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Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts
like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry con-
ditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface
elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon
loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also
determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the
LiDAR point elevations and recalculating elevation change and carbon loss, iterating this process 1000 times. We
calculated a total loss using LiDAR of 1.10 Tg C across the 25 km2 burned area. Thefire burned an average of 47 cm
deep, equivalent to 44 kg C/m2, a value larger than the 1997 Indonesian peat fires (29 kg C/m2). Carbon loss via
the First-Order Fire Effects Model (FOFEM) was estimated to be 0.06 Tg C. Propagating the LiDAR elevation error
to the carbon loss estimates, we calculated a standard deviation of 0.00009 Tg C, equivalent to 0.008% of total car-
bon loss.We conclude that LiDAR elevation error is not a significant contributor to uncertainty in soil carbon loss
under severefire conditionswith substantial peat consumption. However, uncertaintiesmay bemore substantial
when soil elevation loss is of a similar or smaller magnitude than the reported LiDAR error.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Peatlands account for 3% of global land cover, yet are a major
reservoir of global soil carbon, accounting for 270–1672 Pg C in the
upper northern latitudes alone (Gorham, 1991; Tarnocai et al., 2009;
Turunen, Tomppo, Tolonen, & Reinikainen, 2002; Yu, Loisel, Brosseau,
Beilman, & Hunt, 2010). Inmany peatland environments, highwater ta-
bles limit the decomposition rate of dead plant material and contribute
to an accumulation of carbon-rich organic soil (Clymo, 1984). Over
thousands of years, peatlands in places like tropical Indonesia or boreal
Russia can develop peat soil profiles severalmeters in depth. As a result,
researchers have come to view these unique ecosystems as important
stores of terrestrial carbon (Page, Rieley, & Banks, 2011).

In the United States, peatlands are found in Alaska, Midwestern
States such as Minnesota, and the coastal plain of Virginia and North
Carolina (Mitsch, Gosselink, Anderson, & Zhang, 2009). Over the past
few centuries, U.S. peatlands have been subjected to peat harvesting,
converted to agriculture, or logged, activities that have threatened
their ability to serve as carbon sinks (Lily, 1981; Richardson, 1983). In
addition, the intentional draining of these water-logged ecosystems
has significantly altered their hydrology and may be contributing to
an increase in the frequency and severity of wildfires in the United
States and abroad (Frost, 1989, 1995; Turetsky, Donahue, & Benscoter,
2011).

Peat soils are carbon rich and because combustion can occur in spite
of high fuel moisture levels (Reardon, Curcio, & Bartlette, 2009), fires in
peatland ecosystems can persist for several months and burn to depths
greater than onemeter below the surface, emitting terrestrially seques-
tered carbon to the atmosphere and contributing to global greenhouse
gas emissions. Quantifying this carbon loss is necessary for understand-
ing the peatland carbon cycle and for determining whether policies
aimed at preserving and restoring peatlands may also help offset fossil
fuel emissions and mitigate climate change.

Several studies have estimated soil carbon loss resulting from
peat fires. One set of approaches has been to simulate a fire's effects
(French et al., 2011). Models like the First-Order Fire Effects Model
(FOFEM) use information about fuel availability, moisture content, and
season to estimate tree mortality, fuel consumption, and greenhouse
gas emissions (Reinhardt, Keane, & Brown, 1997). This approach is lim-
ited because assumptions about the maximum duff depth and the spa-
tial heterogeneity of the peat depth may limit the model's ability to
characterize the effects of a severe fire.

An alternative approach to carbon loss modeling has been to mea-
sure the total soil volume consumed in the fire, and then multiply this
value by the burned soil's bulk density and carbon content. The volume
can be estimated from elevation measurements of the soil surface from
before and after the fire. Light detection and ranging (LiDAR) instru-
ments are often the source of this elevation data. Discrete-return
LiDARmeasures the elevation of a land surface atfine spatial resolutions
by recording the time delay in a high-frequency laser pulse that travels
from the sensor to a target and back. Each laser pulse may have one or
more returns representing different physical objects and their eleva-
tions. The last returns to be recorded by the sensor are generally the
lowest physical objects on the Earth's surface and are often indicative
of the soil surface itself.

While LiDAR data are often used for post-fire elevation, pre-fire data
are seldom available. As a result, studies typically either assume an
average burn depth or use elevations of unburned areas as analogs for
the pre-fire surface (Ballhorn, Siegert, Mason, & Limin, 2009; Page
et al., 2002; Poulter, Christensen, & Halpin, 2006). These approaches
may not accurately represent pre-fire elevations and thus an approach
that uses spatially detailed height data from before and after a distur-
bance is needed. Our study is the first, to the best of our knowledge, to
overcome this obstacle by using both pre- and post-fire LiDAR elevation
data to characterize the elevation change and total soil carbon loss
resulting from a temperate peatland fire. Doing so eliminates most of
the uncertainty from having to estimate pre-fire elevation through
other methods.

