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Abstract 

This study aims to analyze the ability of m-score Beneish in detecting financial fraud. This research data refer to companies that 
commit fraud according to the fraud Database of Sanctions of Issuer Cases Public Companies that was released by the Financial 
Services Authority in the period of 2001-2014. The results showed that overall Beneish m-score model was capable to detect 
financial fraud. Gross margin index, depreciation index, index of sales and general administrative burden and total accruals were 
all significant in detecting financial fraud. Sales index, asset quality index, and leverage index was statistically not significant in 
detecting financial fraud. 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction  

Based on research conducted by the Association of Certified Fraud Examiners (ACFE) in 2014, the most 
disadvantage fraud in a row is statement of financial fraud by 73%, corruption by 18%, and asset misappropriation by 
9%. Therefore, it can be stated that there are three (3) types of fraud. The financial statement fraud is the most harmful. 

Various studies to detect financial fraud have often been committed by researchers with fraud triangle analysis. In 
the last few years, some researchers have been using Beneish m-score model (Beneish, 1999, 2012), Dimitriois (2014), 
data mining (Zaki & Theodoulidis, 2013), Ata & Seyrek (2009) on this problem.  
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Research to detect financial fraud has been conducted by some researchers using financial ratios approach, data 
mining, and Beneish m-score model, but the method has drawbacks. First, there is a misclassification. Second, 
mistakes in data mining may lead to misclassification, this is due to the fact that different industries have different 
financial reporting requirements. Therefore, the research problem is “can the application of m-score model detect 
financial fraud?”  

The results of this study will be very helpful for auditors in conducting audit anyone with an interest in company's 
financial statements. M-score models and data mining can be used as an early indication (red flags) for detecting 
financial fraud. 

2. Detecting Financial Fraud 

According to the ACFE (2014), financial statement fraud is a deliberate fraud performed by a manager or employee 
with no reports on actual financial statement information, for example, fictitious revenues, too low expenses report, 
and so forth. In financial reporting context, an audit is designed to provide assurance to interested parties that the 
company's financial statements are not influenced by a material misstatement and gives adequate confidence to the 
management accountability of the assets (Koroy, 2008). Public companies and private sector have an opportunity for 
profit manipulation. Tarjo (2008; 2010) confirms that the go public company, especially the manufacturing industry, 
can manipulate profits. While Pradana, Tarjo & Kompyurini (2013) show that there are various factors which can be 
used to detect fraud in the public sector organizations.  

Who are in charge to perform financial fraud detection? Alleyne & Howard (2005) explores perceptions of auditors 
and users that it is auditor's responsibility to uncover fraud, performance-related audit procedures, the nature and 
extent of fraud in Barbados, as well as auditor’s response since Enron’s case came to light. The research findings of 
Alleyne & Howard (2005) show that there has been a big gap in expectations auditors perceive fraud detection as the 
responsibility of management, while users and management do not agree on this. Some research suggests that 
prevention and detection of fraud is management responsibilities, such as Beasley (1996) finding that companies with 
no fraud has board members from outside the company with a greater percentage than from inside the company. On 
the other hand, subsequent studies showed that auditors are the subject of analysis of studies on fraud detection (such 
as Owusu-Ansah, Moyes & Oyelere, 2002; Running (2009); Bishop 2004; Hutomo (2012); Mariana (2014); Rustiarini 
& Novitasari, 2014; Gamar, & Djamhuri 2015; Lisic, Silveri, Song  & Wang, 2015). The role and demographic factors 
of auditors have become the subject in research on the detection of fraud. 

How can we detect financial fraud? It has been a lot of research on fraud detection. The results of investigations by 
Bishop (2004) to 450 companies, which are victims of fraud in 2004 years since the ACFE report, on how fraud was 
initially detected, indicate that there are several ways of doing so, such as internal audit, tip form employees, by 
accident, internal control, external audit, tip from customers, tip from vendors, anonymous tip, and notified by police. 
Bishop (2004) states that fraud was most frequently detected by internal audit (23.8%) while the information of 
workers is the second most common detection method (23.6%). However, if all categories of information (employees, 
vendors, consumers, and anonymous) are combined, it becomes far and the most common detection method, 39.6%. 
These results indicate that the facilities / services to report violations provide the opportunity and encouragement to 
report the potential violation.  

