of F .” As we will see
below, the set V (F ,Ω) is not a singleton set in general. However, if the operator F is differentiable in
(M, p, z) at the point (D2ϕ+

1 (x), Dϕ+
1 (x),ϕ+

1 (x), x) for every x ∈ Ω , and this derivative is continuous,
then there is only one minimizing measure μ ∈ V (F ,Ω) and ϕ∗

μ is the principal eigenfunction of the

adjoint of the linearization of F about ϕ+
1 , as we will now show.

To state this result precisely, we now introduce the standard notion of weak solution for linear
elliptic equations in double divergence form, following Bauman [2]. Suppose L is the linear, uniformly
elliptic operator given by (1.1), with coefficients in C(Ω) ∩ L∞(Ω). If f ∈ L∞

loc(Ω), then we say a
function v ∈ L1

loc(Ω) is a weak solution of the adjoint equation

L∗v = f in Ω, (4.1)

provided the following integral identity holds for every smooth function ψ with compact support
in Ω: ∫

Ω

vLψ dx =
∫
Ω

f ψ dx.

A weak solution v of (4.1) is formally a solution of the double divergence form PDE

−(
aij(x)v

)
i j − (

bi(x)v
)

i + c(x)v = f in Ω.

Weak solutions of (4.1) do not possess much regularity; in fact, they need not be locally bounded.
Since the inverse of L is a compact linear operator on Ln(Ω), the inverse of the adjoint of L is a
compact linear operator on Ln/(n−1)(Ω). Thus a weak solution v of (4.1) must necessarily belong to
Ln/(n−1)

loc (Ω), and belongs to Ln/(n−1)(Ω) provided that f does.

Proposition 4.1. Suppose that at every point x ∈ Ω , the operator F is differentiable in (M, p, z) at

(
D2ϕ+

1 (x), Dϕ+
1 (x),ϕ+

1 (x), x
)
,

and this derivative is continuous in x. Let L be the linear elliptic operator

Lu := Fmij

(
D2ϕ+

1 (x), Dϕ+
1 (x),ϕ+

1 (x), x
)
uij + F pi

(
D2ϕ+

1 (x), Dϕ+
1 (x),ϕ+

1 (x), x
)
u j

+ F z
(

D2ϕ+
1 (x), Dϕ+

1 (x),ϕ+
1 (x), x

)
u. (4.2)

Then the set V (F ,Ω) consists of a unique measure μ characterized by the fact that ϕ∗
μ is the unique (suitably

normalized) weak solution of the adjoint equation

L∗ϕ∗
μ = λ+

1 (F ,Ω)ϕ∗
μ in Ω. (4.3)

Proof. According to (F2), our operator F is Lipschitz in (M, p, z), uniformly in x ∈ Ω . Thus the coeffi-
cients

aij(x) := −Fmij

(
D2ϕ+

1 (x), Dϕ+
1 (x),ϕ+

1 (x), x
)
,

bi(x) := F p j

(
D2ϕ+

1 (x), Dϕ+
1 (x),ϕ+

1 (x), x
)
,
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and

c(x) = F z
(

D2ϕ+
1 (x), Dϕ+

1 (x),ϕ+
1 (x), x

)
belong to C(Ω) ∩ L∞(Ω). Select a measure μ ∈ V (F ,Ω) and a smooth function ψ with compact
support in Ω . There exists δ > 0 such that function ψ s := ϕ+

1 + sψ > 0 in Ω for s � −δ. The map
s �→ J (μ,ψ s) has a local maximum at s = 0. Thus we obtain

0 = ∂

∂s
J
(
μ,ψ s)∣∣∣∣

s=0

=
∫
Ω

∂

∂s

(
F (D2ψ s, Dψ s,ψ s, x)

ψ s

)∣∣∣∣
s=0

dμ

=
∫
Ω

[−aij(x)ψi j + bi(x)ψi + c(x)ψ

ϕ+
1

− F (D2ϕ+
1 (x), Dϕ+

1 (x),ϕ+
1 (x), x)

(ϕ+
1 )2

ψ

]
dμ

=
∫
Ω

(
Lψ − λ+

1 (F ,Ω)ψ
)
ϕ∗

μ dx.

Differentiating under the integral sign can be justified using the dominated convergence theorem and
the fact that F is Lipschitz in (M, p, z), uniformly in x. It follows that ϕ∗

μ is a weak solution of (4.3).