A second aim of this study is to determine how LiDAR vertical accu-
racy error contributes to uncertainty in estimates of soil carbon loss
from fire. The vertical error of an elevation dataset is typically quantified
as the rootmean squared error (RMSE), and frequently ranges from 5 to
20 cm. The discrepancy between a LiDAR-derived elevation and an esti-
mate from a more accurate method, such as ground-surveying, may be
caused by errors inherent to the components of the LiDAR sensor, such
as the global positioning system, inertialmass unit, and laser. Error in el-
evation measurements can also vary by land cover and surface slope
(Hodgson & Bresnahan, 2004). In addition, incorrect classification of
LiDAR points, such as when a ground return is actually low-lying vege-
tation, may contribute to vertical error.

Because error is inherent to LiDAR collection and use, there is a need
to understand how itmight affect the accuracy of derived products, such
as estimates of peatland elevation and carbon loss. Quantifying how el-
evation error might affect LiDAR-derived estimates like carbon loss is
important for judging the accuracy of the pre- and post-fire estimation
method.

This work ultimately addresses two main research questions. First,
how much soil carbon was consumed by the 2011 temperate peat fire
in Great Dismal Swamp National Wildlife Refuge, USA? In answering
this question, we make use of both pre- and post-fire LiDAR elevation
data. We also compare the LiDAR-based results to modeled estimates
fromFOFEM to determine the utility offire emissionsmodels in the con-
text of peatlands. The second question we attempt to answer is to what
extent the LiDAR vertical accuracy error affects the soil carbon estimate.
If the error is considerable, then LiDAR-basedmethods of estimating el-
evation change and soil carbon loss in peatlands may not be preferable
to other techniques, such as modeling.
2. Methods

2.1. Study area

The 45,000 ha Great Dismal Swamp National Wildlife Refuge
(GDSNWR) is a forested wetlands ecosystem located on either side of
the North Carolina–Virginia, USA border and situated within 20 miles
of the Atlantic Ocean, Chesapeake Bay and Albemarle Sound (Fig. 1).
Its climate is characterized bywarm, humid summers andmild winters.
Monthly mean temperatures between 2005 and 2014 ranged from
11.7° Celsius in January to 32.9 °C in July (53.0 to 79.6° Fahrenheit) at
a weather station on the Eastern edge of the refuge. Precipitation is dis-
tributed throughout the year with slightly greater rainfall in the sum-
mer months. Mean annual rainfall over the last decade was 1413 mm,
and ranged from 996 mm in the driest year to 1820 mm in the wettest
(Peterson & Vose, 1997).

The refuge has low relief, with a surface elevation around 7m above
sea level along the western edge that declines to between 4 and 5 m to
the east and southeast. Two- to three-meter peat deposits overlie clay
soils throughout the swamp. The refuge is seasonally flooded, and is
characterized by the presence of water at or near the soil surface during



Fig. 1.Map of Great Dismal Swamp NWR. The hatched area shows the perimeter of the Lateral West fire; the white polygon to the northeast is Lake Drummond.

Fig. 2. The image to the left is an aerial view of the LateralWest fire taken a fewweeks following ignition in August 2011. Top-right, a tree stump and roots are exposed by thefire. Bottom-
right, vegetative regrowth is apparent in waterlogged conditions by 2013. Credits: Mark Jamieson/USFWS (left), Steve Bingham/USFWS (top-right), Ashwan Reddy (bottom-right).
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the winter and spring. During summer, vegetative growth draws the
water down and leads to dry conditions by autumn.

A 158-mile network of roads and drainage ditches traverses the
landscape, built by logging companies and other commercial interests
before the refuge's formation in 1974. The ditches were intended to
drain the underlying soils and facilitate timber harvesting. Construction
of the ditch network in GDSNWR is thought to have created progres-
sively drier conditions throughout the swamp and increased the risk
of fire (Day, 1982; Levy, 1991). Studies of artificially drained peatlands
have found that peat oxidation, subsidence and changes in the plant
community are common (Mälson, Backéus, & Rydin, 2007; Pronger,
Schipper, Hill, Campbell, & McLeod, 2014; Talbot, Richard, Roulet, &
Booth, 2010).

2.2. Lateral west fire

On August 4, 2011, lightning ignited a fire within the refuge that
burned for 126 days. Dubbed the Lateral West fire, this disturbance af-
fected 25 km2 of the refuge and overlapped with the burn scar from
the South One fire in 2008. A combination of limited rainfall and
human-altered hydrology likely exacerbated the conditions leading to
the Lateral West fire. In the aftermath, few trees were left standing
and soil loss of more than one meter was observed in some areas.
Fig. 2 shows an aerial view of the fire scar a few weeks following igni-
tion. The dense stand of trees in the foreground givesway to a landscape
opened up by a combination of the 2008 South One and 2011 Lateral
West fires. Smoke is apparent despite the foot of water that Hurricane
Irene left in the days preceding the photo. Fig. 2 (top-right) depicts a
tree stump whose roots have been exposed by the severe fire. By 2013
(Fig. 2; bottom-right), two years post-fire, many areas are waterlogged,
providing an opportunity for emergent vegetation to take hold. The rel-
atively severe fire and data availability made the 2011 Lateral West fire
at Great Dismal Swamp an ideal case study for determining carbon loss
and understanding the effect of LiDAR error on this estimate.

