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We show in this paper that the principal component of the first-order jet scheme over
the classical determinantal variety of m × n matrices of rank at most 1 is arithmetically
Cohen–Macaulay, by showing that an associated Stanley–Reisner simplicial complex is
shellable.
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1. Introduction

Let F be an algebraically closed field andAk
F the affine space of dimension k over F . By a variety inAk

F wewillmean the zero
set of a collection of polynomials over F in k variables; in particular, our varieties are not assumed to be irreducible. In [4,5],
Košir and Sethuraman had studied jet schemes over classical determinantal varieties, and had described their components
in a large number of cases. In particular, they had shown that the variety of first-order jets, or loosely the ‘‘algebraic tangent
bundle,’’ over the determinantal variety ofm× nmatrices (m ≤ n) of rank at most 1 has two components whenm ≥ 3. One
component is simply the affine space Amn

F supported over the origin. The other component, which is muchmore interesting,
is the closure of the set of tangents at the nonsingular points of the base determinantal variety. We denote this component
by Y , and refer to it as the principal component. (Whenm = 2, the variety of first-order jets is irreducible, and coincides with
the principal component Y .) The goal of this paper is to show that Y is arithmetically Cohen–Macaulay, i.e., its coordinate
ring is Cohen–Macaulay.

Consider the truncated polynomial ring F [t]/(t2), and let X(t) = (fi,j(t))i,j be the genericm× n (m ≤ n) matrix over this
ring; thus, the (i, j) entry of X(t) is of the form fi,j(t) = xi,j + yi,jt , where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and xi,j, yi,j are variables. Let
I be the ideal of R = F [xi,j, yi,j], 1 ≤ i ≤ m, 1 ≤ j ≤ n, generated by the coefficients of powers of t in each 2 × 2 minor of
the generic matrix X(t). Then the variety of first-order jets over the m × n matrices (m ≤ n) of rank at most 1 is precisely
the zero set of I . Let J be the ideal of the principal component Y . In [5], Košir and Sethuraman showed that I is radical, and
further, determined aGroebner basis for both I and J for the graded reverse lexicographical order using the following scheme:
y1,1 > y1,2 > · · · > y1,n > y2,1 > · · · > y2,n > · · · > ym,n > x1,1 > x1,2 > · · · > x1,n > x2,1 > · · · > x2,n > · · · > xm,n
(see [5, Theorem 2.4], [5, Proposition 3.3], and also [5, Remark 2.2]).

It follows easily from the description in [5, Theorem 2.4] of the Groebner basis G of J that the leading term ideal of J ,
LT (J) := ⟨lm(g); g ∈ G⟩, is generated by the following family of monomials:

Proposition 1.1 (Generators of LT (J)). The following families of monomials generate LT (J): A = {xi,lxj,k | 1 ≤ i < j ≤ m, 1 ≤

k < l ≤ n}, B = {xi,kyj,l | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n}, C = {xk,pyj,qyi,r | 1 ≤ i < j ≤ k ≤ m, 1 ≤ p < q < r ≤ n},
D = {xi,ryj,qyk,p | 1 ≤ i < j < k ≤ m, 1 ≤ p < q ≤ r ≤ n}, and E = {yi,ryj,qyk,p | 1 ≤ i < j < k ≤ m, 1 ≤ p < q < r ≤ n}.
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Fig. 1. Generators of LT (J).

Since LT (J) is generated by squarefree monomials we can construct the Stanley–Reisner complex ∆LT (J) of LT (J): this is
the simplicial complex on vertices {xi,j, yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} whose corresponding Stanley–Reisner ideal (see [7,
Chap. 1] or [2, Chap. 5]) is LT (J). The simplicial complex is defined by the relation xi1,j1 . . . xik,jk . . . xis,jsyi′1,j

′

1
. . . yi′l ,j

′

l
. . . yi′t ,j

′

t
,

1 ≤ ik, i
′

l ≤ m, 1 ≤ jk, j
′

l ≤ n, is a face of ∆LT (J) if, as a monomial, it does not belong to LT (J).
We will enumerate all the facets of ∆LT (J) and we will describe an explicit ordering of the facets which will show that

∆LT (J) is a shellable simplicial complex. By standard results, shellability of ∆LT (J) allows us to conclude the following main
result of the paper (a result that has been independently obtained by Smith andWeyman in [8] aswell, using their geometric
technique for computing syzygies):
Theorem 1.2. The coordinate ring of Y , i.e., R/J , is Cohen–Macaulay.