According to the Fredholm alternative, λ+
1 (F ,Ω) is a simple eigenvalue of the operator L∗ . Therefore,

V (F ,Ω) = {μ}. �
Example 4.2. We now demonstrate that V (F ,Ω) is not a singleton set in general. Observe that if F1
and F2 satisfy (F1)–(F4) and

F1(M, p, z, x) − λ+
1 (F1,Ω)z � F2(M, p, z, x) − λ+

1 (F2,Ω)z,

then we may immediately deduce that ϕ+
1 (F1,Ω) ≡ ϕ+

1 (F2,Ω), and

V (F2,Ω) ⊆ V (F1,Ω).

From this we see that the maximum of two linear operators with proportional principal eigenfunc-
tions but disproportional adjoint eigenfunctions should have two distinct minimizing measures.

For an explicit example, consider the operator

G
(

D2u, Du, u, x
) = min

{−
u,−
u + b(x) · Du
} − |u|, x ∈ B.

Here B is the unit ball in Rn , and we require b : B → Rn to be a smooth vector field satisfying

x · b(x) = 0, x ∈ B, (4.4)

and

div b �≡ 0. (4.5)

Let λ1 and ϕ1 denote the principal eigenvalue and eigenfunction of −
 in B , respectively. Since ϕ1 is
radial, we have b · Dϕ ≡ 0. It follows that

λ1 := λ+
1 (G, B) + 1 = λ−

1 (G, B) − 1,
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and ϕ1 ≡ ϕ+
1 (G, B) ≡ −ϕ−

1 (G, B). Let ϕ2 denote the principal eigenfunction of the operator

L∗
1u := −
u − b · Du − (div b)u,

which is the adjoint of the operator L1 := −
u + b · Du. Owing to (4.4) and (4.5), we see that the
functions ϕ1 and ϕ2 are not proportional.

The measures

μ1 := ϕ2
1 dx/‖ϕ1‖2

L2(Ω)
and μ2 := ϕ1ϕ2 dx/‖ϕ1ϕ2‖L1(Ω)

belong to V (G, B). To see this, notice that μ1 ∈ V (−
, B) and μ2 ∈ V (L1, B), and apply the argument
above. Alternatively, let u ∈ C2+(Ω̄) and check that

∫
Ω

G(D2u, Du, u, x)

u
dμ1 �

∫
Ω

−
u − u

u
dμ1 � λ1 − 1 = λ+

1 (G, B).

Hence μ1 ∈ V (G, B). Similarly, μ2 ∈ V (G, B).

We conclude by demonstrating that in general the necessary condition (1.9) is not sufficient, nor
is the sufficient condition (1.11) necessary for the solvability of the boundary value problem (1.8).

Example 4.3. Consider the operator

G
(

D2u
) := min{−
,−2
}.

Observe that in any domain Ω ,

λ1 := λ+
1 (G,Ω) = λ1(−
,Ω) < 2λ1(−
,Ω) = λ−

1 (G,Ω)

and

ϕ+
1 (G,Ω) ≡ ϕ1(−
,Ω) ≡ −ϕ−

1 (G,Ω) =: ϕ1.

According to Proposition 4.1,

V (G,Ω) = {μ},

where μ is the probability measure given by

dμ(x) = (
ϕ1(x)

)2
dx/‖ϕ1‖2

L2(Ω)
.

Suppose that f ∈ C1,α(Ω) is such that

max
μ∈V (G,Ω)

∫
Ω

f ϕ∗
μ =

∫
Ω

f ϕ1 dx = 0.

Then there is a solution u of the Dirichlet problem

{−
u = λ1u + f in Ω,
(4.6)
u = 0 on ∂Ω,
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which is unique up to multiples of ϕ1. We will argue that a solution v of the Dirichlet problem

{
G
(

D2 v
) = λ1 v + f in Ω,

v = 0 on ∂Ω,
(4.7)

exists if and only if

f � 0 on ∂Ω.

If v is a viscosity solution of (4.7), then v ∈ C2,α(Ω). Define

g := −
v − λ1 v,

and notice that ∫
Ω

gϕ1 dx = 0

as well as

g � G
(

D2 v
) − λ1 v = f in Ω.

It follows that g ≡ f and G(D2 v) = −
v . In particular, we conclude that v is superharmonic in Ω .
Thus

f = −
v − λ1 v = −
v � 0 on ∂Ω.