To assess the soil carbon loss, the study was limited to the fire's
perimeter (Fig. 1). This extent was delineated using GPS while flying
the fire boundaries of the burn scar at low altitude in a helicopter; the
vegetation in GDSNWR is extremely dense and ground travel and sur-
veys are extremely difficult. The GPS data were converted to a polygon
shapefile and loaded into a GIS for analysis with elevation and soil
information.

2.3. LiDAR data collection

Pre-fire LiDARdatawere collected inMarch2010using a LHSystems
ALS50 LiDAR system at a flying height of 2138 m above sea level. The
U.S. Geological Survey (USGS)maximum nominal post spacing require-
ment of 0.7 mwasmet by the flight. Points were classified as ground or
non-groundusing TerraScan software (Terrasolid, 2005). The rootmean
square error of the ground points was determined to be 9 cm, based on
comparisonswith 35 control points. Post-fire LiDAR data were obtained
in August 2012 using a Leica ALS70 500 kHz Multiple Pulses in Air
(MPiA) LiDAR sensor system at a flying height of 2382 m above sea
level. Flight lines had a 29.9% overlap and the nominal post spacing
was b0.7 m. LiDAR data were classified as ground and non-ground
points using TerraScan software. A 7 cm root mean square vertical
error was calculated for the ground points based on comparison with
8 control points. While additional ground control points would have
provided a better sense of the 2012 LiDAR vertical error, data collected
by the LiDAR vendor were limited.

2.4. Soil data

Post-fire soil samples were collected from 23 unburned sites
surrounding the fire perimeter during August 2013. The sampling loca-
tions were dispersed throughout the refuge and are depicted in Fig. 1.
Peat from these locations tends to be highly decomposed organic
matter and is typically classified as Oa using the U.S. Department
of Agriculture's Natural Resource Conservations Service's (NRCS) soil
survey classification system (Schoeneberger, Wysocki, Benham, &
Broderson, 2002). A standard core was used to obtain a sample volume
of peat from each site to calculate bulk density. Samples were also proc-
essed using a combustion analyzer to determine total organic carbon
andmineral content. Organicmatterwas calculated by subtractingmin-
eral content from 100. All peat samples were sent to the NRCS Soil
Survey Lab in Lincoln, NE, for analysis. Three additional samples were
gathered from a 1999 biogeochemistry study of Atlantic White Cedar
stands (Thompson, Belcher, & Atkinson, 2000). Thesewere included be-
cause they represented a forest type that historically composed a sizable
portion of GDSNWR. Resulting bulk densities and carbon values were
averaged and used to calculate total carbon loss from the 2011 Lateral
West fire.

2.5. Measured estimation of soil carbon loss and uncertainty

Fig. 3 provides a graphical summary of the workflow used to calcu-
late total soil carbon loss and uncertainty from LiDAR vertical accuracy
error. We divided the study area into 10-m grid cells. A finer resolution
grid would have resulted in many cells that contained few to no LiDAR
ground returns, while a larger resolution would have limited the spatial
detail of the data. Although LiDAR data were obtained at high resolu-
tions, the presence of dense vegetation and surface water led to just
1–2% of 2012 LiDAR returns being classified as ground.

We used aMonte-Carlo approach to better understand how the ver-
tical error of individual points propagates to introduce uncertainty into
the elevation, elevation change and carbon loss estimates. Within each
grid cell, 1000 elevations were simulated for each LiDAR return by
perturbing groundpointswithin their known rootmean squared errors,
9 and 7 cm for the 2010 and 2012 LiDAR datasets, respectively. As an
example, Point 1 in Fig. 3A has a 2010 elevation of 500 cm(5m). To sim-
ulate the point's uncertainty, a normal distribution of elevation with
mean of 500 cm and standard deviation of 9 cm was created, from
which 1000 elevations were randomly extracted. In Fig. 3B, 1000 simu-
lated elevations have been created for each LiDAR return.

The elevations of the perturbed ground points were then averaged
within 10 m grid cells to create a digital elevation model for each of
the Monte-Carlo iterations (DEM; Fig. 3C). This step ultimately pro-
duced 1000 pre- and post-fire DEMs. Together the simulated DEMs rep-
resent the range of uncertainty resulting from the 2010 and 2012 LiDAR
vertical RMSEs. Elevation change data were calculated by subtracting
each set of pre- and post-fire DEMs from one another (Fig. 3D). For
each of the 1000 resulting elevation change datasets, total carbon loss
was then calculated bymultiplying the cells with elevation loss by aver-
age soil bulk density and total organic carbon content, and aggregating
the results within the Lateral West fire perimeter (Fig. 3E–F).

