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Abstract

Past e�orts to classify impartial three-player combinatorial games (the theories of Li (Internat.
J. Game Theory 7 (1978) 31–36) and Stra�n (College J. Math. 16 (1985) 386–394)) have made
various restrictive assumptions about the rationality of one’s opponents and the formation and
behavior of coalitions. One may instead adopt an agnostic attitude towards such issues, and seek
only to understand in what circumstances one player has a winning strategy against the combined
forces of the other two. By limiting ourselves to this more modest theoretical objective, and by
regarding two games as being equivalent if they are interchangeable in all disjunctive sums as
far as single-player winnability is concerned, we can obtain an interesting analogue of Grundy
values for three-player impartial games. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Game; Multi-player; Coalition; Nim; Disjunctive sum

0. Introduction

Let us begin with a very speci�c problem: Assume G is an impartial (positional)
game played by three people who alternate moves in cyclic fashion (Natalie, Oliver,
Percival, Natalie, Oliver, Percival; : : :), under the convention that the player who makes
the last move wins. Let H be another such game. Suppose that the second player,
Oliver, has a winning strategy for G. Suppose also that Oliver has a winning strategy
for H . Is it possible for Oliver to have a winning strategy for the disjunctive sum
G + H as well?
Recall that an impartial positional game is speci�ed by (i) an initial position,

(ii) the set of all positions that can arise during play, and (iii) the set of all le-
gal moves from one position to another. The winner is the last player to make a
move. To avoid the possibility of a game going on forever, we require that from
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no position may there be an in�nite chain of legal moves. The disjunctive sum of
two such games G;H is the game in which a legal move consists of making a
move in G (leaving H alone) or making a move in H (leaving G alone). Read-
ers unfamiliar with the theory of two-player impartial games should consult [1]
or [2].
It is important to notice that in a three-player game, it is possible that none of the

players has a winning strategy. The simplest example is the Nim game that starts from
the position 1+2, where 1 and 2 denote Nim-heaps of size one and two, respectively.
As usual, a legal move consists of taking a number of counters from a single heap. In
this example, the �rst player has no winning move, but his actions determine whether
the second or third player will win the game. None of the players has a winning
strategy. That is, any two players can cooperate to prevent the remaining player from
winning. It is in a player’s interest to join such a coalition of size two if he can count
on his partner to share the prize with him – unless the third player counters by o�ering
an even bigger share of the prize. This kind of situation is well known in the theory of
“economic” (as opposed to positional) games. In such games, however, play is usually
simultaneous rather than sequential.
Li [3] has worked out a theory of multi-player positional games by decreeing that

a player’s winnings depend on how recently he has moved when the game ends (the
last player to move wins the most, the player who moved before him wins the next
most, and so on), and by assuming that each player will play rationally so as to get
the highest winnings possible. Li’s theory, when applied to games like Nim, leads to
quite pretty results, and this is perhaps su�cient justi�cation for it; but it is worth
pointing out that, to the extent that game theory is supposed to be applicable to the
actual playing of games, it is a bit odd to assume that one’s adversaries are going to
play perfectly. Indeed, the only kind of adversaries a sensible person would play with,
at least when money is involved, are those who do not know the winning strategy.
Only in the case of two-player games is it the case that a player has a winning strategy
against an arbitrary adversary if and only if he has a winning strategy against a perfectly
rational adversary.
Stra�n [4] has his own approach to three-player games. He adopts a policy (“Mc-

Carthy’s revenge rule”) governing how a player should act in a situation where he
himself cannot win but where he can choose which of his opponents will win. Stra�n
analyzes Nim under such a revenge rule, and his results are satisfying if taken on their
own terms, but the approach is open to the same practical objections as Li’s. Specif-
ically, if a player’s winning strategy depends on the assumption that his adversaries
will be able to recognize when they can’t win, then the player’s strategy is guaranteed
to work only when his opponents can see all the way to the leaves of the game tree.
In this case, at least one of them (and perhaps each of them) believes he cannot win;
so why is he playing?
The proper response to such objections, from the point of view of someone who

wishes to understand real-world games, is that theories like Li’s and Stra�n’s are
prototypes of more sophisticated theories, not yet developed, that take into account the
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fact that players of real-life games are partly rational and partly emotional creatures,
capable of such things as stupidity and duplicity.
It would be good to have a framework into which the theories of Li and Stra�n,

