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Mutational analyses have shown that the genes no tail (ntl, Brachyury homolog), floating head (flh, a Not homeobox gene),
and cyclops (cyc) play direct and essential roles in the development of midline structures in the zebrafish. In both ntl and
flh mutants a notochord does not develop, and in cyc mutants the floor plate is nearly entirely missing. We made double
mutants to learn how these genes might interact. Midline development is disrupted to a greater extent in cyc;flh double
mutants than in either cyc or flh single mutants; their effects appear additive. Both the notochord and floor plate are
completely lacking, and other phenotypic disturbances suggest that midline signaling functions are severely reduced. On
the other hand, trunk midline defects in flh;ntl double mutants are not additive, but are most often similar to those in ntl
single mutants. This finding reveals that loss of ntl function can suppress phenotypic defects due to mutation at flh, and
we interpret it to mean that the wild-type allele of ntl (ntl/) functions upstream to flh in a regulatory hierarchy. Loss of
function of ntl also strongly suppresses the floor plate deficiency in cyc mutants, for we found trunk floor plate to be
present in cyc;ntl double mutants. From these findings we propose that ntl/ plays an early role in cell fate choice at the
dorsal midline, mediated by the Ntl protein acting to antagonize floor plate development as well as to promote notochord
development. q 1997 Academic Press

INTRODUCTION tem (CNS) (reviewed in Jessell and Dodd, 1992; Placzek, 1995).
Together the notochord and floor plate serve as a polarizing
center, organizing development of nearby cell types includingGenetic control of development of the vertebrate midline
motor neurons and somitic derivatives (Yamada et al., 1991,is now beginning to be understood through a combination of
1993; Placzek et al., 1993; Beattie et al., 1997; reviewed byinvestigative approaches with a variety of organisms (for re-
Placzek, 1995; Cossu et al., 1996). Many studies have impli-view see Lemaire and Kodjabachian, 1996). The most promi-
cated Hedgehog proteins as important signaling molecules innent of the midline tissues, the notochord, signals develop-
these induction events (reviewed by Placzek et al., 1995; Ham-ment of the floor plate, a tissue that immediately overlies the
merschmidt et al., 1997).notochord, in the ventral midline of the central nervous sys-

Both the notochord and the floor plate originate from
the same precursor dorsal ‘‘organizer’’ region in the early
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tion of Washington, Baltimore, MD 21210. after gastrulation begins by a distinctive accumulation of
2 Present address: Laboratoire de Neurobiologie Cellulaire, Insti- cells, the embryonic shield (Kimmel et al., 1995). Cell lin-

tut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15 France. eage analyses suggest that by this stage cells of the organizer
3 Present address: Developmental Genetics Program, Skirball In- region have already been specified to develop particular tis-

stitute of Biomolecular Medicine, New York University School of sue types (Shih and Fraser, 1995; Melby et al., 1996), and are
Medicine, New York, NY.

under control of zyogotically expressed genes (for example,4,5 Present address: IGBMC, BP 163, 67404 Illkirch Cedex, CU de
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155Zebrafish Midline Genetics

al., 1996; twist, Halpern et al., 1995; floating head (a Not function of cyc and flh combine additively to very severely
disrupt the embryonic midline, including its signaling func-homeobox gene), Talbot et al., 1995; Melby et al., 1996).

Mutational analyses in zebrafish have identified a num- tions. On the other hand, at the same midbody levels ntl is
epistatic to both cyc and flh, revealing prominent geneticber of genes, including cyclops (cyc), no tail (ntl), and float-

ing head (flh), as playing essential roles in midline develop- interactions. The findings motivate a new hypothesis that
the wild-type ntl gene functions in the cell fate choice be-ment (Hatta et al., 1991; Halpern et al., 1993, 1995; Talbot

et al., 1995). Loss of function of cyc nearly entirely deletes tween notochord and floor plate.
the floor plate, in addition to other defects including defi-
ciencies in the prechordal plate, the notochord, and ventral–
anterior regions of the CNS (Hatta et al., 1991, 1994; Hatta, MATERIALS AND METHODS
1992; Krauss et al., 1993; Strahle et al., 1993; Ekker et al.,
1995; Ungar et al., 1995; Yan et al., 1995; Allende and Wein-

Fish and Mutant Linesberg, 1994; Thisse et al., 1994; Barth and Wilson, 1995;
Macdonald et al., 1995; Toyama et al., 1995; Hauptmann Fish were reared at 28.57C and cared for as previously described
and Gerster, 1996; Warga, 1996). The molecular identity of (Westerfield, 1994). Embryos were obtained from matings between

pairs of fish singly or doubly heterozygous for the mutant allelescyc is unknown. ntl is orthologous to Brachyury, a gene
being examined. Embryos were collected, sorted into embryo me-well known from studies in mouse and Xenopus, and with
dium (EM; Westerfield, 1994), and maintained at 28.57C until thehomologs known in a variety of other species (Halpern et
appropriate developmental stage. Staging criteria of Kimmel et al.al., 1993; Schulte-Merker et al., 1994; Herrmann and
(1995) were followed.Kispert, 1994; Kispert et al., 1994; 1995b; Yasuo and Satoh,

The cyc (cycb16, cycb213, and cycb229) and ntlb160 mutant alleles1993; 1994; Harada et al., 1995; Holland et al., 1995). The
used in this study were g-ray induced. The ntlb195 mutation arose

Brachyury/ntl gene encodes a putative transcription factor spontaneously and results from a DNA insertion in the Ntl protein
that is expressed in the rudiments of both notochord and coding sequence (Schulte-Merker et al., 1994). flhnl is also a sponta-
tail, and is essential for development in both domains neous mutation, resulting from a 2-base-pair deletion in the coding
(Kispert and Herrmann, 1993; 1994; Kispert et al., 1995a,b; sequence upstream of its homeobox (Talbot et al., 1995). The genes

are unlinked to one another; cyc maps to linkage group 12, flh toConlon et al., 1996; Wilkinson et al., 1990; Smith et al.,
linkage group 13, and ntl to linkage group 19 (Postlethwait et al.,1991; Schulte-Merker et al., 1992; Chesley, 1935; Halpern et
1994). To produce parental fish that were heterozygous at two ofal., 1993). Loss of Brachyury/ntl function appears to disrupt
the loci, fish heterozygous for one of the mutations were mated tomorphogenesis of mesoderm during gastrulation in both
fish heterozygous for the other, and the progeny were reared. Themouse and zebrafish (Wilson et al., 1995; Melby et al., 1997).
double heterozygotes were identified by single pair matings, andNotochord differentiation is blocked, completely in zebra-
subsequently intercrossed to obtain homozygous double mutant

fish and perhaps incompletely in the mouse (Chesley et al., embryos.
1935; Herrmann, 1991; Halpern et al., 1993; Wilson et al., cyc;flh double mutants were produced using the cycb16 and flhn1

