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We present a unified picture of mesons and baryons in the Dyson–Schwinger/Bethe–Salpeter approach, 
wherein the quark–gluon and quark–(anti)quark interactions follow from a systematic truncation of the 
QCD effective action and include all its tensor structures. The masses of some of the ground-state mesons 
and baryons are found to be in reasonable agreement with the expectations of a ‘quark-core calculation’, 
suggesting a partial insensitivity to the details of the quark–gluon interaction. However, discrepancies 
remain in the meson sector, and for excited baryons, that suggest higher order corrections are relevant 
and should be investigated following the methods outlined herein.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Hadrons provide a rich experimental environment for the study 
of the strong interaction, from details of the resonance spectrum 
to form factors and transition decays via electromagnetic probes. 
These reflect the underlying substructure of bound states by re-
solving, in a non-trivial way, the quarks and gluons of which 
they are composed. A theoretical understanding of hadrons in 
terms of these underlying degrees of freedom, interacting as dic-
tated by quantum chromodynamics (QCD), is an on-going effort. 
Many approaches tackle it in different ways, simplifying certain 
aspects of the theory. Probing sensibly our theoretical constructs 
with experimental input thus provides understanding of the the-
ory itself.

In continuum approaches to QCD, it is not possible in gen-
eral to include all possible correlation functions in a calculation, 
as there are infinitely many of them. Although this can be viewed 
as a limitation of continuum approaches, only a finite number of 
these correlation functions have a significant role in the observable 
properties of hadrons. Therefore, by including a greater number of 
relevant correlation functions into the system, continuum methods 
provide an ideal framework to unravel the underlying mechanisms 
that generate observable effects from the elementary and non-
observable degrees of freedom of QCD. This is in contrast to lattice 
QCD calculations, which can be viewed as theoretical experiments 
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in the sense that, although they contain a priori all the dynamics 
of QCD, it is challenging to single out individual contributions to 
a particular measurement. This makes these two approaches com-
plementary.

Amongst the different continuum approaches, the combination 
of Dyson–Schwinger (DSE) and Bethe–Salpeter equations (BSE) has 
proven to be extremely useful in the calculation of hadronic prop-
erties from QCD [1–3]. Typically, solutions of DSEs constitute the 
building blocks (propagators and vertices) of bound-state calcula-
tions using BSEs, which provide the bridge between QCD and ob-
servables. As described in more detail below, the interaction terms 
that are kept in the DSE determine the interaction kernels among 
constituents in the BSEs, thereby defining a particular truncation 
of the DSE/BSE system. One works towards a model-independent
truncation by including a larger set of interaction terms; although 
this programme is obviously not achievable in its totality, it is ex-
pected that there will be some degree of convergence at the level 
of this vertex expansion.

Here we focus upon the inclusion of the quark–gluon inter-
action, the reliable construction of which is a challenging task. 
However, one is guided by various symmetries – notably that of 
chiral symmetry – that provide for stringent constraints. To imple-
ment these symmetries at the level of the quark and gluon interac-
tion, simplifications are clearly necessary which typically fall into 
three categories: (i) the quark–gluon vertex is truncated to its tree-
level component times a momentum-dependent effective coupling 
with the quark DSE and hadron BSEs solved self-consistently [4,5]; 
(ii) a more sophisticated model for the quark–gluon vertex is used, 
with the contribution from its different tensor structures modelled, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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hence abandoning self-consistency but gaining instead flexible in-
sight into the relative importance of each of these structures [6–9]; 
(iii) some non-perturbative effects of the quark and gluon inter-
action are taken into account by solving the quark–gluon vertex 
DSE self-consistently, but potentially introducing some truncation 
artifacts [10–12]. We follow here the latter approach, since as we 
demonstrate in this letter it enables the controlled inclusion of in-
teraction mechanisms based on a loop expansion of the effective 
action.

The effective action is a generating functional for proper ver-
tex functions, and may be considered as a means to define the 
quantum field theory given an action, since all necessary Green’s 
functions can be derived from it. Related are the n-particle irre-
ducible (nPI) effective actions that form a family of different, but 
equivalent, representations of the same generating functional (see, 
e.g. [13]). They are defined as functionals of all m ≤ n Green’s func-
tions of the theory (fields, propagators, vertices, etc.). Although 
its exact form is not known in general, its loop expansion in h̄
is well-defined [13] and can in practice be performed. Moreover, 
each term in the expansion already captures both perturbative and 
non-perturbative physics.