along with three-player game-theories of the future, can be �tted. This neutral frame-
work would make no special assumptions about how the players behave. Here, we
develop such a theory. It is a theory designed to answer the single question “Can I
win?”, asked by a single player playing against two adversaries of unknown charac-
teristics. Not surprisingly, the typical answer given by the theory is “No”; in most
positions, any two players can gang up on the third. But it turns out that there is
a great deal to be said about those games in which one of the players does have a
winning strategy.
In addition to the coarse classi�cation of three-player games according to who (if

anyone) has the winning strategy, one can also carry out a �ne classi�cation of
games analogous to, but much messier than, the classi�cation of two-player games
according to Grundy-value. The beginnings of such a classi�cation permit one to
answer the riddle with which this article opened; the later stages lead to many in-
teresting complications which have so far resisted all attempts at comprehensive
analysis.

1. Notation and preliminaries

Games will be denoted by the capital letters G, H , X , and Y . As in the two-player
theory, we can assume that every position carries along with it the rules of play to be
applied, so that each game may be identi�ed with its initial position. The game G′ is
an option of G if it is legal to move from G to G′. To build up all the �nite games, we
start from the null-game 0 (the unique game with no options) and recursively de�ne
G= {G′

1; G
′
2; : : :} as the game with options G′

1; G
′
2; : : : . The game {0} will be denoted

by 1, the game {0; 1} will be denoted by 2, and so on. (It should always be clear from
context whether a given numeral denotes a number or a Nim game.)
We recursively de�ne the relation of identity by the rule that G and H are identical

if and only if for every option G′ of G there exists an option H ′ of H identical to
it, and vice versa. We de�ne (disjunctive) addition, represented by +, by the rule that
G + H is the game whose options are precisely the games of the form G′ + H and
G + H ′. It is easy to show that identity is an equivalence relation that respects the
“bracketing” and addition operations, that addition is associative and commutative, and
that 0 is an additive identity.
The following abbreviations will prove convenient:

GH means G + H

Gn means G + G + · · ·+ G (n times)

mn means {{· · · {m} · · ·}} (n layers deep)
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Thus, {12}345 denotes
{1 + 2}+ {1 + 2}+ {1 + 2}+ {{{{{4}}}}}:

(We will never need to talk about Nim-heaps of size ¿9, so our juxtaposition con-
vention won’t cause trouble.) Note that for all G, the games G0, G1, G0, and G are
identical.
Relative to any non-initial position in the course of play, one of the players has just

moved (the Previous player) and one is about to move (the Next player); the remaining
player is the Other player. At the start of the game, players Next, Other, and Previous
correspond to the �rst, second, and third players (even though, strictly speaking, there
was no “previous” move). We call G a Next-game (N-game) if there is a winning
strategy for Next, and we let N be the set of N-games; N is the type of G, and G
belongs to N. We de�ne O-games and P-games in a similar way.
If none of the players has a winning strategy, we say that G is a Queer game (Q-

game). In a slight abuse of notation, I will often use “= ” to mean “belongs to”, and
use the letters N;O; P; Q to stand for unknown games belonging to these respective
types. Thus I will write 1=N , 11=O, 111=P, etc.; and the problem posed in the
Introduction can be formulated succinctly as: solve O+O=O or prove that no solution
exists. (At this point I invite the reader to tackle Q + Q=O. There is a simple and
elegant solution.)
The following four rules provide a recursive method for classifying a game:

(1) G is an N-game exactly if it has some P-game as an option.
(2) G is an O-game exactly if all of its options are N-games, and it has at least one

option (this proviso prevents us from mistakenly classifying 0 as an O-game).
(3) G is a P-game exactly if all of its options are O-games.
(4) G is a Q-game exactly if none of the above conditions is satis�ed.
Using these rules, it is possible to analyze a game completely by classifying all the

positions in its game-tree, from leaves to root.

2. Some sample games

Let us �rst establish the types of the simpler Nim games. It is easy to see that

0=P;

1= {0}= {P}=N;
11= {1}= {N}=O;
111= {11}= {O}=P;

and so on; in general, the type of 1n is P, N, or O according as the residue of nmod 3
is 0, 1, or 2. Also

2=N;

3=N;



J. Propp / Theoretical Computer Science 233 (2000) 263–278 267

and so on, because in each case Next can win by taking the whole heap.

