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a b s t r a c t

We construct a direct natural bijection between descending
plane partitions without any special part and permutations. The
directness is in the sense that the bijection avoids any reference
to nonintersecting lattice paths. The advantage of the bijection
is that it provides an interpretation for the seemingly long
list of conditions needed to define descending plane partitions.
Unfortunately, the bijection does not relate the number of parts of
the descending plane partition with the number of inversions of
the permutation as one might have expected from the conjecture
ofMills, Robbins andRumsey, although there is a simple expression
for the number of inversions of a permutation in terms of the
corresponding descending plane partition.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Descending plane partitions were introduced by George Andrews in order to prove the weak
Macdonald conjecture [1] and are counted by the ASM numbers. When they were initially introduced
by Andrews, the general sense was that these objects were extremely artificial and designed to
specifically solve the conjecture.1

Descending plane partitions were later found to have remarkable connections to alternating
sign matrices by Mills, Robbins and Rumsey in their proof of the Macdonald conjecture [6] which
they refined further in many ways in a series of conjectures in [7]. Subsequently, they were also
related to other structures in combinatorics. Many kinds of plane partitions are in natural bijection
with classes of nonintersecting lattice paths [2] and Lalonde [5] has shown, in particular, that the
antiautomorphism τ of descending plane partitions defined in [7] has a natural interpretation as
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Gessel–Viennot path duality. Krattenthaler [4] has proved a bijection between descending plane
partitions and rhombus tilings of a hexagon from which an equilateral triangle has been removed
from the center.
We will prove that the number of descending plane partitions with no special part is the same

as the number of permutations by constructing an explicit and very natural bijection between the
two objects. Unfortunately this bijection does not naturally relate permutations with p inversions to
descending plane partitions with p total parts. We hope that a generalization of these ideas will lead
to a bijection between descending plane partitions and alternating sign matrices.
The outline of the rest of the article is as follows. We begin with the notations and relevant known

results in Section 2. We will need a result about descending plane partitions with one row, which we
describe in Section 3 and proceed to the proof of the bijection in Section 4. We shall give details of the
other (known) bijection through lattice paths and some other remarks in Section 5.

2. Definitions

We begin with a series of definitions and known results about the objects considered here. This
section is present mostly to set the notation and experts should feel free to skip it.

Definition 1. A descending plane partition (DPP) is an array a = (aij) of positive integers defined for
j ≥ i ≥ 1 that is written in the form

a11 a12 · · · · · · · · · · · · a1,µ1
a22 · · · · · · · · · a2,µ2

· · · · · · · · ·

arr · · · ar,µr

(2.1)

where,

(1) µ1 ≥ · · · ≥ µr ,
(2) ai,j ≥ ai,j+1 and ai,j > ai+1,j whenever both sides are defined,
(3) ai,i > µi − i+ 1 for i ≤ i ≤ r ,
(4) ai,i ≤ µi−1 − i+ 2 for 1 < i ≤ r .

The second condition in the above definition means that terms are weakly decreasing along rows
and strictly decreasing along columns. The third condition simply means that the diagonal entry is
strictly greater than the number of entries in its row, and the fourth condition, that it is at most the
number of entries in the row above it. Note that the last two conditions ensure that the diagonal
entries are always greater than one.

Definition 2. A descending plane partition of order n is a descending plane partition all of whose
entries are less than or equal to n.

Theorem 1 (Andrews, 1979, [1]). The number of descending plane partitions of order n, D(n) is given by

D(n) =
n−1∏
k=0

(3k+ 1)!
(n+ k)!

. (2.2)

We now go on to discuss refined enumeration of DPPs.

Definition 3. An entry ai,j of the descending plane partition a is called a special part if aij ≤ j− i.

This implies that diagonal elements can never be special parts. We have now all definitions needed
for DPPs. We go on to define ASMs and their refinements. Another important statistic for us will be
the r(a), the number of rows of the DPP a.
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Definition 4. A permutation π of the letters {1, . . . , n} has an ascent at position kwith 1 ≤ k < n, if
πk < πk+1.

The number of permutations on n letters with k ascents is the Eulerian number E(n, k) [3], which
satisfies the recurrence

E(n, k) = (k+ 1)E(n− 1, k)+ (n− k)E(n− 1, k− 1),

for n ≥ 0, 0 ≤ k ≤ nwith the initial condition E(0, k) = δk,0.

Definition 5. The non-inversion number I(π) of a permutation π on n letters is the number of pairs of
elements i, j such that i < j and πi < πj.

The non-inversion number is the number of elementary transpositions to convert a given
permutation π to the totally descending permutation n(n − 1) . . . 21, as opposed to 12 . . . n, hence
the name. There is an obvious involution on permutations which turns inversion numbers into non-
inversion numbers.