One reason that makes nPI techniques a powerful tool is that 
they provide a natural link between bound-state equations de-
scribed by BSEs and the propagators and vertices provided by 
DSEs [14–18]. A truncation of the loop expansion at a certain or-
der translates into a unique prescription for the truncation of the 
DSEs and the BSEs that maintains symmetries. For the study of 
two- and three-body states, it suffices to use either the 2PI effec-
tive action, which is defined in terms of fully-dressed propagators 
but bare vertices [19], or the 3PI effective action, which is defined 
also in terms of the fully-dressed vertices. In this work we restrict 
ourselves to the 2PI case and defer the use of the 3PI effective ac-
tion to a future and more comprehensive study.

In connection with the three categories outlined above, it is 
worth mentioning here that the somewhat hybrid possibility of 
supplementing some of QCDs degrees of freedom in favor of ef-
fective ones, such as pions, has also been explored [20–25]. These 
can be viewed as approximate representations of the four-quark 
vertex in the 4PI formalism that introduces at the first step decay 
channels and a mixing with tetraquark states.

In the present work, we incorporate the results of a recent 
study of the quark–gluon vertex from a truncated DSE [12] in the 
calculation of meson and baryon masses. That truncation can be 
interpreted in the context of the 2PI effective action at 3-loop. 
Although on the technical side this is no novelty for meson cal-
culations [11,26], it is the first time that corrections incorporat-
ing the gluon self-interaction have been included in the covariant 
three-body baryon calculation. While there exist other recent in-
vestigations of the quark–gluon vertex [27–29], these have not yet 
been confronted with the challenge of reproducing hadron phe-
nomena for reasons we discuss below.

Finally, we wish to stress that this work represents only the first 
step in an on-going effort to incorporate realistic QCD’s Green’s 
functions into the self-consistent study of bound states. Not sur-
prisingly, the low-order of the truncation used performs only as 
well as simple phenomenological models such as rainbow-ladder. 
However, but most importantly, it serves as a proof of principle 
that such an endeavor is feasible, as further increasing the order 
of the truncation does not increase the technical complexity dra-
matically.

2. Framework

The starting point for the study of hadronic observables in the 
present framework is thus the effective action
Fig. 1. The 2-particle irreducible term �2[�, G] in the definition of the effective 
action, up to three loops.

Fig. 2. The Dyson–Schwinger equation for the quark propagator.

�[�, G] = S[�] + i Tr log G − i Tr G−1
0 G + �2[�, G] , (1)

where S is the classical action, and � and G collectively repre-
sent the fields and full propagators of QCD, respectively. The term 
�2[�, G] contains two-particle irreducible diagrams only and G0
denotes the classical propagators. To proceed, we perform a loop 
expansion of �2[�, G] to three-loop order, as shown in Fig. 1. 
Moreover, we keep only the non-Abelian term that connects the 
gauge to the matter sector and neglect the Abelian correction 
(third diagram), as it is expected to be subleading in the large-Nc

limit; whether this is indeed the case for the description of hadron 
phenomena must certainly be tested and will be the subject of fu-
ture work.

The next basic element in meson and baryon calculations is the 
fully-dressed quark propagator. It is given by the quark DSE, see 
Fig. 2

S−1(p;μ) = Z2 S−1
0 (p) + �(p;μ) , (2)

with quark self-energy

�(p;μ) = g2 Z1 f C F

∫
k

γ μS(q)�ν(q, p)Dμν(k) . (3)

Here q = k + p, the integral measure is 
∫

k = ∫
d4k/(2π)4 and Z1 f , 

Z2 are renormalization constants for the quark–gluon vertex and 
quark propagator respectively. It is clearly dependent upon both 
the gluon propagator Dμν(k) and the quark–gluon vertex �ν(q, p). 
The (Landau gauge) propagators are

S−1(p) = Z−1
f (p2)

(
i/p + M(p2)

)
, (4)

Dμν(k) = T μν
(k)

Z(k2)/k2 , (5)

with quark wavefunction Z−1
f (p2), dynamical mass M(p2) and 

gluon dressing Z(k2). The transverse projector is T μν
(k)

= δμν −
kμkν/k2. From the 2PI effective action, the quark DSE is deter-
mined via a functional derivative with respect to the quark propa-
gator

� = −i
δ�2

δG
. (6)