Ultimately, 1000 estimates of total carbon loss from the 2011 fire
were produced that incorporated LiDAR error. We report mean eleva-
tion change and soil carbon loss within the fire perimeter and in the
500-m buffer surrounding the perimeter (across all 1000 iterations;
Fig. 3G). We also provide these values for a 500-m buffer surrounding
the fire to demonstrate elevation change and carbon loss in an un-
burned control area. Finally, carbon loss error due to LiDAR accuracy
RMSE is reported based on the standard deviation of the carbon loss
estimates.

2.6. Modeled estimation of soil carbon loss

In addition to the pre- and post-fire LiDAR analysis, we used
the First-Order Fire Effects Model version 6.0 (FOFEM) to estimate
greenhouse gas emissions from the 2011 Lateral West fire. For inputs,
the Monitoring Trends in Burn Severity thematic burn severity raster
layer was used to delineate the area burned (MTBS; Eidenshink et al.,



Fig. 3. LiDAR workflow to estimate carbon loss and uncertainty.
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2007). This layer was combinedwith the LANDFIRE Fuel LoadingModel
raster layer (FLM; Lutes, Keane, & Caratti, 2009); we used version 1.1.0,
which includes changes in fuel loads resulting from the SouthOnefire in
2008. The FLM data are categorical and provide duff, litter, fine woody
debris, and coarse wood debris loadings that can be used with FOFEM
to estimate fuel consumption and greenhouse gas emissions.

In addition to fuel loads, FOFEM requires information about fuel
moisture regime, percent of crown burned, region, cover group, and
season. We set fuel moisture levels according to the MTBS severity
class and guidance in the FOFEM version 6.0 User's Guide (Lutes,
2012), where unburned to very low severity pixels were assigned to a
wet moisture regime, low severity pixels were assigned a moderate
moisture regime, and moderate severity pixels were assigned a dry
moisture regime. We also varied percent of the crown burned by the
MTBS severity class, using 40%, 60%, and 80% for the unburned to very
low, low, and moderate severity classes, respectively, following values
used by Hawbaker and Zhu (2012). Region, cover group, and season
were set to southeast, pocosin, and summer, respectively. Greenhouse
gas emissions (CH4, CO, and CO2) were estimated using FOFEM for
each combination of FLM and MTBS severity class on a per unit basis
and then converted to total carbon equivalents. Carbon emissions for
each FLM and MTBS combination were then multiplied by the total
area burned of each combination and summed across the entire area
burned by the Lateral West fire for comparison with the pre- and
post-fire LiDAR estimates of carbon loss.

3. Results

3.1. Soil sampling

Sixty-one soil samples were analyzed for bulk density and 44 sam-
ples examined for total organic carbon content. Bulk density within
these histosol soil types ranged from 0.09 to 0.24 g/cm3 and had a
mean of 0.16 g/cm3. Batjes (1996) demonstrates that peat soils vary in
density from 0.03 to 0.94 g/cm3, with a mean of 0.31 g/cm3 and a high
coefficient of variation relative to other soil types. Our recorded densi-
ties were also similar to those of drained peat soils (Minkkinen &
Laine, 1998). Total organic carbon accounted for between 46 and 64%
of total soil matter among the 44 samples, with a mean of 59%. Consis-
tent with the characteristics of peatland soils, organic matter averaged
95% among all samples. Mean values for bulk density and carbon con-
tent were used to convert elevation change to carbon loss.

3.2. Elevation change from LiDAR

The highest elevations within the fire perimeter in 2010 were about
6.5 m above sea level and tapered off to the east and northeast along
Lake Drummond (Fig. 4, left). Fig. 4 (middle) illustrates that by 2012
the peat surface was lowered significantly. The average pixel-level ele-
vation loss within the fire perimeter, calculated as the 2012 elevation
minus the 2010 elevation, was 46 ± 18 cm (Table 1). The standard de-
viation here reflects the variability in average elevation change among
pixels in the study area. The 500 m buffer area surrounding the burn
scar experienced a mean elevation loss of 6 ± 37 cm. As depicted by
the map in Fig. 4 (right), drops in elevation varied spatially and
exceeded one meter in the southernmost portions of the fire.

3.3. Uncertainty in elevation change from LiDAR

One thousand Monte Carlo simulations of elevation change were
produced for each pixel as part of our effort to understand the effect of
LiDAR vertical accuracy error. We then determined the percent of
those 1000 elevation change values that were less than 0 and thus rep-
resented a decline in ground elevation. Themore values below zero, the
more confidencewe could have that a pixel actually decreased in eleva-
tion. Fig. 5 depicts the elevation change map between 2010 and 2012,



Fig. 4. Depicted are the 2010 (left) and 2012 (middle) LiDAR-derived surface elevations for the Lateral West fire scar and a 500 m buffer surrounding it. To the right, a map of elevation
change calculated as the 2012 minus 2010 DEM is shown.
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with pixels colored black to represent uncertainty about whether those
areas underwent a positive or negative change in ground elevation. The
three subsetted areas to the right in Fig. 5 depict levels of certainty about
whether an elevation loss or gain occurred. We find that 0.16, 0.63, and
0.89% of all pixels within the fire perimeter did not meet the 67, 95 and
99% confidence levels, respectively. For these pixels, the median eleva-
tion change among the three confidence levels varied between −0.1
and −0.5 cm, values much smaller than the 9 and 7 cm root mean
squared errors of the 2010 and 2012 LiDAR datasets. Removing the
pixels that did not meet the 95% confidence level, we recalculated aver-
age elevation loss within the fire scar to be 47 cm.