12= {1; 2; 11}= {N; N; O}=Q;
112= {11; 12; 111}= {O;Q; P}=N;
1112= {111; 112; 1111}= {P; N; N}=N;
11112= {1111; 1112; 11111}= {N; N; O}=Q;

and so on; in general, the type of 1n2 is N, Q, or N according as the residue of
nmod 3 is 0, 1, or 2. The winning strategy for these N-games is simple: reduce the
game to one of the P-positions 13k .
1+1=11 is a solution of the equation N+N =O. Does G=N imply that G+G=O

in general? We can easily see that the answer is “No”:

2 + 2=22= {12; 2}= {Q;N}=Q:
(12 is identical to 21, so they can be treated as a single option.)
Here are some more calculations which will be useful later.

{2}= {N}=O;
{{2}}= {O}=P;
{1; 11}= {N;O}=Q;
{2; 11}= {N;O}=Q:

3. Adding games

The type of G + H is not in general determined by the types of G and H . (For
example, 1 and 2 are both of type N, but 1+1=O while 2+2=Q.) That is, addition
does not respect the relation “belongs to the same type as”. To remedy this situation
we de�ne equivalence (≡) by the condition that G≡H if and only if for all games X ,
G+X and H +X belong to the same type. It is easy to show that “equivalence” is an
equivalence relation, that it respects bracketing and addition, and that if G′ ≡H ′ then
{G′; H ′; : : :}≡{H ′; : : :} (that is, equivalence options of a game may be con
ated).
We are now in a position to undertake the main task of this section: determin-

ing the addition table. Recall that in the two-player theory, there are only two types
(N and P) and their addition table is as shown in Table 1.
Here, the entry PN denotes the fact that the sum of two N-games can be either a

P-game or an N-game.
The analogous addition table for three-player games is given by Table 2.
Notice that in one particular case (namely G=P and H =Q, or vice versa), knowing

the types of G and H does tell one which type G+H belongs to, namely Q. A corollary
of this is that P + P + · · ·+ P + Q=Q.
To prove that Table 1 applies, one simply �nds solutions of the allowed “equations”

P+ P=P, P+N =N (from which N + P=N follows), N +N =P, and N +N =N ,
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Table 1
The two-player addition table

+ P N

P P N
N N PN

Table 2
The three-player addition table

+ P N O Q

P PQ NQ OQ Q
N NQ NOQ PNQ NQ
O OQ PNQ NQ NOQ
Q Q NQ NOQ OQ

Table 3
Some sums

Equation Solution Equation Solution

P + P=P 0 + 0 P + P=Q {{2}} + {{2}}
N + P=N 1 + 0 N + P=Q 1111 + {{2}}
N + N =O 1 + 1 O + P=Q {2} + 111
O + P=O 11 + 0 O + N =Q 1 + {2}
O + N =P 11 + 1 O + O=Q {2} + {2}
O + O=N 11 + 11 N + N =N 112 + 1
Q + P=Q 12 + 0 N + O=N 2 + 11
Q + N =Q 12 + 2 Q + N =N 12 + 1
Q + O=Q 22 + 11 Q + O=N 12 + 11
Q + Q=Q 12 + 12 Q + O=O {2; 11} + 11
N + N =Q 2 + 2 Q + Q=O {1; 11} + {1; 11}

and proves that the forbidden equations P + P=N and P + N =P have no solutions.
To demonstrate the validity of Table 2, we must �nd solutions to 22 such equations,
and prove that the remaining 18 have no solutions.
Table 3 shows the 22 satis�able equations and their solutions.
And now, the proofs of impossibility for the 18 impossible cases.

Claim 1. None of the following is possible:

O + P=N; (1)

N + P=P; (2)

O + O=P; (3)

P + P=O; (4)

O + N =O: (5)