The expansion of the effective action in Fig. 1 thus defines a trun-
cation of the quark DSE, which is equivalent to the truncation 
of the quark–gluon vertex DSE shown in Fig. 3. Specifically, the 
truncated vertex DSE can be given as a summation of vertex cor-
rections

�μ(l,k) = Z1 f γ
μ + 	

μ + . . . , (7)
NA
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Fig. 3. The truncated DSE for the quark–gluon vertex, showing the non-Abelian cor-
rection. Boxes represent an RG improvement of the bare vertex; see (8).

with 	μ
NA the non-Abelian term (see Fig. 3), and the ellipsis de-

notes contributions not considered here. The non-Abelian correc-
tion has the form

	
μ
NA(l,k) = Nc

2

∫
q

�̃α (l1,−q1) S(q3)�̃β (l2,−q2)

× �
α′β ′μ
3g (q1,q2, p3)Dαα′

(q1)Dββ ′
(q2) , (8)

where the internal vertices �̃μ retain only the tree-level tensor 
structure and are supplemented by an enhancement factor in the 
infrared. Such an enhancement is needed in order to account for 
the effect on the quark–gluon vertex of higher loop terms in the 
2PI effective action. An alternative to this is using a 3PI or higher 
effective action to define the truncation, which means that both 
vertices and propagators are fully dressed and independent ob-
jects [15,18]. Further details on (8) and its solution can be found 
in [12].

A second functional derivative of the effective action with re-
spect to the quark propagator defines the quark–antiquark BSE 
interaction kernel K qq̄ [14–16,18,19]. Equivalently,

[
K qq̄]

ik;l j = − δ

δ
[

S(x, y)
]

kl

[
�

(
x′, y′)]

i j , (9)

followed by a Fourier transform to momentum space. This is the 
kernel that appears in the BSE description of a meson as a quark–
antiquark bound state

[
�M(p, P )

]
i j =

∫
k

[
K (qq̄)

]
ik;l j

[
χM(k, P )

]
kl , (10)

where �M(p, P ) is the Bethe–Salpeter amplitude and χM (k, P ) =
S(k+)�M(k, P )S(k−) its wavefunction. The quantum numbers of 
the state are defined by its covariant decomposition [30–32]. This 
gives access to both the mass of the bound-state as well as details 
of its internal structure.

The crucial motivation for such a definition of the Bethe–
Salpeter kernel is that chiral symmetry, as expressed via the axial-
vector Ward–Takahashi identity (axWTI)[
�(p+)γ5 + γ5�(p−)

]
i j

=
∫
k

[
K (qq̄)

]
ik;l j

[
S(k+)γ5 + γ5 S(k−)

]
kl , (11)

is correctly implemented in the calculation of meson proper-
ties [33]. This guarantees, in particular, the identification of the 
pion as a Goldstone boson in the chiral limit.

With the truncation of the vertex DSE given in (8), the cutting 
process gives rise to a quark–(anti)quark kernel, given in Fig. 4, 
whose topology is analogous to a gluon ladder

[
K (qq̄)

]
i j;mn = Dμν(q)

[[
γ μ

]
i j

[
γ ν

]
mn

+ [
γ μ

]
i j

[
	ν

]
mn + [

	μ
]

i j

[
γ ν

]
mn

]
. (12)
Fig. 4. The quark–antiquark kernel beyond rainbow-ladder.

This, taken with the truncated quark–gluon vertex above, satis-
fies chiral symmetry by construction. Further corrections to the 
quark–gluon vertex, in particular those featuring additional quark 
propagators, yield different topologies and/or are higher loop or-
der; they are beyond the scope of the present work but can in 
principle be included.

It is important to stress that when the 2PI effective action is 
used to define the truncation at the level of vertex functions, the 
expansion must be chosen such that the functional derivative (9)
can be formally performed to define the chiral-symmetry preserv-
ing BSE kernels. This implies that it must be possible to resolve 
diagrammatically the quark lines in the vertex corrections (7). This 
is the reason why quark–gluon vertices defined as ansätze are dif-
ficult to accommodate (and, hence, test) consistently in this frame-
work.

It is illustrative to consider here the case of the two-loop ex-
pansion of the 2PI effective action, which leads to the well-known 
rainbow-ladder truncation. There, suppressing constants and color 
factors for simplicity, we have

[
�(p)

]
i j �

∫
k

[
γ μS(q)γ ν

]
i j Dμν(k) , (13)

from which a functional derivative provides the kernel[
K (qq̄)

]
ik;l j � [

γ μ
]

ik

[
γ ν

]
l j Dμν(q) . (14)

In practical calculations the gluon propagator is modelled by a 
phenomenological function which includes the aforementioned in-
frared enhancement of the quark–gluon vertex from (omitted) 
higher order corrections.