3.4. Soil carbon loss and uncertainty from LiDAR

Given the opportunity formisclassifying elevation loss as gain and vice
versa based on the influence of LiDAR error, we removed pixels that did
not meet the 95% confidence level from the estimate of carbon loss.
Based on the remaining pixels, total carbon loss was estimated to be
1.10 Tg C. The standard deviation around this estimate based on LiDAR
vertical error was 0.00009 Tg C, which is 0.008% of total carbon loss.

While some areas within the burn perimeter experienced little to no
change in soil carbon, the pixel-level average carbon loss per unit-area
was found to be 44.3 kg C/m2. Carbon loss was directly related to eleva-
tion loss, since mean bulk density and total organic carbon content
values were applied to all areas. Fig. 6 provides spatial detail of carbon
loss across the fire perimeter.

3.5. Soil carbon loss from FOFEM (model)

As a comparison to the LiDAR-based method, fire emissions were
also estimated using the LANDFIRE Fuel LoadingModel andMonitoring
Trends in Burn Severity data as inputs to FOFEM. Carbon loss from
Table 1
Mean and standard deviation of elevation and elevation change inside and outside
the lateral west fire scar.

Area Mean elevation (sd)

2010 fire scar 5.68 (0.20)
2010 500-m buffer 5.79 (0.58)
2012 fire scar 5.21 (0.23)
2012 500-m buffer 5.73 (0.64)

Area Mean elevation change (sd)
Fire scar −0.46 (0.18)
500-m buffer −0.06 (0.37)
FOFEM varied according to the FLM type and MTBS severity class
(Table 2). The burn scar area comprises four FLM types, each varying
in amounts of duff, litter, finewoody debris (FWD) and largewoody de-
bris. According to the MTBS data of the Lateral West fire, 11% of the
burned area was classified in the unburned to very-low severity class,
54%was in the low severity class, and 36%was in themoderate severity
class.

Total carbon loss for the Lateral West fire estimated using
FOFEM was 0.058 Tg C, much less than the 1.1 Tg C loss estimated
using LiDAR. Average emissions per unit-area from FOFEM were
0.92 kg C/m2. Carbon emissions increased with burn severity class
(Table 2). FLM 101, which had the largest peat depth available to be
burned (25 cm), produced the highest modeled emissions.

4. Discussion

4.1. Comparison of carbon estimation methods: model vs. LiDAR

The model approach using FOFEM estimated soil carbon loss at 0.06
Tg C across the entire 25 km2 fire scar, a value considerably lower than
the LiDAR-based 1.10 Tg C total. This discrepancy in estimates is due, in
part, to the limitations of the fuel loading models that provide informa-
tion on fuel availability to FOFEM. For this study region, the FLMs have
shallow duff (peat) depths. FLM 101, which accounted for 22% of the
burned area, had the largest maximum peat depth at 25 cm, nearly
half the LiDAR-estimated 46 cm average decline in soil elevation.
These shallow FLM peat depths limited the severity of the soil combus-
tion in FOFEM and made it difficult to fully characterize the below-
ground carbon loss.

Given the limitation of FLMs in the context of Great Dismal Swamp,
the LiDAR-based method likely provides the best carbon estimation of
temperate peat loss fromfire. Othermethods for determining soil eleva-
tion change exist, but they can be context-dependent. Mack et al.
(2011), for instance, studied a peat fire in Alaska by deriving elevation
change via sedges that survived the disturbance and could be used as
pre-fire elevation markers. For most other environments though, tools
like LiDAR are necessary to estimate elevation change.

4.2. Multi-temporal LiDAR for soil carbon loss estimation

Following the 2011 LateralWest fire at Great Dismal Swamp, we es-
timated soil carbon emissions using two methods. The remote sensing-
basedmethod using pre- and post-fire LiDAR data to assess spatially ex-
plicit soil elevation change and carbon loss resulted in a 1.10 Tg C esti-
mate corresponding to an average 46 cm elevation loss. In the 500 m



Fig. 5. Themap at left depicts elevation change between 2010 and 2012; areas with no significant elevation change at the 95% confidence level aremasked in black. The threemaps to the
right show elevation change at three confidence levels at finer resolution andwith insignificant elevationsmasked in black at different confidence intervals: (A) 99%, (B) 95%, and (C) 67%.
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buffer surrounding the fire scar, a 6 ± 37 cm elevation loss was detect-
ed. Given that the USGS MTBS data found no fire damage outside of the
perimeter, it would be expected that little to no change in elevation
would be found between 2010 and 2012, the years of LiDAR acquisition.
The minor elevation loss outside the perimeter points to a possible bias
in the LiDAR data itself.