J. Propp / Theoretical Computer Science 233 (2000) 263–278 269

Proof. By (joint) in�nite descent. Here, as in subsequent proofs, the in�nite-descent
“boilerplating” is omitted.
Note that none of the hypothetical P-games in Eqs. (1)–(4) can be the 0-game, so

all of these games X; Y have options.
Suppose (1) holds; say X =O, Y =P, X + Y =N . Some option X ′ + Y or X + Y ′

must be a P-game. But then we have either N + P=P (every option X ′ must be an
N-game), which is (2), or O + O=P (every option Y ′ must be an O-game), which
is (3).
Suppose (2) holds; say X =N , Y =P, X + Y =P. Then there exists X ′=P, which

must satisfy X ′ + Y =P + P=O (Eq. (4)).
Suppose (3) holds; say X =O, Y =O, X + Y =P. Then there exists Y ′=N , which

must satisfy X + Y ′=O + N =O (Eq. (5)).
Suppose (4) holds; say X =P, Y =P, X + Y =O. Then there exists X ′=O, which

must satisfy X ′ + Y =O + P=N (Eq. (1)).
Finally, suppose (5) holds; say X =O, Y =N , X +Y =O. Then there exists Y ′=P,

which must satisfy X + Y ′=O + P=N (Eq. (1)).

Claim 2. None of the following is possible:

P + P=N; (6)

O + P=P; (7)

N + P=O: (8)

Proof. By in�nite descent. A solution to (6) yields an (earlier-created) solution to (7),
which yields a solution to (8), which yields a solution to (6).

Claim 3. It is impossible that

N + N =P: (9)

Proof. By contradiction. A solution to (9) would yield a solution to (8).

Claim 4. None of the following is possible:

Q + P=N; (10)

Q + P=P; (11)

Q + O=P; (12)

Q + P=O; (13)

Q + N =O: (14)

Proof. By in�nite descent (making use of earlier results as well).
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Suppose (10) holds with X; Y . Some option X ′+Y or X +Y ′ must be a P-game. In
the former event, we have X ′ 6=P (since X =Q), so that either N + P=P (Eq. (2)),
O+ P=P (Eq. (7)), or Q+ P=P (Eq. (11)); in the latter event we have Q+O=P
(Eq. (12)).
Suppose (11) holds with X; Y . Since X =Q, it has an option X ′ of type N or type

Q (for if all options of X were O-games and P-games, X would be of type P or N).
If X ′=N , then we have X ′ + Y =N + P=O (Eq. (8)), and if X ′=Q, then we have
X ′ + Y =Q + P=O (Eq. (13)).
Suppose (12) holds with X; Y . Then X + Y ′=Q + N =O (Eq. (14)).
Suppose (13) holds with X; Y . Since X =Q, it has an option X ′ of type O or of type

Q (for if all options of X were N-games and P-games, X would be of type O or N).
X ′=O yields X ′ + Y =O + P=N (Eq. (1)), and X ′=Q yields X ′ + Y =Q + P=N
(Eq. (10)).
Finally, suppose (14) holds with X; Y . Then there exists Y ′=P, which must satisfy

X + Y ′=Q + P=N (Eq. (10)).

Claim 5. It is impossible that

Q + N =P: (15)

Proof. By contradiction. A solution to (15) would yield a solution to (13).

Claim 6. Neither of the following is possible:

Q + Q=N; (16)

Q + Q=P: (17)

Proof. By in�nite descent.
Suppose (16) holds with X; Y . Then some option of X + Y must be a P-game;

without loss of generality, we assume X + Y ′=P. But X =Q, and we have already
ruled out Q + P=P (Eq. (11)), Q + N =P (Eq. (5)), and Q + O=P (Eq. (12)), so
we have X + Y ′=Q + Q=P (Eq. (17)).
Suppose (17) holds with X; Y . X must have an N-option or Q-option X ′, but if

X ′=N then X ′+Y =N+Q=O (Eq. (14)), which can’t happen; so X ′=Q. Similarly,
Y has a Q-option Y ′. X ′ + Y =O, so X ′ + Y ′=Q + Q=N (Eq. (16)).
(Note that the second half of this proof requires us to look two moves ahead, rather

than just one move ahead as in the preceding proofs.)

The remaining case is surprisingly hard to dispose of; the proof requires us to look
�ve moves ahead.

