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Abstract

We consider the computation of the mean of sequences in the quantum model of
computation. We determine the query complexity in the case of sequences which satisfy a p-
summability condition for 1 <p<?2. This settles a problem left open in Heinrich (J. Complexity
18 (2002) 1).
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Computation of the mean of sequences and, equivalently, summation of
sequences, is an important numerical task, in particular for huge number of
summands occurring in many numerical applications such as, e.g., high-dimensional
integration. The larger the number of summands (the larger the dimension), the less
these problems are tractable. It is therefore an interesting and challenging task to
understand to which extent a quantum computer could bring speed-ups. First,
results for the summation of bounded sequences are due to Grover [6], Nayak and
Wu [11], Brassard et al. [3]. The case of sequences satisfying a p-summability
condition, which arises in various problems like integration of functions from L, and
Sobolev classes, was studied in [8]. Up to logarithmic factors for p = 2, in the case
2<p< oo the query complexity of the summation problem was determined. For the
case 1<{p<2, matching upper and lower bounds were obtained only under an
additional restriction. The bounds for the remaining case did not match. In this
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paper we settle this problem and determine the query complexity in the full range of
parameters.

Applications of our results to the quantum complexity of integration of functions
from Sobolev classes are given in [9]. The use of quantum summation for integration
was first pointed out by Abrams and Williams [1]. The quantum complexity of
integration was studied in [15], later in [8,10]. Path integration is discussed in [18].
Furthermore, we refer to the surveys [4,17], and to the monographs [7,12,16] for
general reading on quantum computation.

Our analysis is based on the framework introduced in [8] of quantum algorithms
for the approximate solution of problems of analysis. This approach is an extension
of the framework of information-based complexity theory (see [13,19] and, more
formally, [14]) to quantum computation. It also extends the binary black box model
of quantum computation (see, e.g., [2]) to situations where mappings from spaces of
functions to the scalar field (such as the mean or the integral) have to be computed.
Let us recall the main notions here. For more details and background discussion we
refer to [8].

2. Notation

Let D, K be nonempty sets, let 7 (D, K) denote the set of all functions from D to
K, and let F€ 7 (D, K) be a nonempty subset. Let K, the scalar field, be either R or
C, the field of real or complex numbers, let G be a normed space over K, and let
S:F—G be a mapping. We seek to approximate S(f) for feF by means of
quantum computations. Let H, be the two-dimensional complex Hilbert space C2,
with its unit vector basis {ep, e;}, let

Hm :H1®®Hl

be the tensor product of m copies of H;, endowed with the tensor Hilbert space
structure. The following notation is convenient:

Z[0,N) = {0, ...,N — 1}

for NeN (asusual, N = {1,2, ...} and Ng = NuU{0}). Let €, = {|i) : i€Z[0,2™)}

be the canonical basis of H,,, where |i) stands for e;, ® --- ®e;, ,,i = S 4y jx2" '

the binary expansion of i. Denote the set of unitary operators on H,, by %(H,,).
A quantum query on F is given by a tuple

Q = (m,m',m",Z,T,ﬁ), (1)
where m,m’,m" eN,m’' +m" <m, Z<Z[0,2™) is a nonempty subset, and

t:Z—-D

p:K—Z[0,2"")

are arbitrary mappings. Denote m(Q) = m, the number of qubits of Q.
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Given such a query Q, we define for each f € F the unitary operator Oy by setting
for ‘l> ‘x> ‘y> e(gm = (gm’ ®(gm” ®(gm7m’fm”:

O3 13|y = { DIX@BU M)y if ieZ,

li>]x>|y> otherwise, (2)

where @ means addition modulo 2",
A quantum algorithm on F with no measurement is a tuple

A= (Q> (U/)lnz())’

where Q is a quantum query on F, neNg and Uje%(H,,) (j =0, ...,n), with m =
m(Q). Given f'eF, we let Ar€%U(H,,) be defined as
Ar = U,0;U,_1... U, O U, (3)
We denote by 7,(A4) =n the number of queries and by m(A4) =m =m(Q) the
number of qubits of 4. Let (A4y(x,y)) ,cz0m be the matrix of the transformation
Ay in the canonical basis %,,, that is, As(x,y) = (Ar|y ), |x)).