A close look at Fig. 4 (right) shows two main areas of non-zero ele-
vation change, rather than uniform elevation decline across the entire
buffer area. The first, along the western edge of the perimeter, largely
shows ground elevation loss between 0.25 and 0.50 m. This area is
west of a drainage ditch and road that run north to south. Given that
no fire occurred in the area, it was unclear to GDSNWR personnel
what may have led to the change (F. Wurster, written communication,
September 5, 2014).

The second area of interest is located in the southeast corner of Fig. 4
(right), just outside the burn scar. Here, elevation gain upwards of
0.50 m is estimated from LiDAR. It is also unclear how this elevation
changemay have occurred. One possibility is that differences in season-
ality of the LiDAR acquisition may have led to elevation discrepancies.
The 2010 LiDAR was acquired under leaf-off conditions in March,
while 2012 LiDAR data were obtained during leaf-on conditions in Au-
gust. This discrepancy in the Julian dates would have allowed for vege-
tation to accumulate during the growing seasons, potentially limiting
the number of LiDAR returns from the ground surface. This may have
led to a slight overestimate of ground elevation in 2012, resulting in
the determination of elevation gain.
Although these two areas of change outside the perimeter are
curious, they do not point to a systematic bias in the LiDAR data.
Furthermore, vegetation conditions within the burned area are much
different than those outside it. Any potential regrowth of vegetation
within the burned area would likely bias the post-fire elevation mea-
sures upward. If vegetation had influenced the LiDAR returns, this
would have influenced our estimates of elevation change conservative-
ly. Thus, in conjunction with pre- and post-fire photos and MTBS data,
the LiDAR data are likely to accurately reflect the surface elevations
within Great Dismal Swamp.

In examining Fig. 6, we see that soil carbon loss varies spatially. The
distinct horizontal and vertical lines in the maps represent the roads
and ditches that traverse the refuge. This infrastructure acted as a fire-
break and effectively isolated some tracts of land from significant fire
damage. Other portions of the study site underwent minimal changes
in soil elevation, which might suggest that only aboveground biomass
was fire-affected in these areas, if at all. The most heavily affected
areas were in the southern portion of the burn scar, much of which
had burned previously in 2008. The depth of the burn, over a half-
meter in these areas, has led to a longer period of standing water.
Given this development, emergent vegetation has become common in
the landscape (Fig. 2; bottom-right). As the next section will demon-
strate, themagnitude of the LateralWest emissionswas small compared
to other peatland and non-peatland fires. Yet, the land thatwas affected
was severely changed through loss of canopy, understory and soil.
Given the changes in water table already witnessed in parts of the fire



Fig. 6.Map of soil carbon loss (kg C/m2) classified into six quantiles.
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scar, recovery is unlikely to involve pre-fire species that cannot adapt to
the new environmental conditions.

4.3. Comparison to other studies of fire carbon emissions

The 2011 fire and the resulting carbon emissions estimates provided
in this paper are compared to carbon loss values from other peatland
fire studies in Table 3. GDSNWR total emissionswere similar to estimates
Table 2
FOFEM greenhouse gas emissions (kg Carbon per m2 burned) estimates for different combinat

FLM Description % of total burn

11 Light fine woody debris, Light to no duff 25%
21 Light logs, light duff 26%
63 Moderate duff, light to heavy logs, light litter 27%
101 Very heavy duff 22%
fromaNorth Carolina peatfire (Poulter et al., 2006). AlthoughGDSNWR's
25 km2 burned area was smaller than the 384 km2 in the 1985 North
Carolina fire, total carbon loss was similar in magnitude. As a result, car-
bon loss per unit-area at Great Dismal Swamp was considerably higher
than in the Poulter et al. (2006) study. In the North Carolina study, soil
carbon loss was estimated to be 0.31, 1.53, or 3.05 Tg C when assuming
an average peat burn depth of 0.01, 0.05, or 0.10 m, respectively. This
paper found that carbon loss from LateralWestwas 1.1 Tg C, as estimated
ions of burn severities (MTBS) and fuel loading models (FLM).

ed area Carbon emissions by MTBS Class

Unburned to very-low Low Moderate

0.035 0.045 0.056
0.063 0.077 0.090
0.128 0.157 0.192
0.242 1.439 1.451



Table 3
Comparison of peatland fire carbon loss estimates.

Study Location Burned area (km2) C loss (Tg C) C loss (kg C/m2)

Page et al. (2002) Indonesia (study area) 7300 ~210 ~28.8
Poulter et al. (2006) NC, USA (0.1 m Est. burn) 384 3.05 7.57
Mack et al. (2011) Alaska, USA 1039 2.1 2.02
This study (LiDAR) GDSNWR, VA, USA 25 1.10 44.3
This study (model) GDSNWR, VA, USA 25 0.06 2.32
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from a LiDAR-based method. Bulk density used for the North Carolina
peat (0.147 g/cm3) was similar to this study (0.16 g/cm3).