1995; Rashbass et al., 1994). flh is a Not homeobox gene alleles. The intercross progeny of double heterozygotes fell into
with homologs known in Xenopus and chicken (von Das- four phenotypic classes (WT:cyc0:flh0:cyc0;flh0) exhibiting ratios

not significantly different from the 9:3:3:1 ratio expected for inde-sow et al., 1993; Gont et al., 1993; Knezevic et al., 1995;
pendently sorting (Mendelian) genes (9.67:2.76:2.49:1.09, n Å 662,Stein and Kessel, 1995; Stein et al., 1996). In the early zebra-
x2 Å 6.08, P ú 0.1).fish gastrula flh is expressed in precursors of the notochord,

We obtained flh;ntl double mutants using the flhn1 allele withand in this domain it functions to promote notochord devel-
either ntl0 allele, mostly ntlb195. From intercrosses of doubly hetero-opment and to repress muscle development (Talbot et al.,
zygous fish, we could easily sort three phenotypic classes (WT, flh0,1995; Halpern et al., 1995; Melby et al., 1996). Gain-of-
ntl0) in a ratio of 9:3:4 as expected from independent assortment

function experiments in Xenopus show that overexpression and assuming that ntl is epistatic to flh (8.89:3.14:3.97, n Å 612,
of Xnot-2 leads to an expanded notochord at the expense of x2 Å 0.297, P ú 0.7). Upon closer inspection of ntl0 embryos, we
nearby mesoderm, particularly somitic mesoderm (Gont et observed some individuals that had short stretches of medially
al., 1996). In flh mutants during gastrulation, cells occu- fused somites, a flh0-like characteristic; we presumed that these

individuals were double mutants. However, the four phenotypicpying the notochord domain lose the normal features of
classes (WT:flh0;ntl0:flh0;ntl0) exhibited a ratio that was signifi-notochord precursors and they differentiate as muscle
cantly different from the expected 9:3:3:1 (8.89:3.14:3.58:0.39, n Å(Halpern et al., 1995; Melby et al., 1996).
612, x2 Å 18.73, P õ 0.001). We used allele-specific primers inThe objective of our work is to learn how genes control
PCR reactions to confirm that individuals from the double mutantcell fate decisions in the newly emerging vertebrate embry-
phenotypic class were homozygous for the flhn1 allele and to searchonic axis. At midbody levels cyc, ntl, and flh mutants each
for individuals within the ntl0 phenotypic class that were homozy-

have distinctive phenotypes that appear to be due to differ- gous for the flhn1 allele. Using this analysis, we found that the ratio
ent defects in the development of cells deriving from the of ntl0:flh0;ntl0 was 3:1 as expected (3.06:0.94, n Å 149, x2 Å 0.19,
same area, the organizer region, of the early gastrula. Here P ú 0.5). For PCR analysis, genomic DNA was prepared either
we describe the use of double mutants to investigate possi- from whole zebrafish embryos or from heads of embryos that had

undergone in situ hybridization. DNA was prepared as describedble interactions between these genes. We find that loss of
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(Johnson et al., 1994), except 11 Thermopol buffer (New England and coverslipped under Permount (Fisher). Sections were examined
on a Zeiss Axioskop under a 401 water immersion lens and photo-Biolabs) plus 1 mg/ml proteinase K (Boehringer-Mannheim) was

used as the digestion buffer and in situ hybrized embryos were graphed using a color digitizing camera (Kontron). Images were
processed using Adobe Photoshop on a Macintosh Quadra 950 withwashed twice in 11 Thermopol buffer before proteinase K addition.

Two separate amplification reactions using allele-specific primers a Nuvista video board.
for either the flhn1 allele or the wild-type flh allele were used to
determine the genotype of each ntl0 embryo. These primers take
advantage of a 2-bp deletion in the flhn1 allele (Talbot et al., 1995). Immunohistochemistry
The forward allele-specific primer sequences are 5*-TCTCCAGCT-

Antibody labeling of embryos was performed as described (Halp-CTGCGCTCG-3* (flhn1 coding strand) and 5*-TCTCCAGCTCTG-
ern et al., 1993). Mouse monoclonal antibody zn-1 (Trevarrow etCGCTCC-3* (wild-type flh coding strand) and the common reverse
al., 1990) was used to label ic interneurons. Zn-12 (Trevarrow etprimer sequence is 5*-AACTGCTGCTTTCGCCAG-3* (noncoding
al., 1990), recognizing the antigen HNK-1 (Metcalfe et al., 1990)strand); both primer pairs amplify a 284-bp product. In addition, an
was used to visualize the medial longitudinal fascicles and otherinternal common forward primer with sequence complementary
CNS structures. Zn-5, recognizing the DMgrasp protein (Kanki etto both alleles (5*-CGTGGAGCTGTGTACGCA-3*) was used in
al., 1994; Fashena, 1996) was used to label the floor plate.each reaction as a control for DNA quality; this primer in combina-

tion with the reverse primer produces a 156-bp product. Typically,
about 0.4% (whole embryos) or 10% (in situ hybridized embryos)