A quantum algorithm on F with output in G (or shortly, from F to G) with k
measurements is a tuple

A= ((Al)/ O’(b/)/ =0 P )7
where keN, and A4, (/=0,...,k—1) are quantum algorithms on F with no
measurements,
byeZ[0,2™),
for 1</<k —1, b, is a function
/=1

bs: ] zlo,2™)—Z[0,2™),
i=0

where we denoted m, .= m(A,), and ¢ is a function with values in G

H 2m/

/=0

The output of 4 at input f € F will be a probability measure A(f) on G, defined as
follows: First put

Py (X0, ooy xio1) = Aoy (xo, bo) P A1 (x1, b1 (x0)) |

Ak (et b (X0, e xe2)) (4)
Then define A(f) by setting for any subset C= G
A(f)(C) = Z Paf(X0s ooy Xp—1). (5)

@(x0,..,Xk-1)€C

By ny(A) = Z o nq(A/) we denote the number of queries used by 4.
Informally, such an algorithm A starts with a fixed basis state by and, at input f,
applies in an alternating way unitary transformations Uy (not depending on /') and
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the operator Oy of a certain query. After a fixed number of steps the resulting state is
measured, which gives a (random) basis state, say &;. This state is memorized and
then transformed (e.g., by a classical computation, which is symbolized by b;) into a
new basis state b;(&y). This is the starting state to which the next sequence of
quantum operations is applied (with possibly another query and number of qubits).
The resulting state is again measured, which gives the (random) basis state &;. This
state is memorized, by(&y, &;) is computed (classically), and so on. After k& such
cycles, we obtain &, ..., ;1. Then finally an element of G is computed (e.g., again
on a classical computer) from the results of all measurements: ¢(&, ..., ). The
probability measure A(f) is its distribution. For details, see [8].

The error of A is defined as follows: Let 0<0<1, feF, and let { be any random
variable with distribution A(f). Then put

e(S,4,/,0) = inf{e | P{[|S(f) - (]| > e} <0}.

Consequently, e(S, 4, f, 0) <e iff the algorithm 4 computes S( f) with error at most ¢
and probability at least 1 — 6. Associated with this we introduce the error over the
class F as

¢(S, A, F,0) = supe(S, 4,1, 0).
feF

It is customary to consider these quantities at a fixed error probability level: We
denote

e(S,A4,f) =e(S,4,f,1/4)
and
e(S,A,F)=e(S,4,F,1/4).

The choice 8 = 1/4 is arbitrary—any fixed 8 < 1/2 would do. The nth minimal query
error is defined for neNj as

el(S,F) =inf{e(S,4,F)| A is any quantum algorithm with n,(4)<n}.

This is the minimal error which can be reached using at most n queries. The query
complexity is defined for ¢ > 0 by
comp! (S, F)
= min{n,(A4) | 4 is any quantum algorithm with e(S, 4, F) <e}.

The quantities e4(S, F) and comp?(S, F) are inverse to each other in the following
sense: For all neNy and ¢ > 0, ¢!(S, F)<e if and only if comp{ (S, F)<n for all
&) > ¢. Thus, determining the query complexity is equivalent to determining the nth
minimal error. Henceforth, we will deal only with eZ(S, F).
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3. The main result

Let NeN and set D =Z[0,N), K =R, G=R. For I1<p< oo let L;,V denote the
space of all functions /" : D—R, equipped with the norm

e Up
Ay = <NZ lf(l?l”)
=0
if p<oo and

llpy = max £ (7).

0<i<N-1

Define Sy : L[])V—>R by
1 N
Snf = N;f(i)
and let
F=a) = {feL) Iy <1).