The 2007 peatfire on theNorth Slope of Alaska, USA,was also similar
in magnitude to Lateral West with an estimated 2.1 Tg C burned (Mack
et al., 2011). The fire burned over 1000 km2, resulting in a unit-area
carbon loss much lower than the GDSNWR fire.

Each of the peatland fires discussed above pale in comparison to the
magnitude of the Indonesian peat fires studied by Page et al. (2002).
These 1997 fires occurred during a dry El Nino year and burned 7300
of the 25,000 km2 study area examined. Despite considerable differ-
ences in total carbon loss, unit-area loss in GDSNWR (44 kg C/m2)
actually exceeds the 28.8 kg C/m2 emissions estimated in the Central
Kalimantan, Indonesia study area. Part of this discrepancy may be due
to Page et al. (2002) applying a lower bulk density value (0.10 g/cm3)
than this study (0.16 g/cm3).

Together these comparisons suggest that either (1) previous studies
underestimated carbon loss from peatland fires, or (2) the severity of
the soil carbon loss from the 2011 fire in Great Dismal was unlike
many previously studied peatland fires. If the former explanation is
true, usingmulti-temporal LiDARwould likely provide themost precise
understanding of elevation change and carbon loss following peat fire.
Assumptions about elevation change, derived from burned-unburned
analogs or maximum potential burn depths, do not provide the level
of certainty that LiDAR remote sensing does. Although LiDAR can be
cost-prohibitive and impractical in certain situations, the results for
the Lateral West fire demonstrate the technology's capability.

Table 4 compares LiDAR-based and FOFEM-modeled carbon loss
from the Lateral West incident with emissions modeled by French
et al. (2011) using FOFEM 5.7 of five other wildland fire occurrences
in North America. These fires range from the chaparral of the south-
western USA to the boreal conifer forests of Alaska and Canada. Unit-
area carbon loss estimates for the French et al. fires were small relative
to the LiDAR-based estimate of the LateralWest fire (44.3 kg C/m2). The
sources of carbon in the fires studied by French et al. largely stemmed
from aboveground biomass, woody debris, and surface fuels. Mean-
while, the high unit-area emissions from the Lateral West fire resulted
from burning of belowground fuels, namely the organic, carbon-rich
peat soils of GDSNWR. Several of the fires in Table 4, such as the Biscuit
and Boundary events, consumed over 1000 km2 of land. Despite the
small magnitude of total carbon loss compared to these other wildfires,
the 2011 Lateral West fire resulted in substantially more emissions per
unit-area.
Table 4
Comparison of Lateral West to French et al. (2011) FOFEM-modeled emissions of other North

Fire Year Location Description

Lateral West (This study – LiDAR) 2011 GDSNWR, VA, USA Forested wetlands
Lateral West (This study – FOFEM) 2011 GDSNWR, VA, USA Forested wetlands
Boundary 2004 AK, USA Black Spruce/Feath
Montreal Lake 2003 Saskatchewan, Canada Mixed Conifer and
Biscuit 2002 OR, USA Conifer Forests
Cedar, Paradise, and Mine-Otay 2003 CA, USA Chaparral Shrubla
Witch, Harris, and Poomacha 2007 CA, USA Chaparral Shrubla
4.4. LiDAR vertical accuracy error

Unlike previous LiDAR-based fire studies, this effort used both pre-
and post-fire elevation data to precisely assess the amount of below-
ground carbon that was consumed and emitted to the atmosphere. To
ensure that this remote sensing method would be appropriate for
assessing carbon loss from other fires, it was necessary to understand
whether LiDAR vertical accuracy error might contribute to uncertainty
in our emissions estimates. Our results demonstrated that LiDAR eleva-
tion error was equivalent to just 0.008% of the total 1.10 Tg C loss.

The LiDAR error analysis also helped to identify areas within the fire
perimeter where the elevation change might be suspect (Fig. 5). For
these pixels, elevation change was much less than the 9 or 7 cm LiDAR
RMSEs, so we did not have enough confidence to classify them as either
elevation loss or gain. Depending on the level of confidence applied, be-
tween 0.16 and 0.89% of pixels within the Lateral West might adversely
affect carbon loss calculations. However, given the magnitude of the
2011 fire, these effects are small.

In low severity fires, when the average soil loss is equal to the LiDAR
elevation errors, propagating the uncertainty may prove important. For
example, take a point with a pre-fire elevation of 19 cm that drops to
12 cm post-fire, and 7 cm RMSEs for the LiDAR datasets from which
these numbers came. Simulating normal distributions for these two el-
evations based on the 7 cm average error demonstrates that 24% of the
time the post-fire elevations are actually greater than the pre-fire eleva-
tions. There is a large probability that what appears to be a 7 cm soil loss
may actually be a soil gainwhen factoring in the LiDAR vertical accuracy
error. Thus, it becomes difficult to discern whether or not this elevation
change is real or an artifact of sensor error.