Mapping of cycb213
of the total genomic DNA sample was used in each PCR reaction.
Reaction components and concentrations are as described (Johnson The mapping of cyclops, the linkage group 12 centromere, and
et al., 1994; Postlethwait et al., 1994). PCR conditions were 947C most of the other loci shown in Fig. 2 have been described (Postleth-
for 2 min, followed by 40–44 cycles of 947C for 30 sec, 587C for 30 wait et al., 1994; Johnson et al., 1996; Knapik et al., 1996; Postleth-
sec, 727C for 30 sec, followed by 727C for 7 min. Amplified products wait et al., in preparation). The locations of markers z1804 and
were separated by electrophoresis on agarose gels. 15T.750 were determined in various haploid mapping crosses as

cyc;ntl double mutant progeny from the intercrosses fell into described (Postlethwait et al., 1994). Primers for the z1804 locus
four distinct phenotypic classes: WT, cyc0, ntl0, and cyc0;ntl0, were obtained from Research Genetics. The 15T.750 marker was
which for crosses involving cycb16 and ntlb160 or cycb229 and ntlb195, initially identified as a RAPD marker linked to cyclops and was
exhibited Mendelian ratios of 9:3:3:1. (For cycb16//;ntlb160// inter- subsequently converted to a sequence-tagged site (STS) by contruct-
crosses, the ratios were 9.0:2.84:3.11:1.05, n Å 2,873, x2 Å 2.6, ing primers corresponding to the sequence of the cloned RAPD
P ú 0.5, and for cycb229//;ntlb195// intercrosses the ratios were fragment. The 15T.750 STS primers are 5*-ACAAACAGAAAT-
8.83:3.26:2.88:1.03, n Å 467, x2 Å 0.89, P ú 0.7). In the case of GGGAATACATAG-3* and 5*-TTCACAGTATGTGGGATAATA-
cycb213, which is due to a reciprocal translocation that produces TTTT-3*. To characterize the cycb213 allele, genomic DNA prepared
an earlier noncyclopic lethal phenotype referred to as ‘‘severe’’ in from individual haploid progeny of a female heterozygous for
addition to phenotypically cyc0 embryos (W. Talbot, unpublished cycb213 was pooled and analyzed by PCR using linkage group 12
data), segregation ratios were aberrant and fewer double mutants markers as described (Postlethwait et al., 1994).
were observed (WT Å 601, severe Å 20, cyc0 Å 11, ntl0 Å 209,
cyc0;ntl0 Å 7).

RESULTS
Whole-Mount in Situ Hybridization

The cyc, flh, and ntl Alleles Are Probably NullEmbryos were processed for whole-mount in situ hybridization
Mutationsas described (Oxtoby and Jowett, 1993, Thisse et al., 1993). Digoxy-

genin RNA antisense probes were synthesized by T7 polymerase The overall appearances of the mutants are shown in Fig.
(Boehringer Mannheim) from a HindIII-linearized sonic hedgehog 1. The single mutant phenotypes have all been described
template (Krauss et al., 1993) or an XbaI-linearized myoD template

previously (see Introduction for references). With the excep-(Weinberg et al., 1996), and by T3 polymerase (Boehringer Mann-
tion of cycb213 (see below), all of the mutations show Mende-heim) from an XhoI-linearized a-collagen type II template (col2a1,
lian segregation, and intercrosses between double heterozy-Yan et al., 1995). Embryos were sorted and dechorionated prior to
gotes yielded homozygous double mutants in the expectedfixation and approximately 10–20 embryos of a given phenotypic

class were used for each hybridization. Each experiment was re- ratios (see Materials and Methods). To interpret meaning-
peated at least twice with the exception of the cycb213;ntlb160 double fully epistatic interactions between the genes we want to
mutants which were difficult to obtain due to the aberrant segrega- make double mutants that combine severe, loss-of-function
tion of the cycb213 translocation. Following probe visualization, indi- alleles (Avery and Wasserman, 1993). The deduced protein
vidual embryos were dehydrated in methanol:PBS (50:50) followed sequences encoded by the mutant alleles ntlb160, ntlb195, and
by 100% methanol, briefly treated with methyl salicylate or benzyl flhn1 suggest that the gene products are likely to lack func-
alcohol:benzyl benzoate (1:2), mounted between coverslips in Per-

tion (Schulte-Merker et al., 1994; Talbot et al., 1995). Themount (Fisher), and photographed on a Zeiss Universal microscope.
phenotype of an embryo in which flhn1 is placed in trans toFor preparation of semithin sections, following probe visualiza-
a deficiency also suggests flhn1 is a null allele (Talbot et al.,tion, embryos were dehydrated through a methanol series to propyl-
1995). The cyc gene has not been identified; hence, we haveene oxide:Epon (1:1) and pure Epon, as described (refer to West-

erfield, 1994). Serial sections (7 mm) were dried onto glass slides no direct molecular evidence for the nature of the cyc alleles
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FIG. 1. Pharyngula (24 hr) wild-type (WT, A) and mutant embryos (B–G, the gene name abbreviations on this and other figures indicate
homozygous mutants for the loci indicated). The head of the cyc;flh double mutant (E) is similar to cyc0 (B; see Hatta et al., 1991), whereas
the body is similar to flh0 (C), with respect to both midline somite fusion and lack of ventral body curvature. The tail of the flh;ntl double
mutant (F) is like ntl0 (D), and in this example there is a patch of fused somites, as present in flh0, just dorsal to the yolk extension.
Somite fusion is variable, occurring in 43% (15/35) of embryos subsequently confirmed to be flh;ntl double mutants by PCR genotyping
(see Materials and Methods). The cyc;ntl double mutant (G) combines the cyc0 head and ntl0 tail phenotypes. Scale bar, 250 mm.

we have studied. We now provide genetic evidence that they one of the cyc alleles, cycb213, that shows it to be a defi-
ciency of the cyc locus (Fig. 2). The cyc gene maps to theare also null mutations.

This interpretation derives from mapping analysis of distal end of linkage group 12 (Postlethwait et al., 1994).
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FIG. 2. Genetic mapping establishes that cycb213 is a null muta-
tion. The map positions of the centromere (box containing krox20),
cyclops, and other loci on this linkage group are shown. The black
bar indicates the distal region that contains markers that are not
present in genomic DNA from cycb213 mutants. The cycb213 translo-
cation breakpoint is located in the region between markers z1804
and 15T.750 (stippled bar).

Molecular markers identifying this region are missing
from genomic DNA prepared from cyclopic haploid em-
bryos bearing the cycb213 allele (data not shown). The de-
leted region in the mutant DNA includes the sequence
tagged site denoted 15T.750 and the 3 markers shown
distal to 15T.750 in Fig. 2. Markers for the proximal re-
gion of linkage group 12 are not deleted in cycb213 (e.g.,
z1804 in Fig. 2). Additional mapping data indicate that
the distal region, containing the cyc gene, is translocated
to linkage group 2 (Talbot et al., in preparation), the
breakpoint residing 25–35 cM proximal to cyc.