Since we wish to also consider bound-states of three-quarks, 
it proves useful as an intermediate step to formulate the diquark 
bound-state

[
�D(p, P )

]
i j =

∫
k

[
K (qq)

]
ik;l j

[
χD(k, P )

]
kl , (15)

with diquark amplitude �D(p, P ) and wavefunction χD(k, P ) =
S(k+)�D(k, P )S T (−k−). The superscript T denotes transposition; 
the covariant decomposition of a J−P diquark �D are that of a J P

meson �M C together with a charge conjugation matrix. The corre-
sponding diquark kernel is then[

K (qq)
]

ik;l j = [
K (qq̄)

]
ik; jl , (16)

that is, it amounts to a transposition of the lower spin-line. For 
general ladder-like kernels, such as that in (14) the color factors 
are (N2

c − 1)/2Nc and −(Nc + 1)/2Nc for a meson and diquark, 
respectively.
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Fig. 5. The covariant Faddeev equation for the baryon, see (17).

Table 1
Meson masses and pion decay constant in GeV as calculated in rainbow-ladder [5]
and beyond rainbow-ladder. Results affixed with † are fitted values.

RL BRL PDG [35]

0−+ (π) 0.14† 0.14† 0.14
0++ (σ ) 0.64 0.52 0.48(8)

1−− (ρ) 0.74 0.77 0.78
1++ (a1) 0.97 0.96 1.23(4)

1+− (b1) 0.85 1.1 1.23

fπ 0.092† 0.103 0.092

The analogue of the Bethe–Salpeter equation for baryons can 
now be formulated. It contains the permuted sum of the two-
body quark–quark kernel K (qq) and an irreducible three-body ker-
nel K (qqq) [15,34]

� = [
K (qqq)

]
G(3)

0 � +
3∑

a=1

[
K (qq)

a
]

S−1
a G(3)

0 � , (17)

see Fig. 5. We use here a compact notation, omitting indices, where 
implied discrete and continuous variables are summed or inte-
grated over, respectively. Here G(3)

0 represents the product of three 
fully-dressed quark propagators S . The subscript a labels the quark 
spectator to the two-body interaction. At the truncation level of 
the 2PI effective action we will consider in this work, the irre-
ducible three-body force is identically zero [18]. The two-body 
kernel follows, as before, from the quark and quark–gluon vertex 
DSE.

3. Results

A consistency check that chiral symmetry is correctly imple-
mented is provided by calculating the pion mass in the chiral limit. 
Finding a massless pion, as we indeed do, serves as a verification 
that the numerics are under control.

In [12] the internal vertices were adjusted to both resemble 
the tree-level component of the calculated vertex, and to yield a 
running quark mass in agreement with lattice calculations. Once 
the vertex truncation is defined, the only free parameter left is 
the current-quark mass. The light quark mass is then fixed to 
mu/d = 3.7 MeV at the renormalization point 19 GeV so that the 
physical pion mass is obtained.

In Table 1 we show the ground-state meson masses below 
1.4 GeV for two quark flavors for rainbow-ladder (using the Maris–
Tandy interaction [5]) and for the beyond rainbow-ladder trunca-
tion presented here. The case of the scalar and vector states is 
remarkable in that their masses agree well with the experimen-
tal value of the ρ- and σ -mesons; this is, however, an unexpected 
feature. On the one hand, it is well known that unquenching ef-
fects (absent in this calculation) such as pion-cloud corrections 
Table 2
Baryon masses in GeV as calculated in rainbow-ladder [34,41–43] and beyond 
rainbow-ladder.

RL BRL PDG [35]

1/2+ (N) 0.94 1.05 0.94
1/2− (N∗) 1.16 1.08 1.54(1)

3/2+ (�) 1.22 1.24 1.23

[21,23,36] and effects associated with decay processes [37,38] pro-
vide extra attraction for vector and/or scalar channels. On the other 
hand, it is not yet settled whether the physical σ -meson originates 
(at least in part) form a qq̄ state. Moreover, even if that was the 
case, the measured mass would be the result of the dynamical cou-
pling of this bare state with several other channels [39,40]. In this 
respect, it is interesting to note that several DSE/BSE calculations 
[6,9,32], including the present one, generate a relatively light scalar 
qq̄ state and hence suggest that the picture of a purely dynamical 
origin of the σ -resonance is not realized; this can likely be traced 
to the back-coupling of the quark–gluon vertex to the vertex itself 
and will be remedied at higher order in loops or in nPI.