Claim 7. It is impossible that

O + O=O: (18)
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Proof. By in�nite descent. Suppose (18) holds with X; Y . For all X ′ we have X ′ +
Y =N , so that X ′ + Y must have some P-option; but this P-option cannot be of the
form X ′ + Y ′, since N +N 6=P (Eq. (9)). Hence there must exist an option X ′′ of X ′

such that X ′′ + Y =P. This implies that X ′′=N , since none of the cases O + O=P
(Eq. (3)), P + O=P (Eq. (7)), Q + O=P (Eq. (12)) can occur. Similarly, every
Y ′ has an option Y ′′ such that X + Y ′′=P, Y ′′=N . Since X ′′ + Y is a P-game,
X ′′+Y ′ and X ′+Y ′′ are O-games and X ′′+Y ′′ is an N-game. One of the options of
X ′′+Y ′′ must be a P-game; without loss of generality, say X ′′′+Y ′′=P. Since Y ′′=N
and since none of the cases N + N =P (Eq. (9)), P + N =P (Eq. (2)), Q + N =P
(Eq. (15)) can occur, X ′′′ must be an O-game. But recall that X ′′ + Y is a P-game,
so that its option X ′′′ + Y is an O-game. This gives us X ′′′ + Y =O + O=O, which
is an earlier-created solution to (18).

The proof of Claim 7 completes the proof of the validity of Table 2. Observe that
this �nal clinching claim, which answers the article’s opening riddle in the negative,
depends on �ve of the preceding six claims. Our straightforward question thus seems
to lack a straightforward solution. In particular, one would like to know of a winning
strategy for the Natalie-and-Percival coalition in the game G + H that makes use of
Oliver’s winning strategies for G and H . Indeed, it would be desirable to have strategic
ways of understanding all the facts in this section.
At this point it is a good idea to switch to a notation that is more mnemonically

helpful than N , O, and P, vis-�a-vis addition. Let 0, 1, and 2 denote the Nim-positions
0, 1, 11, respectively. Also, let ∞ be the Nim-position 22. (Actually, we’ll want
these symbols to represent the equivalence classes of these respective games, but that
distinction is unimportant right now.) We will say that two games G, H are similar
if they have the same type; in symbols, G∼H . Every game is thus similar to exactly
one of 0, 1, 2, and ∞. We can thus use these four symbols to classify our games by
type; for instance, instead of writing G=N , we can write G∼ 1.
Here is the rule for recursively determining the type of a game in terms of the types

of its options, restated in the new notation
(1) G is of type 1 exactly if it has some option of type 0.
(2) G is of type 2 exactly if all of its options are of type 1, and it has at least one

option.
(3) G is of type 0 exactly if all of its options are of type 2.
(4) G is of type ∞ exactly if none of the above conditions is satis�ed.
Here is the new addition table (Table 4) for 3-player game types; it resembles a

faulty version of the modulo 3 addition table.
It is also worthwhile to present the “subtraction table” (Table 5) as an object of

study in its own right. To this end de�ne 3=111 as an alternative to 0.
The minuend is indicated by the row and the subtrahend by the column. Note

that subtraction is not a true operation on games; rather, the assertion “1 − 2 is
12∞” means that if G;H are games such that G + H ∼ 1 and G∼ 2 then H ∼ 1, 2,
or ∞.
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Table 4
The new, improved three-player addition table

+ 0 1 2 ∞
0 0∞ 1∞ 2∞ ∞
1 1∞ 12∞ 01∞ 1∞
2 2∞ 01∞ 1∞ 12∞
∞ ∞ 1∞ 12∞ 2∞

Table 5
The three-player “subtraction” table

− 0 1 2 ∞
3 3 2 1 none
2 2 1 0∞ 2∞
1 1 All 12∞ 12
∞ All All All All

Table 6
The doubling table

G G + G

0 0∞
1 2∞
2 1∞
∞ 2∞

The six entries in the upper left corner of the subtraction table (the only entries
that are single types) correspond to assertions that can be proved by joint induction
without any reference to earlier tables. In fact, a good alternative way to prove that
addition satis�es Table 4 would be to prove that addition satis�es the properties implied
by the six upper-left entries in Table 5 (by joint induction) and then to prove three
extra claims: (i) if G∼ 2 and H ∼ 2 then G +H 6∼ 2; (ii) if G∼∞ and H ∼∞ then
G + H 6∼ 0, and (iii) if G∼∞ and H ∼∞ then G + H 6∼ 1.