FIG. 3. Expression of shh is missing in the trunk midline inDiploid homozygotes for the cycb213 deficiency have the
cyc;flh double mutants at the late segmentation period. Whole-severe phenotypic changes resembling homozygotes for
mounted embryos at 21 hr, left side views, with anterior to thecycb16 and cycb229, that we also utilized in this study. We
left and dorsal to the top. RNA in situ hybridization. At this stagehave not detected phenotypic differences among these mu-
in wild-type embryos (A) the floor plate (fp, white arrowhead)tant alleles. Based on these analyses we conclude that all
expresses shh strongly, and expression is becoming downregulatedof the cyc mutant alleles, as well as those of ntl and flh, in the notochord (not, dark arrowhead), as previously shown by

produce null, or near null phenotypes. Krauss et al. (1993). The embryos are overstained to reveal weaker
levels of notochord shh expression. In cyc mutants (B) only theThe Combined Effects of cyc0 and flh0 Severely
notochord is labeled (Krauss et al., 1993), in flh mutants (C) onlyDisrupt Midline Development isolated clusters of floor plate cells are labeled (Talbot et al., 1995),

Mutation of either cyc or flh disrupts both notochord and and in cyc;flh double mutants (D), there is no labeling at all. Scale
floor plate development, but the phenotypes of the single bar, 25 mm.
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mutants (i.e., cyc0 and flh0) are distinct (Fig. 3). By morphol-
ogy as well as by expression of several molecular markers
scored at 24 hr, the floor plate is nearly completely missing
in cyc0, with a few floor plate cells remaining in the tail of
some but not all individuals (Hatta, 1992; Krauss et al.,
1993; Yan et al., 1995). Notochord develops in cyc0, but it
is thinner than normal (Warga, 1996; E. Melancon, unpub-
lished results). In contrast to cyc0, more floor plate is pres-
ent along the axis in flh mutants, but it is disrupted into
patches in the spinal cord (Halpern et al., 1995; Talbot et
al., 1995) that we term floor plate ‘‘islands’’ (see also Beattie
et al., 1997). Notochord is entirely lacking in flh mutants
(Talbot et al., 1995).

The cyc;flh double mutants (i.e., embryos homozygous
for both mutant alleles) are easily recognized because they
bear key phenotypic features of both single mutants, partic-
ularly the cyclopia characteristic of cyc0, and the complete
lack of notochord accompanied by somite fusion across the
midline characteristic of flh0 (Fig. 1). Floor plate markers
failed to label any cells in the ventral neural tube of cyc;flh
double mutants (Fig. 3). Hence, both differentiated noto-
chord and floor plate seem to be completely missing in
cyc;flh double mutants. The midline phenotype appears ad-
ditive.

We observe other defects involving the hindbrain and spi-
nal cord in the cyc;flh double mutants that are substantially
nonadditive; rather they are dramatically more severe than
in either single mutant. A typical example is the change in
patterning of a class of ventrally located interneurons
termed ic cells that are present in the caudal hindbrain
(Fig. 4). In wild-type embryos these cells are present in a
bilateral pair of rows, positioned adjacent to the medial lon-
gitudinal fascicles, the axonal pathways to which they con-
tribute their axons (Mendelson, 1986). They also form a
bilateral pair of rows in cyc and flh single mutants, located
slightly closer to the midline in each single mutant than in
the wild type. However, in the cyc;flh double mutant ic
neurons are present in a single (unpaired) cell row, located
just at the midline.

Other examples of nonadditive severe defects in cyc;flh
mutants include disruption of the axonal pathway of the
Mauthner neuron (a giant interneuron in the fourth rhom-
bomere), and disorganization of the lateral longitudinal fas-
cicle that projects rostrocaudally through the length of the
hindbrain (data not shown). There are also deficiencies of FIG. 4. Patterning of ic interneurons is severely disrupted in
spinal motoneurons, reported in the accompanying paper cyc;flh double mutants. Dorsal views of the caudal hindbrain, with

anterior to the left, in whole-mounted embryos labeled with the(Beattie et al., 1997). It is likely that all of these changes in
zn-1 monoclonal antibody at 24 hr. This antibody binds a neuronalthe nervous system are secondary, nonautonomous effects
antigen that is prominently expressed by ic interneurons, a distinc-of the mutations resulting from midline signaling deficien-
tive class of neurons cells present in the caudal hindbrain thatcies (see Discussion).
project axons ipsilaterally and caudally, within the medial longitu-
dinal fascicles, to the spinal cord (Mendelson, 1986). In the wild
type (A) the ic neurons (arrowhead) line up in bilateral rows adjacentVariable Epistasis between flh and ntl
to the medial longitudinal fascicles. The same two cell rows are

Both flh and ntl single mutants lack a differentiated noto- present (and are closer together) in cyc (B) and flh (C) single mutants.
chord. In flh0, somites are fused medially all along the Only a single disorganized row of ic cells is present, just at the
length of the trunk. In ntl0, the tail is absent and somite midline, in the cyc;flh double mutant (D). Scale bar, 25 mm.
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fusion occurs only in a few (3–5) of the caudalmost re-
maining body segments. Considering the single mutant
phenotypes and the expression domains of the two genes,
we expected that flh;ntl double mutants should sort along
with ntl single mutants scored by missing tail (Fig. 1). We
verified this prediction by using allele-specific PCR primers
to identify flh homozygous mutants at the expected fre-
quency within this ntl0 phenotypic class (see Materials and
Methods). Moreover, we could find live mutant embryos
that had patches of fused somites in the trunk (Fig. 1); upon
PCR genotyping, these embryos were always double mu-
tants. However, in other cases we could not detect such
patches of somite fusion; i.e., the flh;ntl double mutant phe-
notype and the ntl single mutant phenotype were indistin-
guishable. Hence, the midline phenotype is variable among
individual flh;ntl double mutants. We encountered variabil-
ity irrespective of whether the double mutants were made
with the ntlb160 or the ntlb195 alleles.