The previous remarks can be summarized in that one would 
expect our quark-core calculation to lead, in general, to heavier me-
son masses. The fact that this is not the case is an indication that 
other mechanisms, absent in the present calculation, are of rele-
vance even in the ground-state meson sector. Additional support 
for this is found in the a1/b1 − ρ and a1 − b1 splitting; whereas 
the former is improved with respect to the RL value, the latter is 
exceedingly large showing an imbalance in the different compo-
nents of the present quark–gluon vertex.

Let us now turn our attention to baryons. In Table 2 we show 
the calculated nucleon and delta-baryon masses. We also calcu-
lated the mass of the nucleon parity partner 1/2− , as it is the 
first signature of the failure of RL in the baryon sector. Clearly, the 
masses for positive-parity states are slightly overestimated. This 
suggests that the simple quark-core picture supplemented with 
pion-cloud effects [20,23,24,36,44] could be realized for ground-
state baryons. The possibility that ground-state baryons are, in 
contrast to mesons, less sensitive to the details of the quark–
gluon interaction is an interesting one. It explains why the simple 
rainbow-ladder truncation has been thus far so successful in de-
scribing baryon properties [34,41–43].

The situation for excited baryons does not appear to be so sim-
ple. In RL the negative-parity nucleon comes out extremely light 
[42] unless one inflates the interaction strength [45,46], thus spoil-
ing the agreement for other observables. The present calculation, 
using a genuine (albeit truncated) solution of a QCD-vertex DSE, 
does not improve on the situation of the nucleon’s negative-parity 
partner. This result by itself already makes a case for the system-
atic introduction of interaction mechanisms, as it is not known 
a priori whether missing Abelian and/or non-Abelian mechanisms 
are leading in determining the spectrum of (bare) baryon reso-
nances.

Another interesting aspect of using as interaction a solution of 
the quark–gluon vertex DSE is that it naturally features a quark-
mass dependence of the interaction strength. One class of observ-
ables in which such a mass dependence is manifest are the baryon 
sigma terms. Calculated here using the Feynman–Hellmann the-
orem, they measure the dependence of the baryon mass on the 
quark mass. As shown in Table 3, these are exceedingly small in 
RL, owing to the quark-mass independence of the effective inter-
action. This changes dramatically in the present calculation. For 
the nucleon we now obtain a value in reasonable agreement with 
the upper limit of the consensual range [47–51]. For the delta, al-
though there is no well-established value to serve as a reference, 
we find a similarly large result for the sigma term. However, this 
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Table 3
Sigma terms in MeV as calculated in rainbow-ladder and beyond rainbow-ladder.

RL BRL Other [47–55]

1/2+ (N) 30 60 25–60
3/2+ (�) 24 63 32–79

could be related to the absence of decay mechanisms that induce 
non-analytic behaviors in the baryon-mass curve near the physical 
point.

4. Summary

In summary, we presented the first calculation of both mesons 
and baryons in a mutually consistent truncation of the quark–
gluon vertex beyond rainbow-ladder. Being fixed in accordance to 
the 2PI effective action at three-loops, the freedom to adjust model 
parameters is limited and hence the bulk features of the results for 
the meson and baryon masses cannot presently be altered. Exten-
sions must therefore be made that either take into account higher 
loop corrections to the effective action, or as we envisage, to incor-
porate vertices dynamically into the expansion by considering 3PI 
actions and beyond [18].

Regardless, the means to connect quarks and gluons presented 
here via symmetry preserving and calculated interaction vertices 
is both an important technical and conceptual achievement that, 
being in itself independent of the particular ansatz, can be sys-
tematically applied to e.g. crossed ladder and other higher order 
corrections to the kernel. Being intrinsically dependent upon the 
quark flavor and hence the quark mass, it will form the basis of 
future investigations of the baryon octet-decuplet [43] and me-
son nonet for the strange quark [32,56], as well as heavy-quark 
studies of charmonium and bottomonium [57–59]. Furthermore, 
the impact of corrections beyond rainbow-ladder on the internal 
structure of the hadrons can be tested through the calculation of 
electromagnetic form-factors [60–62].
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