On the other hand, suppose that f � 0 on ∂Ω . Then a solution u of (4.6) satisfies

−
u � 0 on ∂Ω.

Using Hopf’s Lemma and u ∈ C3(Ω̄), we may select k � 0 so large that the function wk := u + kϕ1 is
superharmonic in Ω . It follows that wk satisfies the boundary value problem (4.7).

Acknowledgments

This article was completed while I was PhD student at the University of California, Berkeley. I wish
to thank my advisor Lawrence C. Evans and the Department of Mathematics for their continual guid-
ance and support. I would also like to acknowledge several interesting conversations with Isabeau
Birindelli on this topic, and to thank Boyan Sirakov for sending me the preprint [11].

Appendix A. Proof of Theorem 2.3

We assume that F satisfies (F1), (F2), and (F3). We do not assume (F4). While this is not necessary
for our purposes, the added generality will make our argument more clear in addition to providing a
useful generalization of the result in [15] to the case of non-concave F . Our proof will follow that of
[3] for the linear case.

Lemma A.1. Suppose that Ω contains a ball B of radius R � 1. Then we have the estimate

δ0 + λ+
1 (F ,Ω) � C R−2, (A.1)

where C depends only on n, γ , Γ , and δ1 .
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Proof. We will suppose without loss of generality that B is centered at x = 0. Consider the auxiliary
function ϕ given by

ϕ(x) := 1

4

(
R2 − |x|2)2

.

Performing a routine calculation, we see that

Dϕ(x) = −(
R2 − |x|2)x, D2ϕ(x) = −(

R2 − |x|2)In + 2x ⊗ x.

In the ball B we have

P +(
D2ϕ

) + δ1|Dϕ| � nΓ
(

R2 − |x|2) − 2γ |x|2 + δ1
(

R2 − |x|2)|x|
� 4βϕ

[
(nΓ + δ1) − 2γ |x|2β]

,

where we have defined β := (R2 − |x|2)−1. Let 0 < α � 1
2 be a constant to be selected below. In the

region (1 − α)R2 � |x|2 < R2 � 1, we have β � α−1 R−2, and

P +(
D2ϕ

) + δ1|Dϕ| � 4βϕ
[
(nΓ + δ1) − 2γ |x|2β]

� 4βϕ
[
(nΓ + δ1) − 2γα−1]

� 0,

provided that we choose

α := min

{
1

2
,2γ (nΓ + δ1)

−1
}
.

In the region 0 � |x| < (1 − α)R2, we have β � α−1 R−2, and thus

P +(
D2ϕ

) + δ1|Dϕ| � 4βϕ(nΓ + δ1)

� 4(nΓ + δ1)α
−1 R−2ϕ

=: C R−2ϕ.

In summary, we have shown that

P +(
D2ϕ

) + δ1|Dϕ| � C R−2ϕ in B.

Since ϕ = 0 on ∂ B , it follows from Theorem 2.1 that

λ+
1

(
P +(

D2·) + δ1|D · |, B
)
� C R−2.

Thus we have

δ0 + λ+
1 (F ,Ω) � δ0 + λ+

1 (F , B) = λ+
1 (F + δ0, B) � λ+

1

(
P +(

D2·) + δ1|D · |, B
)
� C R−2,

as desired. �
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Lemma A.2. For any λ < λ+
1 (F ,Ω), there exists v ∈ C1,α(Ω) satisfying

{
F
(

D2 v, D v, v, x
)
� λv + 1 in Ω,

v � 1 in Ω,
(A.2)

as well as the estimate

sup
Ω

v � C
(
1 + (

λ+
1 (F ,Ω) − λ

)−1)
, (A.3)

where the constant C depends only on Ω , n, γ , Γ , and δ1 . Moreover, we may take v ∈ C1,α(Ω), and if F is
concave (F4), then we may take v ∈ C2,α(Ω).

Proof. According to Lemma A.1, there exists a constant η > 0, depending only on n, γ , Γ , δ1, and the
geometry of the domain Ω , such that δ0 + λ+

1 (F ,Ω) � η. Select smooth domains Ω1 � Ω2 � Ω3 � Ω

such that

|Ω \ Ω1| � (2C0η)−n,

where C0 is the constant in the ABP inequality (see [7, Proposition 2.12]). Select a smooth function g
such that 0 � g � 1, g ≡ 0 on Ω1, and g ≡ 1 on Ω \ Ω2. Let u be the unique viscosity solution of the
boundary value problem

{
P −(

D2u
) − δ1|Du| = g in Ω,

u = 0 on ∂Ω.
(A.4)

Then u ∈ C2,α(Ω), and according to the ABP inequality,

0 � u � C0‖g‖Ln(Ω) � C0|Ω \ Ω1|1/n � 1

2η
in Ω.