Examination of myoD expression provides a sensitive
way to analyze further the extent of somitic fusion in the
midline of flh;ntl double mutants (Fig. 5). The myoD gene
is first expressed during gastrulation of wild-type embryos,
in bilateral patches that flank the axis. Gastrula expression
is missing in ntl mutants, but then appears in bilateral
stripes after gastrulation, similar to the wild-type pattern,
although the stripes are more separated (Weinberg et al.,
1996; Odenthal et al., 1996). In contrast, myoD is expressed
in early flh mutants, approximately at the correct locations.
Then, before the end of gastrulation in flh mutants, expres-
sion appears ectopically in the midline, fusing the two bilat-
eral stripes together (Halpern et al., 1995). We observed that
in flh;ntl double mutants examined during the late segmen-
tation period, prominently separated, bilateral myoD stripes
predominated along the axis, as in ntl mutants (Fig. 5). This
result, a myoD phenotype resembling ntl0, was already FIG. 5. ntl0 partially suppresses somitic fusion due to flh0. Dorsal
striking at the beginning of the segmentation period (1–2 views, with anterior to the left of 19-hr embryos (20-somite stage).

RNA in situ hybridization for myoD (Weinberg et al., 1996). Insomite stages, data not shown). However, along the trunk
wild-type embryos (A), bilateral stripes of labeling are present inof some individual flh;ntl double mutants fixed at the later
the trunk beside the developing notochord, which is unlabeled atstage (20 somites) there was a region of midline fusion of
the midline. In flh mutants (B) labeling spreads across the midline,the myoD stripes, such as is characteristic of the entire
whereas in ntl mutants (C) the stripes are distinctively farther apartlength of the trunk in flh mutants. These findings show
than in the wild type (Odenthal et al., 1996). Labeling in the flh;ntl

that with respect to myoD expression, ntl is epistatic to flh double mutant is generally ntl0-like, but a single patch of tissue,
in most embryos, but that in some individuals (see legend involving three adjacent segments, shows the flh0-like pattern.
to Fig. 5 for quantification), epistasis reverses in regions Forty-six percent of the double mutants (n Å 13) had fusion of
that are sometimes several somites long. myoD expression that included regions of 2–5 somites (mean, 3.2

The phenotype of the floor plate provides another test somites; n Å 6) at midtrunk levels. The other flh;ntl double mu-
tants were indisinguishable from ntl0. Genotyping of flh allelesof epistasis between flh and ntl (Fig. 6). As described
was performed on all ntl mutant and flh;ntl mutant embryos byabove, only isolated islands of floor plate persist within
PCR analysis. Scale bar, 100 mm.the spinal cord of flh mutants (Talbot et al., 1995; Oden-

thal et al., 1996). The floor plate is present and continuous
along most of the length of the axis of ntl mutants (Halp-
ern et al., 1993), and as revealed by expression of markers
such as shh, or a collagen gene col2a1 (Figs. 6F and 7; tants than in wild-type embryos (Odenthal et al., 1996).

In flh;ntl double mutants (Figs. 6G and 6H) the floor plateKrauss et al., 1993; Yan et al., 1995), we found that the
floor plate is widened, containing substantially more cells is present through most of the trunk spinal cord. It is

nearly continuous along this length, as in ntl0, and nearlyalong a given length of the trunk spinal cord in ntl mu-
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FIG. 6. ntl0 partially suppresses the flh0 floor plate defect. Side views, with anterior to the left. The left panels show matched left side
views, with dorsal to the top. The right panels show dorsal views at higher magnification. RNA in situ hybridization for shh (Krauss et
al., 1993). In wild-type embryos (A, B), a one-cell-wide row of floor plate is labeled along the length of the trunk and tail (arrowheads).
The floor plate is disrupted into islands of cells in flh mutants (C, D; 8 of 50 flh mutants had more significant stretches of continuous
floor plate labeling than in the example shown). In ntl mutant floor plate is present along most of the length of the trunk, except for the
caudalmost region (last 1–3 somites, E; we also observed caudal plate to be forked in about half the ntl mutants, and interrupted caudally
in 8 of 50). The ntl mutant floor plate is 3–4 cells wide (F). Floor plate is present along most of the trunk in flh;ntl double mutants.
Compared with ntl mutants, the caudal disruption of the floor plate is more extensive in the flh;ntl double mutant (floor plate is lacking
in the caudalmost 4–8 somites (G). We also observe local regions along the trunk where the floor plate is disrupted in individual double
mutants (not shown). Otherwise, shh labeling in flh;ntl double mutants is generally ntl0-like, including substantial floor plate widening
(H). We observed the same floor plate phenotypes in these mutants with the marker col2a1 (data not shown). Scale bars, 100 mm (left
panels), 25 mm (right panels).

as wide as the floor plate in ntl0. Hence, loss of ntl func- of the caudalmost spinal cord of the flh;ntl double mu-
tants as compared with ntl mutants (5–8 somites vs 1–tion strongly suppresses the flh0 floor plate deficiency.

However, one or a few discontinuities are occasionally 3 somites). The expressivity of the latter phenotype is
sufficient to permit us to unambiguously distinguish be-observed in the flh;ntl double mutant floor plate, and floor

plate markers are consistantly absent in a longer region tween flh;ntl double mutants and ntl single mutants (as
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FIG. 7. The floor plate is abnormally broad and cell-rich in ntl mutants. Comparisons of expression of col2a1 in wild types (upper panels)
and ntl mutants (lower) at rostral (left) and caudal (right) axial levels. Left side views of whole-mounted 24-hr embryos, with anterior to
the left and dorsal to the top. RNA in situ hybridization with a col2a1 probe (Yan et al., 1995). Within the spinal cord the wild-type floor
plate is a 1-cell-wide row (A, B, white arrowhead). Notochord (dark arrowhead) and hypochord (hy) also express the marker. Often the
floor plate in the ntl mutant trunk appears irregular (C, D), in a row several cells wide. In addition, ventral projections of cells with the
col2a1 expression characteristic of hypochord (arrow) are often seen in the ntl mutant caudal trunk (D). However, expression of radar, a
marker characteristic of the hypochord in wild-type embryos, was not detected in ntl mutants by Rissi et al. (1995). Scale bar, 25 mm.

we confirmed by using PCR to genotype the embryos, as et al., 1996). We identified floor plate in cyc;ntl double mu-
described under Materials and Methods). tants (Figs. 8 and 9). This result was not predicted in a