Theorem 2. There is a natural one-to-one correspondence between descending plane partitions of order
n with k rows and no special part, and permutations of size n with k ascents.

Remark 1. In Theorem 2, k varies from 0 to n − 1. The empty DPP, a = φ counts as a permutation
with zero rows, and vacuously, with no special part. There is also exactly one permutation with zero
ascents, namely π = n(n− 1) · · · 21.

This immediately leads to the refined count of DPPs.

Corollary 3. The number of descending plane partitions of order n with k rows and no special parts is
given by the Eulerian number E(n, k).

3. Descending plane partitions with one row

Before we can prove the main theorem, however, we need a simpler result. We fix notation for
future use.We denote a DPP by a = (ai,j) and the ith row of the DPP byα(i). Wewill also use a different
notation for permutations suited for the interest. We will denote a permutation with k ascents by
β(1) · · ·β(k+1), where each β(i) is decreasing. When k = 1, we will denote the permutation as βγ to
avoid unnecessary clutter of indices. We will also use ai and bi to denote pure numbers.

Lemma 4. There is a natural one-to-one correspondence between descending plane partitions of order n
with one row a = (a1, . . . , am) and permutations of size n with a single ascent βγ .

Proof. We first associate a permutationwith a single ascent to a DPPwith a single row. From the basic
definitions of the DPP, we know that

n ≥ a1 ≥ a2 ≥ · · · ≥ am.

Since the DPP has no special parts, we know that ak ≥ k for 1 ≤ k ≤ m. But we also know that a1 > m
from the third condition in the definition, which is stronger than the previous condition for k = 1.
From the DPP, we construct

γ = (a1, a2 − 1, . . . , am − (m− 1)).

From the weak decreasing condition above, we clearly see that

n ≥ γ1 > · · · > γm.

From the no special part condition, γk ≥ 1 for all k. Therefore, γ is a strictly decreasing sequence of
elements belonging to [n]. We then define β = [n] \ γ also sorted in decreasing order. From this,
we obtain the required permutation by writing it as βγ . Notice that the single ascent occurs at the
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junction of β and γ because γ containsm elements, at least one of which is greater thanm, forcing at
least one element not in γ less thanm. Finally, since themaximum value of a1 is n, the third condition
in Definition 1 forcesm < n and β is therefore necessarily nonempty.
The inverse procedure is quite clear. A permutation with a single ascent can be clearly uniquely

decomposed into two nonempty descending lists β and γ such that the first element of γ is greater
than the last element of β . We obtain the required DPP a = (γ1, γ2 + 1, . . . , γm + (m − 1)). This
satisfies the weak decrease condition since the elements of γ are strictly decreasing. Since γk ≥ 1,
we clearly have ak ≥ k. Lastly, notice that γ1 has to be strictly greater thanm, because if not, then we
are forced to have γ2 = m− 1, . . . , γm = 1, but this would mean that the last element of β ism+ 1
violating the condition of a single ascent. The list a thus yields a DPP with one row and no special
part. �

We can use this to calculate the non-inversion number for such permutations.

Corollary 5. If a permutation π is in bijection with a descending plane partition a = (a1, . . . , am) with
one row and no special part, then

I(π) =
m∑
i=1

ai −m2. (3.1)

Proof. We use the same notation as the proof of Lemma 4. I(π) is simply the total number of
elementary transpositions taken by the elements in γ to return to their original position in the
completely descending permutation. We start from the rightmost entry in γ . Clearly γm will take
γm − 1 steps, γm−1 will take γm−1 − 2 steps and so on. Thus

I(π) = (am − (m− 1)− 1)+ (am−1 − (m− 2)− 2)+ · · · + (a1 −m)

=

m∑
i=1

(ai −m), (3.2)

which gives the desired result. �

Notice that γ and therefore I(π) is determined independently of the order of the DPP. For example,
suppose the DPP is a = (6, 4, 3). Then γ = (6, 3, 1), and we obtain the permutation 7542631 if
n = 7 and 987542631 if n = 9. In both cases, the non-inversion number for the permutation is four,
whereas a has three total parts. We will need some properties of the bijection in Lemma 4 for proving
Theorem 2.

Lemma 6. Using the same notation as Lemma 4 and assuming a has length m, the following hold:

(1) βn−m = 1 occurs if and only if am > m. Assuming 1 < p < n,

βn−m = p⇔ ∀i > m− p+ 1, ai = m and am−p+1 > m.

(2) β1 = n occurs if and only if a1 < n. Assuming 0 < p < m,

β1 = n− p⇔ ∀i ≤ p, ai = n and ap+1 < n.