Let us summarize the known results about the order of ¢?(Sy, 931],\7 ) (and thus the

query complexity of computing the mean of p-summable sequences) in Theorem 1.
The case p = oo is due to Grover [6], Brassard et al. [3] (upper bounds) and Nayak
and Wu [11] (lower bounds). The results in the case 1 <p< oo are due to Heinrich [8].
Note that throughout the paper we often use the same symbols for possibly different
constants. Also, log always means log,.

Theorem 1. Let 1<p< oo. There are constants cy,cy,cz,c3 >0 such that for all
n,NeN with 2<n<c|N,

con”! <eZ(SN,93,1)V)<C3n’1 if 2<p< 0,
con! <el(Sy, %9’) < 63n*110g3/2n loglogn

and

czn_z(l_l/”)<eZ(SN,,@1]JV)SC3n_2(1_I/”) if 1<p<2, n<coVN.

The case 1<p<2, n>cov/N was left open. We will settle it here by proving

Theorem 2. Let 1 <p<2. There are constants c, c1, ¢, c3 > 0 such that for alln, NeN
with cov/ N<n<c|N,

cn PNV < el (Sy, BY) < esnP NP~ max(log(n/VN), 177

It is interesting to mention the consequences for the case p = 1 separately:
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Corollary 1. There are constants cy, ¢, c3 > 0 such that
o <el(Sy, %’{V) <1

if 0<n<+/N, and
en 2N <el(Sy, BY) < csn > Nmax(log(n/v/N), 1)

if\/jv_gngclN.

Hence for p =1 the decay essentially starts only beyond +/N. Note that the
corresponding quantities for the classical deterministic and randomized setting
remain Q(1) also in the range vV N<n<c|N, see [10].

Combining the theorem above with the respective result in Theorem 1, we can
cover the full range n<c¢;N. This result is a direct consequence of Theorems 1 and 2
and the monotonicity of e?(Sy, 93}{,\7) in n.

Corollary 2. Let 1 <p<?2. There are constants cy,cy,c3 > 0 such that for all n, NeN
with n<c| N,

&) min(nfz(lfl/l’) , nfz/PN2/p71)
< ez(SNv %;V)

<c min(n’z(l’l/p), n’z/f’Nz/”’l)max(log(n/\/ﬁ), 1)2/”_1.

The following two sections contain the proof of Theorem 2.

4. Upper bounds

For any M eN we define

1 .
Svuf =7 2, SO
i€ Z[O,N),|f(i)| <M
and

Syf = Snf — Svmf :% Z ().

i€ Z[0.N) I ()| > M

Proposition 1. Let 1<p<oo. Then there is a constant ¢ >0 such that for all
n, M, NeN with

n=cM PN max(log(M~N), 1),
we have

eg<S§V,M7 @117\[) =0.
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Proof. We may assume that

MP<N, (6)
because otherwise Sy ,,f = 0 for allfe%lj,v, 50 €j(Shy a) = 0. Let

m = [logN]. (7)

We define a quantum algorithm 4, from @j,v to Z[0,2") x R. To specify its quantum

query, fix any m” > m’ + 1 and define the mapping f : R—Z[0,2™") by setting for
zeR

o=l if |z]<M,

B = Lzm =l (z 4 2m) | ?f M<|?|<2’”,
P if z>2m
0 if z< -2,

It follows that for M <|z|<2",

2 T By L a g = 2 4 27 (B(2) 4 1) (8)
and

B(z) =2~ if and only if |z|<M. (9)
In connection with this definition let us mention that for f 69311,\’ ,

f()|<SNVPSN<L2™ (i=0,...,N—1). (10)
Put Z = Z[0,N), let T : Z—Z][0,2") be the identical embedding, m = m’ + m", and
define the query by

0= (mm' m" ZPp). (11)
Let H, = H,, ® H,», and let

iy[xy (ieZ[0,2™),xeZ[0,2™"))

be the respective representation of basis states. First we consider the simple case
n>=N, that is, we show

eﬁv(s;w,,@ﬁ) =0. (12)

Indeed, in this case we let the algorithm A start in the classical state by = [0)]0 ).
One application of the query maps this to |0>|f(f(0)))>. Next we measure,
from which we obtain f(f(0)). Now we start the next cycle with by =|1>]0)
and obtain, after another query call and measurement, the value f(f (1)), etc. (That
is, formally we work in the quantum model, but, in fact, we stay on the classical
states only.) Finally, an appropriate classical computation ¢ produces from

p(f (z)))lN:?)1 a suitable approximation to S} ,,f (taking into account (8) and (9)).
This proves (12).
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Now we assume n<N. It follows that, modifying ¢, if necessary, it suffices to
prove the result for

M= M, (13)
where M, > 0 is a constant, which will be specified later on.