4. Adding games to themselves

Another sort of question related to addition concerns the disjunctive sum of a game
with itself. Recall that in two-player game theory, a strategy-stealing argument can be
used to show that the sum of a game of type N with itself must be of type P (even
though a sum of two distinct games of type N can be of either type P or type N).
We seek a similar understanding of what happens when we add a three-player game

to itself. Table 6 shows the possible types G+G can have in our three-player theory,
given the type of G.
To verify that all the possibilities listed here can occur, one can simply look at

the examples given at the beginning of Section 3. To verify that none of the omitted
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Table 7
The trebling table

G G + G + G

0 0∞
1 0∞
2 0∞
∞ ∞

possibilities can occur, it almost su�ces to consult Table 4. The only possibility that
is not ruled out by the addition table is that there might be a game X with X ∼ 1,
X + X ∼ 1.
Suppose X were such a game. Then X would have to have a P-option X ′

1 (now
we call it a 0-option) along with another option X ′

2 such that X +X
′
2 ∼ 0. This implies

that X ′
1 + X

′
2 ∼ 2 and X ′

2 + X
′
2 ∼ 2. Since X ′

1 ∼ 0, the condition X ′
1 + X

′
2 ∼ 2 implies

(by way of Table 4) that X ′
2 ∼ 2. But X ′

2 + X
′
2 ∼ 2 implies (by way of Table 4) that

X ′
2 ∼ 1 or ∞. This contradiction shows that no such game X exists, and completes the
veri�cation of Table 6.
In the same spirit, we present a trebling table (Table 7), showing the possible types

G + G + G can have given the type of G.
To prove that all the possibilities listed in the �rst three rows can actually occur,

one need only check that 0 + 0 + 0∼ 0, {{2}}+ {{2}}+ {{2}}∼∞, 1 + 1 + 1∼ 0,
2 + 2 + 2∼∞, 11 + 11 + 11∼ 0, and {2} + {2} + {2}∼∞. To prove that the nine
cases not listed cannot occur takes more work.
Four of the cases are eliminated by the observation that G+G+G can never be of

type 1 (the second and third players can always make the Next player lose by using a
copy-cat strategy). Tables 3 and 5 allow one to eliminate three more cases. The next
two claims take care of the �nal two cases.

Claim 8. If G∼∞; then G + G + G 6∼ 2.

Proof. Suppose X ∼∞ with X + X + X ∼ 2. Let X � be an option of X . Since X � +
X +X ∼ 1, X � +X +X must have a 0-option of the form X � +X � +X (for X � some
option of X ) or of the form X �
+X +X (for X �
 some option of X �). In either case,
we �nd that the ∞-game X , when added to some other game (X � + X � or X �
 + X ),
yields a game of type 0; this is impossible, by Table 4.

Claim 9. If G∼ 2; then G + G + G 6∼ 2.

Proof. Suppose X ∼ 2 with X + X + X ∼ 2. Notice that X ′ + X + X ∼ 1 for every
option X ′ of X .
Case I: There exist options X �, X � of X (possibly the same option) for which

X � + X � + X ∼ 0. Then its option X � + (X � + X �)∼ 2. Since X �∼ 1, Table 5 gives
X � + X �∼ 1. But this contradicts Table 6, since X �∼ 1.
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Case II: There do not exist two such options of X . Let X � be an option of X .
Since X � + X + X ∼ 1, and since there exists no X � for which X � + X � + X ∼ 0,
there must exist an option X �
 of X � such that X �
+X +X ∼ 0. X +X ∼ 1 or ∞, by
Table 6, but X +X cannot be of type ∞, since adding X �
 yields a 0-position. Hence
X + X ∼ 1, and Table 5 implies X �
∼ 2. Since X + X ∼ 1, there must exist an option
X � with X �+X ∼ 0. Everything we’ve proved so far about X � applies equally well to
X � (since all we assumed about X � was that it be some option of X ). In particular,
X � must have an option X �� such that X ��∼ 2. However, since X �� + X is an option
of the 0-position X � + X , X �� + X ∼ 2. Hence X �� and X are two 2-positions whose
sum is a 2-position, contradicting Table 4.