In summary, the expression studies show that, for most straightforward way from our previous interpretations of
of the trunk midline, ntl mutations can strikingly suppress the single mutant phenotypes (see Discussion) and we ex-
both the muscle and floor plate phenotypes due to loss of amined it thoroughly. The floor plate phenotype is similar
flh function. Less frequently, in some embryos we observe a or identical in double mutants constructed with any of the
local flh0-like phenotype. Even considering these embryos, three cyc alleles in combination with either of the two ntl
however, ntl epistasis to flh predominates. Nowhere along alleles we studied (see Materials and Methods). The floor
the midline did we observe a phenotype resembling wild plate in cyc;ntl double mutants is recognizeable by mor-
types. phology (Nomarski inspection in live embryos) and ex-

presses markers of the wild-type floor plate including shh
and col2a1 (Figs. 8 and 9; Krauss et al., 1993; Yan et al.,

Suppression of cyc by ntl 1995). We observed the same results with additional mark-
ers including axial, DMgrasp, and keratan sulfate (StrahleWe recognize cyc;ntl double mutants because they ex-
et al., 1993; Fashena, 1996; Smith and Watt, 1985).hibit the cyclopic head phenotype that characterizes cyc0,

Axonal pathfinding by axons coursing longitudinallyas well as the tailless phenotype of ntl0 (Fig. 1). Addition-
within the ventral central nervous system, normally besideally, the notochord is entirely deleted (Fig. 8), just as in ntl
the floor plate, is also defective in cyc single mutants (Hattamutants.
et al., 1992, Bernhardt et al., 1992a, b). Mosaic analysisThe floor plate phenotypes of cyc and ntl single mutants
has shown that this axonal phenotype is nonautonomous;contrast more completely than the flh and ntl comparison
pathfinding can be locally rescued by cell transplantationjust discussed. The trunk floor plate is wider than normal

in ntl0 and is missing in cyc0 (Hatta et al., 1991; Odenthal to construct genetic mosaics with a stretch of wild-type
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FIG. 9. Midline expression of shh in ntl mutants (A) and cyc;ntl
double mutants (B) detected by RNA in situ hybridization. Left
side views of the trunk of whole-mounted 24-hr embryos, with
anterior to the left and dorsal to the top. In ntl mutants, shh tran-
scripts are present in floor plate (white arrowhead) and in a few
cells beneath the spinal cord (arrow). cyc;ntl double mutants only
show floor plate labeling, present in approximately a 1-cell-wide
row. Scale bar, 25 mm.

floor plate in an otherwise cyc mutant nervous system
(Hatta, 1992). We examined axonal pathfinding in cyc;ntl
double mutants to learn if their floor plate possessed the
axonal signaling property (Fig. 10). We observed that within
the caudal hindbrain and spinal cord the pathways were
normal-looking in cyc;ntl double mutants, as in wild-type
embryos (not shown) and in ntl single mutants.

Together the findings suggest that the floor plate present
in the rostral trunk of cyc;ntl double mutants is intact mor-
phologically, molecularly, and functionally. However, floor
plate is missing at both rostral and caudal extremes of the
axis. In wild-type and ntl0 embryos, the floor plate extends
rostrally through all of the ventral hindbrain and midbrain.
In cyc;ntl double mutants, marker expression reveals the
floor plate ends rostrally within the hindbrain (see legendFIG. 8. Floor plate but not notochord is present in cyc;ntl double
to Fig. 10), and, in accord with this, the axonal pathwaysmutants. Left side views, with anterior to the left and dorsal to the top

of whole-mounted 24-hr embryos. RNA in situ hybridization with a are disturbed within the hindbrain (in contrast to the spinal
col2a1 probe (Yan et al., 1995). In the wild-type (A) expression is in the cord; Fig. 10). In ntl0 embryos the floor plate is missing in
notochord (dark arrowhead), in the single row of cells that comprise the the caudalmost 1–3 body segments, and, just as we showed
floor plate (white arrowhead), and in the hypochord (hy). The floor plate above for flh;ntl double mutants, floor plate markers are not
is specifically missing in cyc0 (B). The notochord and possibly hypochord expressed in about the last 8 segments in cyc;ntl double
(Rissi et al., 1995) are missing in ntl0 (C), whereas the floor plate is mutants.
present (arrowhead), as are col2a1-expressing cells just ventral to the

Our data show that ntl0 acts to suppress the cyc0 absencespinal cord and floorplate (arrow). Floor plate is also present in the cyc;ntl
of floor plate phenotype along a substantial length of thedouble mutant hindbrain and trunk spinal cord (D) but labeling does
neuraxis, but not the entire length, matching the result ob-not extend as far caudal as in ntl mutants. Cells beneath the floor plate
tained with flh;ntl double mutants. Hence ntl appears epi-also label in double mutants but these are fewer in number than in ntl

single mutants (arrow, compare with C). Scale bar, 25 mm. static to cyc at midbody levels. Even at rostral trunk levels
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where suppression of the cyc0 phenotype is most complete,
the cyc;ntl double mutant and ntl single mutant phenotypes
differ significantly in at least two respects: First, the double
mutant floor plate is not several (3–4) cells wide as in ntl0

but, as revealed by sectioning, and counting shh-expressing
cells, the cyc;ntl double mutant floor plate, is a one cell-
wide row, as in wild types (Fig. 11; see legend for quantifica-
tion). Second, in ntl0, some cells expressing midline mark-
ers are present ventral to the spinal cord, i.e., in the position
of the missing notochord (Figs. 7–9; also see Krauss et al.,
1993; Shulte-Merker et al., 1994). These cells are decreased
in number or are entirely missing in cyc;ntl double mutants
examined at any stage during the segmentation period or
early pharyngula period of development (Figs. 8, 9, and 11).