Lastly, β1 = n−m if and only if a1 = · · · = am = n.

Proof. (1) βn−m = p iff the letters 1, . . . , p − 1 belong to γ , and since γ is arranged in descending
order,

am − (m− 1) = 1, . . . , am−(p−2) − (m− (p− 1)) = p− 1,

and furthermore am−(p−1) − (m − p) > p, which is precisely the condition stated, when p > 1.
Notice that p cannot take the value n because that would violate the single ascent condition. In
case p = 1, we can either have am − (m − 1) > 1 or m = 1. The latter works because, if m = 1,
a1 > 1 in order for the permutation to have a single ascent.
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(2) β1 = n−p iff the letters n−p+1, . . . , n belong to γ and since γ is arranged in descending order,

a1 = n, a2 − 1 = n− 1, . . . , ap − (p− 1) = n− (p− 1),

and the reason n − p does not belong to β is that either m = p or m > p and ap+1 − p < n − p.
This is again exactly the condition stated, when p > 0. If p = 0, n does not belong to γ and thus
a1 < n.

4. The main result

Wewill construct the bijection inductively on the number of rows in the DPP. Before that, wemake
some remarks on the properties of DPPs, which follow fromDefinition 1 andwill need a lemmawhich
will be the workhorse of the proof.

Remark 2. (1) Any row of a DPP is, by itself, also a valid DPP. Moreover, a row which is part of a DPP
with no special part is also a DPP with no special part. The latter follows from the shifted position
of successive rows.

(2) Removing the last row from a DPP yields another valid DPP. Obviously, if the original DPP had no
special part, neither will the new one.

Lemma 7. Given a set S of positive integers of cardinality n, there exists a natural bijection between the
DPPs, a, with one row and no special part whose length m satisfies m < n and a1 ≤ n, and sequences of
all the elements of S with one ascent.

Proof. Wedefine amapφ from the set S to [n]which takes the smallest element to 1, the next smallest
to 2 and so on until it takes the largest element to n. Clearly, φ is invertible. Using Lemma 4 therefore,
we obtain a bijection between DPPs of one row and order n and no special part, and the sequence of
elements of S with a single ascent. Since the DPP has order n, we have a1 ≤ n and therefore, the length
of a is strictly less than n. �

For example, suppose S = {11, 10, 6, 3, 2} and a = (4, 3, 3). The bijection from Lemma 4 yields
the permutation on n = 5 letters, 53421, which using the map φ gives the sequence 11, 6, 10, 3, 2.
Before we go on to the proof, we take an example to illustrate the idea. Consider the DPP with no

special part

7 7 6 5 5
4 4 4
3 2

(4.1)

of order n = 9, say. Then we start with the permutation 987654321. We will now alter it by
considering the DPP rowwise. In each row, we mark two vertical lines to separate β and γ using the
notation in Lemma 4. The rightmost is γ and the one in themiddle isβ . The leftmost part is completely
untouched.

77655 → 98|53|76421
444 → 9853|71|642
32 → 985371|4|62

(4.2)

and we end up with the permutation 985371462, which has exactly three ascents. In lines two and
three, we have used Lemma 7 for the rightmost part in the previous line.

Proof of Theorem 2. We will use induction on k, the number of rows of the DPP. The case k = 1 of
the induction is precisely Lemma 4. We now assume we have constructed, in a one-to-one way, a
permutation with k− 1 ascents from a DPP awith k− 1 rows,

α(1), . . . , α(k−1).

Write the permutation with k− 1 ascents as

β(1) · · ·β(k),
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where each β(j) is descending and write the kth row of the DPP as α(k). Assume that the k− 1th row
of the DPP has length mk−1. That is, the terms are from ak−1,k−1 to ak−1,k+mk−1−2. Similarly, α

(k) has
lengthmk,mk ≤ mk−1 − 1 from Definition 1 comprising of terms ak,k to ak,k+mk−1.
The idea is to perform the operation on β(k) and create another ascent within it of lengthmk from

the right, while preserving the ascent from β(k−1), which we describe now. Let S be the set of numbers
in β(k), which has cardinalitymk−1. α(k) is a DPPwith one row, no special part, of length less thanmk−1
and whose first element ak,k satisfies ak,k ≤ mk−1. Therefore we are in a position to use Lemma 7 and
obtain a sequence of the elements of S with a single ascent, which we call γ (k) and γ (k+1). The length
of γ (k+1) is clearly mk. We claim that this procedure is invertible and by repeated application yields
the desired permutation with k ascents. What follows is a check of these claims.
It remains to show that γ (k)1 is larger than the last entry in β(k−1). Suppose this last entry is