Let us explain the idea of the following algorithm. It is based on Grover’s search
algorithm [5], which for an unknown subset of our index set Z[0, N) (accessible just
by a suitable use of the quantum query) allows to produce an element of this subset,
with high probability. We use this procedure repeatedly to find all i with |f(i)|> M

and the respective, f(f(i)). Having accomplished this, it remains to compute an
approximation to va, u classically. Let us now turn to the details.

Let Wye%(H, ) be the Walsh-Hadamard transform, and let Xoe#(H,,) be
defined by

, iy ifi=0,
X0|l>:{ |

li> otherwise.

Consider the following unitary transforms on H,,, defined by:
Wiy |x> = (Wolid)lx>,

X[id|x) = (Xoli)lx>,

lid|x> if ieZ and x#2""1,
—|i>|x)> otherwise,

Tliy]x> :{

JiYlx> =liY|ex).
Here © x stands for (2 — x) mod 2"". Note that W, ' = W, and hence W~! = W.
For fe#) put
Y, = WXWQITQ,. (14
Denote
Dy ={ilieZ,|f(i)|>=M}.
It follows from the definitions above and from (9) that
0ureivo>={ 0 Saine

where Q is as defined in (11) above. 4, will be an algorithm with one measurement.
We define its unitary transform as

oYW, (15)
where LeN will be specified later. The starting state will be |by> = |0)>]0), and the
mapping ¢ : Z[0,2") x Z[0,2"") - Z][0,2") x R will be given by

(p(i, X) — (i, _2m’ + 27n1”+m’+1x). (16)
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This completes the definition of algorithm Ay. Clearly, Y is the Grover iterate for
the set Dy, and the whole algorithm is Grover’s search algorithm [5], or amplitude
amplification, in the terminology of Brassard et al. [3], with respect to the H,,
component, followed by one more query Qy. Observe that by (8) and (10) each run of

the algorithm 4, produces a pair (i,y)€Z[0,2") x R with

y<fi)<y+27" i e Dy (17)
and

y =0 if and only if i<N and i¢Dy. (18)

The final algorithm A is defined as w(Ag*), which means that we repeat 4y L* times
and compose the outputs by the mapping

¥ (Z]0,2”) x R)¥ SR,

see [8], Section 2, for a formal definition. The number L*eN will be specified later.
The mapping  is defined as follows: Let

(i) 55 € (Z[0,27) x R

be the outputs of the L* runs of 4y. We exclude all pairs with i, ¢ D; (which amounts
to checking if i= N or y = 0, by (18)), as well as all repetitions of any ire Dy (by a
suitable sorting algorithm). For the remaining set we add the second components
and divide by N (if the remaining set is empty, we output 0).

Now we show that with a suitable choice of the parameters m”, L, L*, the
algorithm outputs Sﬁv, i/ with error at most 2"+ with probability at least 3/4.
This follows from (17) if we prove that with probability at least 3/4 the set of
remaining indices equals Dy. If Dy = 0, this is trivial, so we assume Dy #. First we
analyze 4o. Denote p, = | Dy, hence p,>1, and let 0< 0y <7/2 be defined by

sin® 0y = 27" py. (19)
Finally, let
Wy > =272 iy

iED/
and

oy =277 > iy,

i€2[0.27)\D,
By the analysis of Brassard et al. [3] and relation (8),
YEW[05 105 =@ up) ™ sin((2L + 1)0) > [0
+ (1= 27" )™ cos((2L + 1)) 10>