Wewish to thank Professor Aldo Conca for some very valuable discussions during the writing of the paper. We also wish
to thank Professor Tomaž Košir for being generous with his time and his encouragement. This paper constitutes our M.S.
thesis at California State University Northridge, andwewish to thank Professor B.A. Sethuraman for suggesting this problem
and for his constant encouragement.

2. Describing the facets of ∆LT (J)

It would be helpful inwhat follows to visualize the structure of themonomials in the families A, B, C ,D, and E as described
in Proposition 1.1. For this, see Fig. 1. In this paper, we will visualize a monomial as being positioned in amatrix, where each
variable of the monomial is located in the matrix’s entry corresponding to the index of the variable.

In this section, we will enumerate all facets of ∆LT (J). First, some notation: we will denote a facet F of the simplicial
complex ∆LT (J) by F = FxFy, where Fx is a string composed of vertices xi,j’s and Fy is a string composed of vertices yi,j’s.
We will view each of Fx and Fy as both strings of vertices or monomials, depending on the context. Note that FxFy ∈ ∆LT (J)
if, as a monomial, FxFy does not belong in the ideal LT (J) if and only if FxFy is not divisible by the generators of LT (J) (see
Proposition 1.1).

We will start by showing a relation between the facets of ∆LT (J) and those of the corresponding simplicial complexes
arising from classical determinantal varieties. We refer to the excellent survey paper of Bruns and Conca [1]. In this paper,
the authors consider the facets of ∆t : the Stanley–Reisner complex attached to the ideal LT (It), which is generated by the
leading terms of the t × t minors of the generic m × n matrix (wi,j). The order they use is one in which the leading term of
a minor is the main diagonal, and it is known that the leading terms of the t × t minors generate the ideal of leading terms
of It .

The key result for us is [1, Prop. 6.4], where they enumerate the facets of ∆t . This is a purely combinatorial result that
enumerates the maximal subsets of V = {wi,j : i ≤ m, j ≤ n} that intersect any t-subset of V arising from the diagonal of
some t × t submatrix of (wi,j) in at most t − 1 places, and can be applied by symmetry to enumerate the maximal subsets
of V that intersect any t-subset of V arising from the antidiagonal of some t × t submatrix of (wi,j) in at most t − 1 places.
We quote this result as:
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Proposition 2.1. ([1, Prop. 6.4]). Let It be the ideal of F [{wi,j}] generated the t × t minors of the generic m × n matrix (wi,j).
Write LT (It) for the ideal generated by the lead terms of the t × t minors with respect to the graded reverse lexicographical order
w1,1 > w1,2 > · · · > w1,n > w2,1 > · · · > w2,n > · · · > wm,n. Write ∆t for the Stanley–Reisner complex of LT (It). Then the
facets of ∆t correspond to all families of non-intersecting paths from w1,1, w2,1, . . . , wt−1,1 to wm,n, wm,n−1, . . . wm,n−t+2.

Here, a path from wa,b to wc,d, given a ≤ c and b ≤ d, is a sequence of vertices starting at wa,b and ending at wc,d where
each vertex in the sequence is either one step to the right or one step down from the previous vertex. A non-intersecting
path of the kind described in the last line of the proposition above is a union of paths from wi,1 to wm,n−i+1 whose pairwise
intersection is empty. (It is known that for the graded reverse lexicographic order as well, the leading terms of the t × t
minors generate the ideal of leading terms of It .)

We observe that the monomials in A correspond to the generators of LT (I2) and the monomials in E correspond to the
generators of LT (I3) (with the order specified in Proposition 2.1). So, for a facet F = FxFy of ∆LT (J), we have that Fx is not in
LT (I2) and Fy is not in LT (I3). Therefore, by Proposition 2.1, we can state the following lemma:

Lemma 2.2. Fx is a subset of a path from x1,1 to xm,n and Fy is a subset of a pair of non-intersecting paths from y1,1, y2,1 to ym,n,
ym,n−1.

We will continue by showing that for each facet F = FxFy of ∆LT (J), Fx is a non-empty string that contains at least two
x-vertices. It is straightforward to see that xm,nF cannot be divisible by any of the generators of LT (J). Hence, maximality of
F implies that xm,n is already in F . The next lemma shows that, in addition to xm,n, F must contain another x-vertex.

Lemma 2.3. Let F be a facet of the simplicial complex ∆LT (J). Then F must contain at least two x-vertices, one of which is xm,n .