Define w := 1 + βu for β := 2(1 + η). Then in the set Ω \ Ω2, the function w satisfies

P −(
D2 w

) − δ1|D w| − (λ + δ0)w � β − (λ + δ0)

(
1 + β

2η

)
� 1.

According to the Harnack inequality (see [15, Theorem 3.6]), there exists c > 0, depending on the
appropriate constants and the geometry of Ω , such that the positive principal eigenfunction ϕ+

1 of F
satisfies

ϕ+
1 � c on Ω̄3.

Define v := w + Aϕ+
1 , where A > 0 will be selected below. In the set Ω \ Ω2, we have

F
(

D2 v, D v, v, x
) − λv � A

(
F
(

D2ϕ+
1 , Dϕ+

1 ,ϕ+
1 , x

) − λϕ+
1

) + P −(
D2 w

) − δ1|D w| − (λ + δ0)w

� 1.

In the set Ω3, the function v satisfies
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F
(

D2 v, D v, v, x
) − λv

� A
(

F
(

D2ϕ+
1 , Dϕ+

1 ,ϕ+
1 , x

) − λϕ+
1

) + P −(
D2 w

) − δ1|D w| − (λ + δ0)w

� Ac
(
λ+

1 (F ,Ω) − λ
) − η

(
1 + β

2η

)

= Ac
(
λ+

1 (F ,Ω) − λ
) − 1 − 2η

= 1,

provided that we choose

A := 2(1 + η)

c(λ+
1 (F ,Ω) − λ)

.

Therefore, the function v satisfies (A.2) and

1 � v � 1 + 1 + η

η
+ 2(1 + η)

c(λ+
1 (F ,Ω) − λ)

. �

Proof of Theorem 2.3. Since we have not assumed that F is concave, it suffices to show only the
estimate (2.9), since (2.10) follows immediately by applying (2.9) to the operator −F (−M,−p,−z, x).
Let w be the unique solution of the problem

{
P +(

D2 w
) + δ1|D w| = − f + in Ω,

w = −u+ on ∂Ω.
(A.5)

Then w � 0, and according to the ABP inequality ([7, Proposition 2.12]) we have the estimate

‖w‖L∞(Ω) � sup
∂Ω

u+ + C0
∥∥ f +∥∥

Ln(Ω)
.

Define z := u + w , and check that in the domain Ω the function z satisfies

F
(

D2z, Dz, z, x
) − λz

� F
(

D2u, Du, u, x
) − λu + P +(

D2 w
) + δ1|D w| + δ0|w| + λ|w| � η|w|,

where η is as in the proof of Lemma A.2 above. Notice that z � 0 on ∂Ω . According to Theorem 2.1
and (A.2),

z �
(
η‖w‖L∞(Ω)

)
v,

where v is as in Lemma A.2. Therefore,

sup
Ω

u � sup
Ω

z + ‖w‖L∞(Ω)

�
(
1 + η‖v‖L∞(Ω)

)‖w‖L∞(Ω)

� C
(
1 + (

λ+
1 (F ,Ω) − λ

)−1)(
sup
∂Ω

u+ + C0
∥∥ f +∥∥

Ln(Ω)

)
. �



S.N. Armstrong / J. Differential Equations 247 (2009) 931–955 955
References

[1] S.N. Armstrong, Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations,
J. Differential Equations 246 (2009) 2958–2987.

[2] P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (2) (1984) 153–
173.

[3] H. Berestycki, L. Nirenberg, S. Varadhan, The principle eigenvalue and maximum principle for second order elliptic opera-
tors in general domains, Comm. Pure Appl. Math. 47 (1) (1994) 47–92.

[4] I. Birindelli, F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential
Equations 11 (1) (2006) 91–119.

[5] I. Birindelli, F. Demengel, Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, Com-
mun. Pure Appl. Anal. 6 (2) (2007) 335–366.

[6] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43, Amer. Math. Soc., Provi-
dence, RI, 1995.
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