5. Nim for three

We wish to classify all Nim-positions as belonging to N, O, P, or Q — or rather,
as we now put it, as being similar to 0, 1, 2, or ∞. We will actually do more, and
determine the equivalence classes of Nim games. Table 8 shows the games we have
classi�ed so far (on the left) and their respective types (on the right).
We will soon see that every Nim-game is equivalent to one of the Nim-games in

Table 8. We call these reduced Nim-positions. The last paragraph of this section gives
a procedure for converting a three-player Nim-position into its reduced form.
Throughout this section (and the rest of this article), the reader should keep in mind

the di�erence between the notations 2 and 2. The former is a single Nim-heap of
size 2; the latter is the game-type that corresponds to a second-player win. Note in
particular that 2 is not of type 2 but rather of type 1.
We start our proof of the validity of Table 8 by showing that no two games in the

table are equivalent to each other. In this we will be assisted by Tables 9 and 10.
Table 9 gives the types for games of the form 1m+2n. Each row of the chart gives

what we shall call the signature of 1m, relative to the sequence 2; {2}; {{2}}; : : : . Since
no two games of the form 1m have the same signature, no two are equivalent.
Similarly, Table 10 is the signature table for games of the form 1m2, relative to 2n.
We see that all the games 1m and 1m2 are distinct.
What about 22? It cannot be equivalent to 13k+12 for any k (even though both are

∞-games), because 22 + 1∼∞ while 13k+12 + 1=13k+22∼ 1.
What about 3? It can’t be equivalent to 13k+1 for any k, because 3 + 1∼∞ while

13k+1 + 1∼ 2; it can’t be equivalent to 13k2 because 3 + 22∼ 1 while 13k2 + 22∼∞;

Table 8
Basic positions of Nim

0 (0)

1; 11; 111; 1111; : : : (1; 2; 0; 1; 2; 0; : : :)
2; 12; 112; 1112; : : : (1;∞; 1; 1;∞; 1; : : :)
3 (1)
22 (∞)
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Table 9
The type of 1m + 2n

m\n 0 1 2 3 4 5 6 7 8 9 10 : : :

0 1 2 0 1 2 0 1 2 0 1 2 : : :
1 ∞ ∞ 1 2 0 1 2 0 1 2 0 : : :
2 1 ∞ ∞ ∞ 1 2 0 1 2 0 1 : : :
3 1 ∞ ∞ ∞ ∞ ∞ 1 2 0 1 2 : : :
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 2 0 : : :
5 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 : : :
...

...
...

...

Table 10
The type of 1m2 + 2n

m\n 0 1 2 3 4 5 6 7 8 9 10 : : :

0 ∞ ∞ 1 ∞ 1 1 ∞ 1 1 ∞ 1 : : :
1 ∞ ∞ ∞ ∞ 1 ∞ 1 1 ∞ 1 1 : : :
2 ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ 1 1 ∞ : : :
3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ 1 : : :
4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 : : :
5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ : : :
...

...
...

...

it can’t be equivalent to 13k+22 because 3+ 1∼∞ while 13k+22+ 1=13k+32∼ 1; and
it can’t be equivalent to 2 because {0; 11}+ 2∼ 2 while {0; 11}+ 3∼∞.
Now that we know that all of the Nim games in Table 8 are inequivalent, let us

show that every Nim game is equivalent to one of these.

Claim 10. mn∼∞ for all m; n¿2.

Proof. Any two players can gang up on the third, by depleting neither heap until the
victim has made his move, and then removing both heaps.

Claim 11. The following are true for all games G:
(a) Gn 6∼ 0 for n¿2.
(b) Gn 6∼ 2 for n¿3.
(c) If Gm∼ 1 then Gn∼ 1; for m; n¿2.
(d) G1n 6∼ 2 for n¿2.
(e) Gmn 6∼ 1 for m; n¿2.
(f) Gmn 6∼ 2 for m; n¿2.
(g) Gmn 6∼ 0 for m; n¿2.

Proof. (a) Suppose Gn∼ 0. Then its options G1 and G are 2-games. But since G is
also an option of G1, this is a contradiction.
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(b) Suppose Gn∼ 2. Then G, G1, and G2 are all 1-games, and in particular G2
must have a 0-option. That 0-option can be neither G nor G1, so there must exist
G′2∼ 0, contradicting (a).
(c) Assume Gm∼ 1. Then either G∼ 0 or G1∼ 0 (no other option of Gm can be

of type 0, by (a)), and in either case Gn∼ 1.
(d) Suppose G1n∼ 2. Then G1, G11, and Gn are all 1-games. Gn must have a

0-option, but G1∼ 1 and no option G′n or Gm (26m¡n) can be a 0-game (by (a)),
so G itself must be a 0-game. Also, since G11∼ 1 and G1 6∼ 0, there must exist G′

with G′11∼ 0. Then G′1∼ 2 and G′ ∼ 1, which is inconsistent with G∼ 0.
(e) Every option of Gmn has a component heap of size 2 or more, so G + m + n

has no 0-options, by (a).
(f) Suppose Gmn∼ 2. Then G can’t be 0 (by Claim 10), so it must have an option

G′; G′mn∼ 1, contradicting (e).
(g) Suppose Gmn∼ 0. Then G can’t be 0 (by Claim 10), so it must have an option

G′; G′mn∼ 2, contradicting (f).