Other studies on reliability of financial ratios in detecting financial fraud are by Persons (1999); Spathis (2002); 
Kaminski, Wetzel & Guan (2004). Owusu-Ansah, Moyes & Oyelere (2002) does a study on fraud detection through 
effectiveness of audit procedures. The detection of fraud through control is conducted by Alleyne & Howard (2005); 
Bierstaker, Brody & Pacini (2006); Gottschalk (2011); Akbar, Tarjo & Carolina (2012) & Kummer, Sing & Best 
(2015). There are also financial fraud detection model approaches, such as by Spathis (2002), developing reliable 
models in the detection of False Financial Statements or FFS for the Greek company with ten financial variables 
chosen for testing as a predictor of potential FFS. Skousen & Twedt (2009) use a fraud score model, as determined 
by Dechow, to determine the possibility of manipulation on financial reports and found that the F-Score is an indicator 
of the risk of fraud, but not a direct signal that there is no fraud. Glancy & Yadav (2011) proposed fraud detection 
computational models / CFDM to detect fraud in financial reporting. CFDM uses a quantitative approach on textual 
data. 
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In its development, data mining can be used to detect financial fraud of companies. According to Turban, Aronson 
& Liang (2005), data mining is a semi-automatic process that uses statistical techniques, mathematics, artificial 
intelligence, and machine learning to extract and identify potential knowledge and useful information stored in a large 
database. There are several definitions of data mining.  

3. Research Methodology 

3.1 Data 

This research data was company’s fraud financial statements issued by the Capital Market Supervisory Agency or 
Services Authority Finance (FSA) in the period of 2001-2014. For comparison, the financial data of companies that 
committed no fraud of the period of the year and of the same industries was used. 

3.2 Beneish M-Score 

Beneish M-Score is a method that can be used to detect companies with a tendency to commit fraud on their 
financial statements (Beneish, 2012). Empirically, companies with higher M-Score have higher tendency to commit 
fraud. Beneish M-Score is a probabilistic model, so that one of the limitations is that the ability to detect fraud is not 
with 100% accuracy. The formula of Beneish M-Score is as follows: 
 
M = -4.840 + 0,920XDSRI + 0,528XGMI + 0,0404XAQI + 0,892XSGI + 0,115XDEPI-0,172XSGAI + 4,679X \ 
TATA- 0,327XLVGI 
 
If the M-score> -2.22, it shows indications of financial fraud within companies. 

3.3 Data Mining 

Beneish Model M-Score is used for data mining of fraud-committed companies. According to Turban et al. (2005), 
data mining is the semi-automatic process that uses statistical techniques, mathematics, artificial intelligence, and 
machine learning to extract and identify potential knowledge and useful information stored in a large database. Data 
mining technique used in this research is Logit Regression. Data mining begins with testing the Principle Component 
Analysis (PCA) to variable of Beneish M-Score model. PCA is used to determine what variables of M-Score Beneish 
model that is predictive of financial fraud. The Logit Regression model of this study are: 
 
FRAUD = β0 + β1DSRI + β2GMI + β3AQI + β4SGI + β5DEPI + β6SGAI + β7TATA + β8LVGI + εi 
 
Where:  
FRAUD=  Dummy Variable (1 for fraud-committed companies and 0 for non-fraud-committed companies)  
DSRI =  Sales Index 
GMI =  Gross Margin Index 
AQI =  Asset Quality Index 
SGI =  Sales Growth Index 
DEPI =  Depreciation Index 
SGAI =  Sales and General Administration Expenses Index 
TATA =  Total Accrual 
LVGI =  Leverage Index 
εi =  Residual  
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4. Research Result 

This research data was company’s fraud financial statements issued by the Capital Market Supervisory Agency or 
Services Authority Finance (FSA) in the period of 2001-2014. After tabulation, we obtained 35 companies that 
committed fraud. For comparison, 35 companies that did not commit fraud were selected based on the equality of 
assets and same category of industry. Table 1 below is descriptive statistics of the Beneish M-Score. 
 

Tabel 1. Descriptive Statistics 

Variable 

Minimum Maximum Mean Std. Deviation 

Fraud Non Fraud Fraud Non Fraud Fraud Non Fraud Fraud Non Fraud 

DSRI .000 .103 15.845 3.036 1.367 1.111 2.576 .470 

GMI -81.180 -18.928 48.335 26.811 .601 .902 16.349 6.517 

AQI .057 .027 14.432 4.478 1.533 1.035 2.445 .819 

SGI .320 .515 4.286 11.431 1.249 1.379 .722 1.771 

DEPI -728.537 .002 1.732 1.434 -21.281 .923 123.117 .232 

SGAI .158 .079 5.570 1.595 1.071 1.070 .834 .287 

LVGI .317 .100 12.737 1242.494 1.376 36.453 2.004 209.854 

TATA -4.363 -.975 .544 .568 -.365 .003 1.018 .270 

TOTAL 0.008 -21.360 270.288 465.848 10.660 12.313 45.871 79.066 

 
 

Table 1 shows that DSRI value for companies committing fraud had the lowest value of 0.000, the highest of 
15.845, and the average value of 1.367, and a standard deviation of 2.576. While the non-fraud companies had a lowest 
value of 0.103, the highest of 3.036, the average value of 1.111 with a standard deviation of 0.470. 