Proof. We already know that F must have xm,n. Suppose that it is the only x-vertex that F has. Consider then xm−1,nF . We can
easily check then that xm−1,nF is not divisible by any of themonomials in A, B, C , D, or E . So, xm−1,nF ∈ ∆LT (J) andmaximality
of F implies that xm−1,n must already be in F , a contradiction to the assumption that the only x-vertex that F contains is
xm,n. �

Notation: Let F = FxFy be any facet and recall that, by Lemma 2.2, Fx is a subset of a path from x1,1 to xm,n. Thus, for any two
x-vertices in Fx, one is always to the north, west, or north-west of the other. Let µ(F) denote the x-vertex that is furthest to
north and furthest to the west of all other x-vertices in Fx. Thus, µ(F) = xi,j implies that i ≤ c and j ≤ d for all xc,d in Fx (see
Fig. 3). Notice that µ(F) ≠ xm,n (Lemma 2.3).

The next lemma deals with the Fy part of a facet F and, in particular, the lemma lists some of the y-vertices that must be
present in a given facet.

Lemma 2.4. Let F = FxFy be a facet of the simplicial complex ∆LT (J) with µ(F) = xi,j. Then F must contain yi,n and ym,j.

Proof. To prove that F contains yi,n, it suffices to show that yi,nF is not divisible by a monomial in A, B, C , D, or E. Maximality
of F would then imply that yi,n must be in F .

Obviously, yi,nF cannot be divisible by a monomial in A. Also, yi,nF cannot be divisible by a monomial in B because
otherwise it is easy to see that yi,n would have to be to the south-east of µ(F) = xi,j — a contradiction. If yi,nF were divisible
by a monomial in D, then another straightforward verification shows that yi,n must in a row below µ(F) = xi,j, which is
impossible.

Suppose that yi,nF is divisible by a monomial in C . Then, there must be some xc,d and ys,t in F such that xc,dys,tyi,n is in
C (recall Fig. 1). But then the only possible location of ys,t is to the south-east of xi,j. However, xi,jys,t is in B and in F — a
contradiction.

Finally, suppose that yi,nF is divisible by a monomial in E. Then there must be some ya,b and yc,d in F such that yi,nya,byc,d
is in E (recall Fig. 1). In particular, it must be the case that, say, yc,d is to the south-west of ya,b which, in turn, is to the
south-west of yi,n. But then either xi,jya,b is in B or xi,jyc,dya,b is in D — a contradiction in both cases.

So, yi,nF is not divisible by a monomial in A, B, C , D, or E which implies, as argued above, that F must contain yi,n. We can
similarly show that F must contain ym,j as well. �

Nowweare ready to describe the structure of all facets of∆LT (J). The following notationwill be useful in the next theorem:
for a given facet F = FxFy with µ(F) = xi,j, consider the following partition of the y-vertices based on the index (i, j):
R1 = {ys,t | s ≤ i, j < t}, R2 = {ys,t | s ≤ i, t ≤ j}, R3 = {ys,t | i < s, t ≤ j}, R4 = {ys,t | i < s, j < t} (see Fig. 2) .

Theorem 2.5. Let F = FxFy be a facet of the simplicial complex ∆LT (J) with µ(F) = xi,j. Then Fx is a path from xi,j to xm,n and Fy
is a family of non-intersecting paths from y1,1, y2,1 to yi,n, ym,j.

Proof. Wewill first show that F = FxFy as described in the theorem is indeed a valid facet of ∆LT (J). Then we will argue that
any facet of ∆LT (J) must have that form.

Let F = FxFy with Fx a path from xi,j to xm,n and Fy a family of non-intersecting paths from y1,1, y2,1 to yi,n, ym,j be given
(see Fig. 3). Wewill first show that F is a facet of∆LT (J) , i.e. F is not divisible bymonomials in A, B, C , D, or E and F is maximal
with respect to inclusion.

Obviously, F is not divisible bymonomials in A and E. To see that F is not divisible bymonomials in B, C , andD, it is enough
to notice that F does not contain a y-variable in R4 or variables of the form yc,d and ye,f such that one is to the south-west of
the other and both are entirely in R1 or R3.
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Fig. 2. Partition of the y-vertices.

Fig. 3. A facet.

Fig. 4. The y-vertices of different facets.