The error analysis is less important under a severe peatfirewhen the
average soil loss is much greater than the LiDAR elevation error. Take an
area with pre- and post-fire elevations of 33 and 12 cm, respectively. In
this situation, the 21 cm elevation drop is three times the 7 cm LiDAR
error, and the likelihood that the soil loss is actually a soil gain is just
1.7%. In this instance, there is less uncertainty about the direction of
elevation change.

Fig. 7 shows the likelihood of drawing a false conclusion about eleva-
tion change given how large that change is relative to LiDAR error. If, as
in the previous example, the ratio of elevation change to LiDAR error is 3
(x-axis), then there is a 1.7% chance of assuming an elevation loss when
there is actually a gain (y-axis).With increasing values of x, when eleva-
tion change becomes much larger than LiDAR error, there becomes a
American wildland fires under dry fuel conditions.

Burned area (km2) Carbon loss (Tg C) Carbon loss (kg C/m2)

25 1.10 44.3
25 0.06 2.3

er Moss Forest 2172 12.0 5.5
Broadleaf Forest 217 1.3 5.9

2000 3.7 1.8
nds 1438 1.5 1.0
nds 1200 1.2 1.1



Fig. 7. Probability ofmisidentifying elevation gain as loss (or loss as gain) given the ratio of
elevation change to LiDAR error. In high-severity peat fires, elevation change would be
much larger than LiDAR error, so there is little chance of misjudging the direction of soil
surface change. By contrast, low-severity fires are more prone to uncertainty brought on
by vertical accuracy error.
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very small chance of making an erroneous conclusion about how fire
has affected the soil surface. Fig. 7 is a helpful guide for determining
when to analyze the influence of vertical accuracy error on LiDAR-
based elevation change estimates. We agree with past studies (Jaw,
2001; Jones et al., 2013) that uncertainty be quantified when average
elevation change is less than three times the LiDAR vertical error.

Our study isolated the effects of LiDAR point elevation errors on
carbon loss without addressing other potential sources of uncertainty.
Additional errors related to DEM creation or LiDAR ground filtering, for
example, could complicate efforts to accurately estimate fire emissions.
Other studies have tackled these matters though (Bater & Coops, 2009;
Sithole & Vosselman, 2004), and thiswork simply adds an additional per-
spective on the use of LiDAR for understanding fire carbon emissions.

5. Conclusion

Previous studies of peatland carbon loss due to fire (Page et al., 2002;
Poulter et al., 2006)were constrained by unidealmethods for determin-
ing changes in soil elevation. We overcome this by obtaining LiDAR
elevation data from before and after the fire at Great Dismal Swamp.
We found that although total emissions from the 2011 fire were much
less than those from the 1997 Indonesian peat fires, the carbon loss on
a per unit-area basis was greater at GDSNWR, where a long history of
draining has extensively altered the site's hydrology. This has resulted
in drier conditions in the GDSWNR peatlands and possibly increased
their exposure to wildfire.

The large unit-area carbon estimate at GDSNWR suggests that classi-
fying fires based on the total area burned might not be appropriate for
describing the extent of ecological disturbance in peat environments.
Although the Lateral West fire burned just 25 km2, the amount of soil
lostwas large (~11.7millionm3). Thus, when data permit, a soil volume
statistic might provide a better understanding of fire severity than
burned area. This is particularly true for regions with deep, carbon-
rich organic soil like Siberia and the tropical peat domes of Indonesia
(Langmann & Heil, 2004; Sheng et al., 2004). Soil carbon loss in these
regions can dwarf emissions from aboveground biomass, and total
peat depths often exceed one meter.

When possible, the pre- and post-fire LiDAR method used in this
study would likely improve fire emissions estimates in peatland
ecosystems. When utilizing this remote sensing method, we find that
LiDAR vertical accuracy error has the potential to adversely affect esti-
mates of soil elevation and carbon loss. Propagating the LiDAR error in
these estimates is important for confidently identifying soil loss versus
gain and precisely quantifying soil carbon change, particularly under
low-severity fires. For the Lateral West fire and others of similarmagni-
tude, LiDAR vertical accuracy error has a more limited effect on these
calculations.

The ecosystems within GDSNWR have historically been subject to
fire disturbance. Fire is considered an important process for resetting
biomass and facilitating species establishment in the pre-settlement
era (Bailey, Mickler, & Frost, 2007; Frost, 1989, 1995). However, more
than 200 years of hydrologic alteration and the lowering of the water
table havemade the GDSNWR especially fire prone. Usingwater control
structures along drainage ditches, the U.S. Fish and Wildlife Service is
attempting to re-wet the organic soils of the refuge to provide condi-
tions more appropriate to native plant species. Although restoration of
the site to pre-settlement vegetation conditions is unlikely given envi-
ronmental changes, more control over the flow of water could limit
burn severity in future fires, protect the accumulated peat and help to
sequester soil carbon going forward. Since peatlands account for a dis-
proportionately large share of global soil carbon, limiting severe fires
and re-wetting drained peatlands like Great Dismal Swamp might be
important strategies for mitigating future carbon emissions (Lal, 2004).
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