Table 1 also shows that GMI value for companies committing fraud had the lowest value of -81.180, the highest 
of 48.335, the average value of 0.601, and a standard deviation of 16.349. While the non-fraud companies had the 
lowest value of -18.928, the highest of 26.811, the average of 0.902 with a standard deviation of 6.517. 

The test results also showed that DEPI for companies committing fraud had the lowest value of -728.537, the 
highest of 1.732, the average of -21.281, and a standard deviation of 123.117. While the non-fraud companies had a 
lowest value low of 0.002, the highest of 1.434, the average value of 0.923, and a standard deviation of 0.232. 

The next step was to test the Principle Component Analysis (PCA) to variables of Beneish M-Score model. Based 
on the Principle Component Analysis (attachment 1), the SGI component was not used for explanatory factor because 
it had a negative value, so the variables on Beneish M-Score Model used to detect fraud were DSRI (Sales Index), 
GMI (Gross Margin Index), AQI (Asset Quality Index), DEPI (Depreciation Index), SGAI (Sales and General 
Administration Expenses Index), TATA (Total Accrual), and LVGI (Leverage Index). 

In assessing the suitability of this research model, we used the statistic value of Chi-Square  Homer and Lemeshow 
Goodness of Fit. Based on logistic regression test, as in Table 3, the value of Chi-Square Hosmer and Lemeshow 
Goodness of Fit was 5.459 with a significance value of 0.708 (sig> 0.05), this means that the model developed fit the 
data used in this study. Therefore, it can be said that the binary models in this study is acceptable and feasible to be 
used on further analysis. 

Test on the overall model (overall model fit) is determined based on the value of -2 Log Likehood. Based on tests 
carried out, the initial value of -2 Log Likehood (Block Number: 0) was 97.041, while the final value of -2 Log 
Lihehood (Block Number: 1) was 60.193. These tests showed a decrease in the value of Log Likehood as much as to 
36.848, therefore it can be stated that these figures illustrate the suitability of the model used in this study. Nagelkerke 
R Square value was 0.546. It shows that the variability of the fraud data can be explained by the independent 
variable by 54.6%, while the rest was explained by other variables not used in this study. 
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Table 2. Logistic Regression Test Results 

Variable Coefficients Wald Sig.  

DSRI 0,614 1,945 0,163  

GMI 0,984 4,141 0,042 * 

AQI 0,830 2,521 0,112  

DEPI -1,254 3,266 0,071 ** 

SGAI -3,420 5,333 0,021 * 

LVGI -0,029 1,716 0,190  

TATA -2,592 5,582 0,075 ** 

Constant  1,356 1,278   

Chi-Square (Hosmer and Lemeshow Test) 5,459 0,708  

-2 Likelihood (Block Number: 0) 97,041   

-2 Likelihood (Block Number: 1) 60,193   

Omnibus Test of Model Coefficients 36,848 0,000  

Nagelkerke R Square 0,546   

Overall Percentage 78,6%   

 

Where: 

* : Significant level 5%  

** : Significant level 10% 

 
The data used in the study were 35 companies that committed fraud and 35 non-fraud companies. Based on data 

mining test using regression logistic, classification accuracy to detect fraud was 77.1% (27 of 35 companies that 
committed fraud). From the 35 non-fraud companies, as many as 28 (80%) were accurately classified as not 
committing fraud. However, the interesting finding in this study is that from the 35 companies categorized as non-
fraud, it turned out that 7 of them were then classified as committing fraud. 

Table 2 shows that GMI (Gross Margin Index), DEPI (Depreciation Index), SGAI (Sales and General 
Administration Expenses Index) and TATA (Total Accrual) influence the detection of financial fraud. This shows that 
the GMI, DEPI, SGAI, and TATA can be used to detect financial fraud. DSRI (Sales Index), AQI (Asset Quality 
Index), and LVGI (Leverage Index) statistically have no significant effect on the detection of financial fraud. This 
shows that DSRI, AQI, and LVGI are not able to detect financial fraud. 

5. Conclusion  

From the discussion, Beneish M-Score model can be used to detect financial fraud. The better the prospects of the 
company, the better it can be used to detect financial fraud. On the other hand, depreciation, cost of sales, and 
discretionary accrual on accounting policy may reduce the ability to detect financial fraud. Indication of recognition 
on increasing revenue and profit, suspension on cost of the asset, as well as the amount of debt to creditors cannot be 
used for detecting financial fraud. 
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