Next, we will show that F = FxFy is maximal with respect to inclusion by arguing that any vertex attached to F would
make the resulting monomial divisible by some monomial in A, B, C , D, or E (i.e. that resulting monomial cannot be a face
in ∆LT (J)). Recall that by Lemma 2.2 Fx is a subset of a path from x1,1 to xm,n. So, if we attach a vertex xa,b to Fx, it has to be
to the north, west or north-west of xi,j. But notice that in this case either xa,bym,j or xa,byi,n, or both, would be a monomial
in B when i ≠ m, j ≠ n (in the cases i = m or j = n, xa,b can also produce monomials in C and D). So, no x-vertex can be
attached to F . Recall also that Fy is a subset of a pair non-intersecting paths from y1,1, y2,1 to ym,n, ym,n−1 (Lemma 2.2). So, if
we attach a vertex yc,d to Fy, then yc,d must be in one of those two non-intersecting paths. If i ≠ m, j ≠ n (see Fig. 4), then
yc,d must be in R4, but then xi,jyc,d would be in B. If i = m, then yc,d must be in R1 and in row m. But then xi,jyc,d and some
y-variable that is in the upper path of Fy and in R1 would produce a monomial in C . Finally, if j = n, then yc,d must be in R3
and in column n. But then xi,jyc,d and some y-variable that is in the lower path of Fy and in R3 would produce a monomial in
D. So, no y-vertex can be attached to F either. Thus, F is maximal.

Finally, we will show that any facet f = fxfy of∆LT (J) withµ(f ) = xi,j must be of the form described in the theorem. Since
fx is a subset of a path from x1,1 to xm,n (by Lemma 2.2), and sinceµ(f ) = xi,j, then it follows that fx must actually be a subset
of a path from xi,j to xm,n.

Next, again by Lemma 2.2, fy must be a subset of a pair of non-intersecting paths from y1,1, y2,1 to ym,n, ym,n−1. By
Lemma 2.4, it follows that fy must also contain yi,n and ym,j.
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Now, if i ≠ m, j ≠ n (see Fig. 4), fy cannot contain y-vertices in R4, because xi,j and any vertex in that region is amonomial
in B. So, fy must be a subset of a family of two non-intersecting paths from y1,1, y2,1 to yi,n, ym,j. Next, suppose i = m (see
Fig. 4). Since fy is a subset of a pair of non-intersecting paths from y1,1, y2,1 to ym,n, ym,n−1, it is straightforward to verify,
using maximality of f , that fy must contain the y-variable of the upper y-path that is furthest to north-west in R1, call it ye,f .
Also, notice that there should be no y-vertices in fy ∩ R1 such that one is to the south-west of the other (otherwise xm,j and
those two y-vertices would produce a monomial in C). Therefore, fy ∩ R1 must actually be a subset of a facet in ∆2 on vertex
set R1, i.e. fy ∩ R1 must be a subset of some path in R1 starting in ye,f and ending at ym,n (recall Proposition 2.1). So, fy must
be a subset of a family of two non-intersecting paths from y1,1, y2,1 to yi,n, ym,j, i = m. Finally, we conclude the same result
for the case j = n (see Fig. 4) using similar arguments from the case i = m.

Finally, notice that f = fxfy is actually a subset of a some facet F as described in the theorem. Maximality of f implies that
it actually has to be one of those facets F . �

Knowing the structure of a facet F = FxFy of the simplicial complex ∆LT (J), we can easily count the number of vertices
that F is composed of, so we can determine dim F = |F | − 1. In particular, we see that the dimension of any facet F is
2(m + n) − 3. Notice that the dimension of F depends only on the constants m and n. Thus, we can conclude that all facets
of the simplicial complex ∆LT (J) have the same dimension, i.e. ∆LT (J) is a pure simplicial complex of dimension 2(m+n)−3.

Corollary 2.6. The dimension of R/J is 2(m + n) − 2.

Theorem 2.5 also allows to determine the total number of facets in ∆LT (J). Thus, we can determine the multiplicity of R/J
as well.

Corollary 2.7. The multiplicity of R/J is given by−
(i,j),(i,j)≠(m,n)


m + n − i − j

m − i


det

i+n−2
i−1

 m+j−2
m−1

i+n−3
i−2

 m+j−3
m−2

 . (1)

Proof. The number of paths from xi,j to xm,n is
m+n−i−j

m−i


, while the number of non-intersecting paths from y1,1, y2,1 to yi,n,

ym,j is given by (see [6, Section 2.2])

det

i+n−2
i−1

 m+j−2
m−1

i+n−3
i−2

 m+j−3
m−2

 . �

Remark 2.8. Professor Sudhir Ghorpade [3] has shown that the expression for the multiplicity of R/J above simplifies ton+m−2
m−1

2
.