DISCUSSION

We have characterized double mutants using loss-of-func-
tion alleles of cyc, flh, and ntl. With specific reference to the
midline phenotypes at midbody levels, the principal results
show that the disturbances due to loss of functions of cyc and
flh are additive, that ntl is usually epistatic to flh, and that
ntl is also epistatic to cyc. As we discuss below, we interpret
these results to mean that cyc/ and flh/ do not strongly inter-
act in midline development, that flh/ and ntl/ reciprocally
influence one another with the ntl/ influence predominating,
and that cyc/ acts antagonistically to ntl/. We summarize
this model in Fig. 12, which perhaps oversimplifies our view
of the genetic interactions involved in midline development,
for the circuit will certainly turn out to be a complex network,
not a simple pathway, as more genes are analyzed. Our find-
ings also suggest a new role for the ntl gene in midline develop-
ment, namely that it is influencing a cell fate choice between
notochord and floor plate, in the same fashion as we have
proposed earlier for flh to be acting in the choice between
notochord and muscle (Halpern et al., 1995; Melby et al.,
1996). This role for ntl is supported by mouse embryo chimera
studies, in which Brachyury mutant cells transplanted into
wild types were found to preferentially incorporate into the
ventral neural tube, including the floor plate, or to incorporate
into axial tissue that often fuses with the ventral neural tubeFIG. 10. Floor plate-dependent axonal pathfinding is intact in the
(Wilson et al., 1995).caudal hindbrain of cyc;ntl double mutants. Dorsal views, with

anterior to the left, of the caudal head region of 30-hr embryos,
labeled with the zn-12 monoclonal antibody (Trevarrow et al., Loss of Midline Tissues and Signaling in cyc;flh
1990). This antibody binds the HNK-1 epitope broadly expressed Double Mutants
on developing neurons (Metcalfe et al., 1990), including the medial

We obtained no evidence for any interactions between cyclongitudinal fascicles (MLF, arrowheads) which emanate from bilat-
and flh with respect to midline development specifically, ateral neuronal clusters in the midbrain, the nuclei of the MLF

(nMLF, asterisks). The MLFs collect additional axons from hind-
brain neurons (Metcalfe et al., 1986; Hatta, 1992). The trigeminal
ganglion (tg) is approximately at the level of the midbrain–hind-
brain boundary. In cyc mutants (A) the normally paired nMLF clus- likewise well-fasciculated. In the midbrain and rostral hindbrain,

cyc;ntl double mutants (C) exhibit defects similar to cyc mutants.ters form a single unpaired midline cluster and the MLF axons are
poorly defasciculated, present in or near the midline, and often Correct axonal pathfinding and axonal fasiculation, however, re-

covers in the hindbrain, the level approximately corresponding tocross the midline (Hatta, 1992). In contrast, in ntl mutants (B) the
nMLF positions and the MLF axonal trajectories are as in wild-type the most rostral region where floor plate is present in these mu-

tants. Scale bar, 100 mm.embryos described previously (Hatta, 1992), and the MLF axons are
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FIG. 11. Cells expressing shh are present in a 1-cell-wide row in the trunk midline of cyc;ntl double mutants. Transverse sections with
dorsal to the top, through 11-hr embryos (4- to 6-somite stage, right panels) and 15-hr embryos (11- to 12-somite stage, left panels). Whole-
mount RNA in situ hybridization (Krauss et al., 1993) and epon sections of 7 mm were prepared as described under Materials and Methods.
shh is expressed the floor plate region (white arrowheads) and in the notochord primordium (dark arrowheads) at these stages in wild-
type embryos (A, B). Only the notochord is labeled in cyc mutants (C, D). In ntl mutants (E, F), it was often difficult to assign the position
of labeled cells as being within or just beneath the developing spinal cord. Generally only a single labeled cell is observed at the same
location in cyc;ntl double mutants (G, H). We quantified the difference between ntl and cyc;ntl mutants by counting shh-expressing cells
in the midline of sections through the trunk at 11 hr. The number of shh-expressing cells per section was determined to be 3.6 { 0.4
(mean { SEM) for ntl mutants (n Å 3 embryos, 86 sections total) and 1.2 { 0.1 for cyc;ntl mutants (n Å 3 embryos, 65 sections). The
difference is significant (P õ 0.05; from a t test assuming unequal variances). Scale bar, 25 mm.
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midline development, but that occasionally the epistasis is
reversed. The wild-type phenotype would seemingly result
from a delicate balance between the functions of the two
genes. Previous expression studies in normal and mutant
embryos have shown that both ntl/ and flh/ function di-
rectly within the gastrula notochord domain to promote the
notochord fate (Schulte-Merker et al., 1994; Talbot et al.,FIG. 12. Model for genetic interactions in the trunk midline. The
1995; Melby et al., 1997). Furthermore, studies in ntl andwild-type alleles of the genes are shown, with both ntl and flh
flh single mutants show that the genes reciprocally dependfunctioning within the gastrula domain of cells that normally de-
on one another in order to maintain expression in the devel-velop as notochord. cyc antagonizes ntl function (not expression;
oping notochord (Talbot et al., 1995; Melby et al., 1997).see text) in the floor plate domain. ntl antagonizes floor-plate-spe-

cific regulatory genes, and flh antagonizes muscle-specific regula- Hence, a balance in the interactions of these two genes, as
tory genes. ntl and flh reciprocally interact in a positive fashion, revealed in our flh;ntl double mutant studies, is not unex-
with ntl occupying a largely upstream position. The model does pected. Putting the results together suggests that ntl and
not explain the curious observation that suppression by ntl0 of flh interact in a positive regulatory feedback loop that is
the floor-plate-deficient phenotypes of both cyc0 and flh0 does not active in the notochord domain specifically, and in which
extend to the more caudal trunk levels.

ntl predominates (Fig. 12, and see below).

cyc May Act Antagonistically upon ntl
any body level. Rather the double mutant midline pheno-

cyc;ntl double mutants possess a floor plate at stages andtype appears strictly additive: The cyc;flh double mutants
body levels where floor plate is missing in cyc single mutants.develop neither notochord nor floor plate at any axial level.
The double mutant floor plate appears normal in expressionAmong all the single mutants and double mutant combina-
of marker genes and in signaling axonal pathfinding, presum-tions we have studied, midline development is most se-
ably mediating this effect through local release of chemoat-verely deficient when both cyc and flh lack function.
tractive and chemorepulsive molecules (reviewed by Cola-The embryonic midline is an important signaling center,
marino and Tessier-Lavigne, 1995; Keynes and Cook, 1995).in vertebrates and Drosophila alike (Jessell and Dodd, 1992;
Whereas cyc/ is necessary for floor plate development in thePlaczek, 1995; Cossu et al., 1996; Golembo et al., 1996).
wild-type genetic background (and at the stages and bodyHence one expects that the cyc;flh double mutant would
levels we consider), our findings establish that cyc/ is nothave phenotypes reflecting the disruption in signaling. In
required if ntl also does not function. ntl/, in turn, is requiredaccordance, we observed a number of patterning distur-
for a differentiated notochord to develop, but not for the floorbances in nonmidline cell types in the hindbrain and spinal
plate, since the floor plate is present, indeed is expanded, incord of the cyc;flh double mutants. Previous mosaic analy-
ntl single mutants. Hence, we can interpret the epistasis toses suggest that the changes in the central nervous system
mean that ntl/ acts to antagonize genes specifying floor platein cyc single mutants are nonautonomous (Hatta, 1992).
development, and that cyc/ is functioning antagonistically toThe ventral CNS changes occur outside of the domain of
ntl, as in Fig. 12.expression (and thus of direct function) of flh as well. Hence