p ∈ [n − 1]. If p = 1, we are done. If not, let p ∈ {2, . . . , n − 1}. Since the rule for creating an
ascent is the same as that of creating the first one, we can use properties of the bijection for a single
row. We will need them for the row α(k−1). From Lemma 6(1), this implies that

ak−1,k+mk−1−2 = · · · = ak−1,k+mk−1−p = mk−1

and ak−1,mk−1−p+1 ≥ mk−1 + 1, and moreover that the last p− 1 letters of β
(k) are p− 1, . . . , 1. Thus

ak−1,k−1 ≥ · · · ≥ ak−1,k+mk−1−p−1 ≥ mk−1 + 1.

Notice that the firstmk−1− (p− 1) letters of β(k) are greater than p. For it to happen that γ
(k)
1 < p,

γ
(k)
1 must be one of the last p−1 letters of β(k). This implies that the action of α(k) forces all the letters
larger than γ (k)1 into γ (k+1), which can only happen if ak,k = · · · = ak,k+mk−1−p = mk−1. But this
would imply ak,k+mk−1−p = ak−1,k+mk−1−p, which violates condition (2) in Definition 1. Therefore the
first entry of γ (k) is greater than the last entry of β(k−1). We have thus shown that each DPP with no
special entries and with k rows gives rise to a permutation with k ascents.
For the reverse process, one has to read the permutationwith k ascents from the right by looking at

the part immediately after the k−1th ascent. Using Lemma 7, one obtains the kth row of the DPPwith
no special parts. One then is left with a permutation with k− 1 ascents and one goes on recursively.
Everything except the columnwise descent is clearly ensured by this procedure. Essentially this

occurs because of the condition that creation of a new ascent should not kill off an earlier ascent. We
now describe the columnwise descent in some detail. We use the usual notation for the permutation
with k ascents, we denote the lengths of β(k−1), β(k) and β(k+1) being mk−2 − mk−1, mk−1 − mk and
mk respectively so that the last three rows for the DPP, denoted α(k−2), α(k−1) and α(k) have lengths
mk−2,mk−1 andmk in accord with the convention used before.
We will now analyze the structure of α(k) and α(k−1). In particular, we will denote the maps used

in Lemma 7 as φ and φ′ respectively.
We then use the modified form of Lemma 6(1) to note that β(k−1)mk−2−mk−1 = p implies

ak−1,k+mk−1−2 = · · · = ak−1,k+mk−1−φ′(p) = mk−1,

and ak−1,k+mk−1−φ′(p)−1 ≥ mk−1 + 1. This is clear because the only change in using Lemma 6 directly
is that relative positions are now specified using the map φ′. Similarly, β(k)1 = r implies using the
modified form of Lemma 6(2), this time with map φ,

ak,k = · · · = ak,k+mk−1−φ(r)−1 = mk−1,

and eithermk−1−mk = r or ak,k+mk−1−φ(r) < mk−1− 1. The ascent of the permutation implies r > p.
This in turn implies φ(r) ≥ φ′(p) because it is possible that there are no elements between r and p. A
violation of the descent condition of the DPP would entail the overlapping of the parts of the k− 1th
and kth rows of a which equal mk−1. This means k + mk−1 − φ′(p) ≤ k + mk−1 − φ(r) − 1 which
implies that φ(r) ≤ φ′(p)−1. But this is a contradiction. Therefore a permutationwith k ascents gives
rise to a DPP with k rows.
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We can also extend the result of Corollary 5 to calculate the non-inversion number for a
permutation with k ascents.

Corollary 8. If a permutation π has k ascents, then the non-inversion number is given by the
corresponding descending plane partition a with k rows of sizes m1, . . . ,mk as

I(π) =
k∑
i=1

mi+i−1∑
j=i

ai,j −
k∑
i=1

m2i . (4.3)

Proof. Since the ith row of a has lengthmi, the entries are written as ai,i, . . . , ai,mi+i−1.
Each successive row of the DPP is going to create more non-inversions because one shifts

successively larger numbers to the right. Moreover, the action of each row is the same independent
of the previous rows. Therefore, one obtains the same answer for each row as in Corollary 5. Thus, the
required answer is the sum for all rows. �

5. Remarks

We should also mention that the existence of such a bijection is part of folklore and perhaps
known to many experts, although this does not seem to have been noted explicitly anywhere. We
conjecture that combining the bijection proposed by Gessel and Viennot [2] between permutations
and nonintersecting lattice paths with Lalonde’s bijection [5] between these paths and descending
plane partitions, one can obtain an equivalent description of the bijection proved in this article.
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