Note that (e), (f), and (g) together imply that Gmn∼∞ for all m; n¿2.

Claim 12. The following are true for all games G :
(A) m≡ n for m; n¿3.
(B) 1m≡ 1n for m; n¿2.
(C) Gmn≡ 22 for m; n¿2.

Proof. (A) Take an arbitrary game X . We know that each of Xm, Xn is either of type
1 or type ∞ (by (a), (b) above). If either of them is a 1-game, then so is the other
(by (c)), and if neither of them is a 1-game, then both are ∞-games. Either way,
m+ X and n+ X have the same type.
(B) The proof is similar, except that one needs (d) instead of (b).
(C) For all X , Gmn+ X =(GX )mn∼∞ and 22 + X =(X )22∼∞.

To reduce a given Nim-position G= n1 + n2 + ::: + nr to one of the previously
tabulated forms, �rst replace every ni¿3 by 3. This puts G in the form 1a2b3c. If
b + c¿2, then we have G≡ 22. Otherwise, we have G in the form 1a, 1a2, or 1a3.
Since 13≡ 12, the last of these cases can be reduced to 1a2 unless a=0.

6. Equivalence classes

The Nim game 22 has the property that if one adds to it any other Nim-position,
one gets a game of type ∞. In fact, if one adds any game whatsoever to 22, one
still gets a game of type ∞. 22 is thus an element of an important equivalence class,
consisting of all games G such that G + X ∼∞ for all games X . We call this class
the equivalence class of in�nity. This equivalence class is a sort of a black hole,



J. Propp / Theoretical Computer Science 233 (2000) 263–278 277

metaphorically speaking; add any game to the black hole, and all you get is the black
hole.
If you take a two-player game for which a nice theory exists and study the three-

player version, then it is unfortunately nearly always the case that most of the positions
in the game are in the equivalence class of in�nity.
There are some games which are “close” to in�nity. Paradoxically, such games

can give us interesting information about games that are very far away from in�nity.
Consider, for instance, the 2-game 21 = {2} (the game whose sole option is a Nim-heap
of size 2).

Claim 13. The only game G for which G + 21 6∼∞ is the game 0.

Proof. Let X be the simplest game not identical to 0 such that X + 21 6∼∞.
Case I: X + 21∼ 0. Then X + 2∼ 2. But Claim 11(b), together with the fact that 2

is equivalent to every Nim-position n with n¿3, tells us that this can’t happen.
Case II: X +21∼ 1. The winning option of X +21 can’t be X +2, by Claim 11(a),

so it must be an option of the form X ′ + 21. But then X ′ + 21∼ 0, which contradicts
the assumed minimality of X . (X ′=0 won’t help us, since 0 + 21∼ 2, not 0.)
Case III: X + 21∼ 2. Letting X ′ be any option of X , we have X ′ + 21∼ 1. This

contradicts the assumed minimality of X .

This implies that no game is equivalent to 0.

7. Open questions

Question 1. How do the doubling and tripling tables (Tables 6 and 7) extend to higher
compound sums of a game with itself?

Question 2. Is there a decision procedure for determining when two impartial three-
player games are equivalent to each other?

Question 3. What does the “neighborhood of in�nity” look like? The game 21∼ 2 has
the property that when you add it to any non-trivial game, you get ∞. Is there a game
of type 1 with this property? Is there one of type 0 with this property?

Question 4. How does the theory generalize to n players, with n¿3? It is not hard
to show that the portion of Table 5 in the upper left corner generalizes to the case of
more than three players in a straightforward way. However, carrying the theory beyond
this point seems like a large job. Here are two particular questions that seem especially
interesting: Can an n-fold sum of a game with itself be a win for any of the players
other than the nth? Does there exist a “black hole” X such that for all games Y , X +Y
is a win for any coalition with over half the players?
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