One way that cyc/ could antagonize ntl function is bywe think it likely that neural phenotypes not involving the
directly repressing ntl expression. However, Ntl protein ex-midline in cyc;flh double mutants are nonautonomous.
pression is slightly reduced in cyc0 notochord precursorThese nonmidline phenotypes can be quite severe, revealing
cells during late gastrulation and segmentation (Warga,synergism in the action of the two genes. The disruption of
1996). No expanded ntl RNA expression is detected duringthe patterning of ic interneurons in the caudal hindbrain is
early segmentation in cyc0 by in situ hybridization (S.L.A.,a remarkable case in point (Fig. 4). The effect of either single
unpublished observations). These findings suggest that ntlmutant is mild, but in combination the patterning is mark-
function, rather than expression, is being repressed by cyc/,edly deficient. As discussed fully in the accompanying pa-
or that cyc/ is acting on a downstream target of ntl.per, it would seem that the synergism we observe reflects

parallel signaling roles of the floor plate and notochord,
possibly mediated by secretion of Hedgehog proteins (Beat- ntl May Function in Midline Cell Fate Choice
tie et al., 1997).

We proposed earlier that in the absence of function of
ntl (the homolog of Brachyury) undifferentiated notochord
precursor cells are present beneath the neural tube that canReciprocal Interactions of flh and ntl in the
induce floor plate development (Halpern et al., 1993). Con-Notochord Domain
lon et al. (1995) have also argued from expression studies
that notochord precursor cells form correctly in mouseWe have interpreted the flh;ntl double mutant phenotype

to mean that ntl is usually epistatic to flh with respect to Brachyury mutants, but then fail to differentiate further.
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However, such proposals do not explain why excessive forebrain–midbrain boundary, but in the hindbrain, approx-
imately coinciding with where the notochord ends in wild-amounts of floor plate are present in ntl mutants (Odenthal

et al., 1996; this study) nor why any floor plate is present type embryos. This difference can easily be accommodated
by the cell fate choice hypothesis. Since the notochord do-in cyc;ntl double mutants, particularly in the near-absence

of postulated signaling notochord precursor cells beneath main would be the source of the floor plate cells in the
cyc;ntl double mutant, rescue would not be expected atthe floor plate (e.g., Fig. 9). The flh;ntl double mutant pheno-

type is also not predicted: Assuming notochord precursor levels rostral to where the notochord normally ends.
Finally, to explain the flh;ntl double mutant midline phe-cells to be correctly specified in ntl mutants, then in flh;ntl

double mutants we expected they would be respecified to- notype, we consider the postulate that in wild-type embryos
ntl/ functions to antagonize floor plate development, justward muscle (Halpern et al., 1995, Melby et al., 1996), and

hence the phenotype would resemble flh0. However, we as flh/ functions to antagonize muscle development (Halp-
ern et al., 1995, Melby et al., 1996), and the two activitiesobserved a midline phenotype more closely resembling ntl0.

In particular, excess floor plate is present along most of the occur in the same cells at about the same stage. Incorporat-
ing the notion that ntl functions largely upstream to flhlength of trunk in flh;ntl double mutants. Additionally, new

findings cast further doubt on the postulate that the cells (Fig. 12), then in the absence of both functions in the flh;ntl
double mutant, it is reasonable that most of the notochordin the midline in ntl mutants are correctly specified toward

notochord development: they express tiggy winkle hedge- domain cells are misrouted toward floor plate rather than
muscle.hog (T. Wu, S. Ekker, and M.E.H., unpublished observa-

tions), a gene expressed in the developing floor plate in the For ntl to act as we propose, in wild-type embryos the gene
must be expressed by notochord precursor cells, as is wellwild-type embryo (Ekker et al., 1995).

Suppose, alternatively, that in the early organizer region known (see Herrmann and Kispert, 1994, for review), and be
not expressed by cells developing as floor plate. Indeed, ntlof wild-type embryos ntl/ functions as a switch in a cell

fate choice between the notochord and floor plate. The ex- expression seems to be absent in the developing floor plate,
at least at late gastrula stages when the two lineages are dis-cess floor plate in ntl mutants would then be due to cells

in the early notochord domain being misrouted toward floor tinctive (T. Wu and N. Glickman, unpublished observations).
An interesting parallel to our results is a study in Xenopusplate development. The cells earlier proposed to be noto-

chord precursors might instead be ectopic floor plate cells, (Rao, 1994) which demonstrates that overexpression of mu-
tant forms of the Xenopus ntl homolog, Xbra, prevents meso-a subset of cells deriving from the notochord fate map do-

main (the others being present within the expanded ntl0 derm formation and leads instead to neuralization in animal
cap assays, in contrast to the mesoderm induction that typi-floor plate). These postulates are consistent with lineage

tracing in ntl mutants (Halpern et al., 1993; Melby et al., cally results from overexpression of wild-type Xbra. Further
tests of the cell fate choice hypothesis, for example involving1996), and with previous expression studies, e.g., of axial

(HNF3b, Strahle et al., 1993) and shh (Krauss et al., 1993), new cell lineage analyses of the notochord domain in ntl mu-
tants, and transplanting cells between ntl and wild-type em-markers which are expressed by both developing floor plate

and notochord in wild-type embryos. The markers studied bryos, are ongoing.
by Conlon et al. (1995) in mouse Brachyury mutants also
do not distinguish between notochord and floor plate pre-
cursors; indeed, morphological examinations and chimera
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