3. Shellability of ∆LT (J)

The main goal of this section is to prove that our simplicial complex ∆LT (J) is shellable. Recall the following definition of
shellability:

Definition 3.1. A simplicial complex ∆ is shellable if it is pure and if its facets can be given a total order, say F1,F2, . . . , Fe, so
that the following condition holds: for all i and j with 1 ≤ j < i ≤ e there exists v ∈ Fi \ Fj and an index k, 1 ≤ k < i, such
that Fi \ Fk = {v}. A total order of the facets satisfying this condition is called shelling of ∆.

Theorem 3.2. The simplicial complex ∆LT (J) is shellable.

Proof. Note that at the end of the previous section we have argued that ∆LT (J) is pure. We will proceed by first giving a
partial order to the facets of ∆LT (J). Let P = PxPy and Q = QxQy be two facets of ∆LT (J). If µ(P) is in a row below µ(Q ), we
set P < Q (see Fig. 5). If µ(P) and µ(Q ) are in the same row, but µ(P) is to the right of µ(Q ), we set P < Q (see Fig. 5). If
µ(P) = µ(Q ) but Px is to the right of Qx as one goes from µ(P) to xm,n, then P < Q (see Fig. 5). If Px = Qx and the upper
y-path of Py goes to the right of the upper y-path of Qy, we set P < Q . Finally, if Px = Qx, the upper y-path of Py is the same
as the upper y-path of Qy and the lower y-path of Py goes to the right of the lower y-path of Qy, we set P < Q . Now we
arbitrarily extend this partial order on the facets of ∆LT (J) to a total order.

Nowwe will prove that the selected total order is indeed a shelling of ∆LT (J). Let P = PxPy and Q = QxQy be two facets of
∆LT (J) such that P < Q . Our goal is to find v ∈ Q \ P and a facet R < Q such that Q \ R = {v}. Suppose that µ(P) ≠ µ(Q ).
Notice P cannot contain µ(Q ) = xi,j (otherwise P < Q is contradicted). Take v = xi,j. Take R = RxRy to be the following:
Rx = Qx \ xi,j and Ry = Qyym,j+1 if µ(R) = xi,j+1 or Ry = Qyyi+1,n if µ(R) = xi+1,j. In the special case µ(Q ) = xm−1,n, take
Rx = xm,n−1xm,n, Ry = Qy.

Next, suppose that µ(P) = µ(Q ), but Px ≠ Qx. Then, there must be a right turn H = xa,b in Qx that is not in Px or else
Qx would be to the right of Px, contradicting P < Q . So, in this case take v = H = xa,b and R = RxRy where Rx = Qx with
H = xa,b replaced by xa+1,b−1 and Ry = Qy.
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Fig. 5. Partial order of the facets.

Fig. 6. Two right turns.

Next, suppose that Px = Qx and the upper y-paths of the two facets are different. Notice that the upper path of Qy cannot
be strictly on the right of the upper path of Py (otherwise P < Q is contradicted). So, there must be a right turn H = yc,d of
the upper path of Qy strictly on the left of the upper path of Py. Thus, H = yc,d cannot be in Py. So, take v = yc,d. If yc+1,d−1
is not in the lower path of Qy, let R = RxRy be the following facet: Rx = Qx and Ry = Qy with yc,d replaced by yc+1,d−1. If
yc+1,d−1 is in the lower path of Qy (see Fig. 6), then notice that yc+1,d−1 must be a right turn as well. Then take R = RxRy to
be the following facet: Rx = Qx and Ry is obtained from Qy be removing yc,d and by adding yc+2,d−2.

Finally, suppose that Px = Qx, the upper y-paths of the two facets are the same, but the lower y-paths are different.
Similarly as in the previous paragraph, we see that there must be a right turn H = ye,f of the lower path of Qy strictly on the
left of the lower path of Py. Notice that H = ye,f cannot be in the upper path of Py because it is the same as the upper path
of Qy. So, take v = ye,f . Let R = RxRy be the facet: Rx = Qx and Ry = Qy with ye,f replaced by ye+1,f−1. �

We are now in position to prove Theorem 1.2, the main result of the paper:

Proof of Theorem 1.2. By standard results, the ring R/J is Cohen–Macaulay if the ring R/LT (J) is Cohen–Macaulay (see
[7, Corollary 8.31]. By construction, R/LT (J) is precisely the Stanley–Reisner ring associated to ∆LT (J), and since ∆LT (J) is
shellable, R/LT (J) will necessarily be Cohen–Macaulay (see [2, Theorem 5.1.13]). �
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