10 S. Heinrich, E. Novak | Journal of Complexity 19 (2003) 1-18

(where the second term is replaced by 0 if u, = 2", Tt follows that for any i €Dy,

the algorithm A4, outputs (iy, f( f(ip))) with probability
0;, = iy ' sin* (2L + 1)0y).
In the sequel, we use the elementary relation
2x/n<sinx<x (xe[0,7/2]).
Since f € %), we have
N-'M?|D/|<]1,
hence
W = D] <MN
and
27" KMTPN2T KM
Therefore, by (21) and (19)
iR MY
and hence
Gf<2’1nM’P/2.
Now we put
My =[6""]
and define L by
L=]3"M"?].
Since we assumed M > M, we get from (24) and (25),
I<iMrP<L<i v,
It follows from (23) and (26) that
(2L + 1)0; <3LO;<7/2.
On the other hand, by (26) and (19),

(2L + 1)0; > 2L0; =1 MPP sin 0y = L MPP2 (27 1),

From (20), (21), (27) and the relation above,

4 -1 202
4 /

= —MP2™"
In?

> %MPN*1 = M'N™',
i

(20)

(21)

where in the last line we used (7) and set ¢; = 2/(97?). It follows that after L*
repetitions of algorithm A, the probability of (iy, f(f(ip))) not being among the
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results is less than or equal to

_ * —c Y
(1= e MP N oo NTE

)

where we used that 1 + x<e* for xeR. The probability that at least one iy € Dy is not
among the results is less than or equal to

_ PN _ _ pAT—1 7%
/er o MPN L<MpNe oMPN~—'L

)

where we used (22). Now we choose L* in such a way that this probability is not
greater than 1/4. This requires (recall that log means log,)

(c2loge)MPN~'L*>log(M PN) +2,

which is satisfied if

3
* M~Nm MPN
L Lz loge ax(log( ), 1)—‘ .

We put ¢3 = 3/(cp loge) and observe that the above combined with (6) implies
L*<(¢; + 1)M ?Nmax(log(MN), 1).

Together with (26), this implies that algorithm 4 makes
(2L 4+ 1)L*<3LL*< (c3 + 1)M "> Nmax(log(M"N), 1)

queries to compute va, w/ up to error 2"+ +1 with probability at least 3/4. Since

m” was arbitrary, the result follows. O

One remark concerning the conclusion of this proposition seems appropriate. The
relation ef(Sy. M,QZ;,V ) = 0 means that there is a sequence of quantum algorithms
with error tending to zero, each using at most n quantum queries. Decreasing the
error, however, requires increasing the number of qubits (logarithmically, see the
comment section at the end of the paper for more details).

Next we express M in terms of n and N:

Corollary 3. Let 1<p< 0. There is a constant ¢=1 such that for all ny M, N eN,
eg<S;V7M7'@;;V) =0
whenever

M =c(N/n)*Pmax(log(n/v/N), 1)*?.

Proof. Let ¢y be the constant from Proposition 1. We put
¢ = max((2¢)*”, 1). (28)
Assume

M > c¢(N/n)*"max(log(n/vVN),1)*".
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It follows that
M PPN <cP?n/max(log(n/VN), 1). (29)
Squaring and dividing by N gives
M7PN<e?n* N~ /max(log(n/V/N), 1),
and hence
max(log(M’N), 1)
<max(log(c¢?) 4 2log(n/v'N) — 2 log(max(log(n/v'N), 1)), 1)
<2max(log(n/V'N), 1). (30)
Relations (28)—(30) give
coM > Nmax(log(M"N), 1)<2coc " *n<n,
which, by Proposition 1, implies
Sy #)Y)=0. O

Proposition 2. Let 1 <p<2. There is a constant ¢ > 0 such that for all k,n,N €N,
ez(SN.Zkv %1])\7) < 6(2(1717/2)1(”71 4 zknfz).

Proof. This is a direct consequence of the method of proof of Theorem 1 in [8]. The
idea is to split the sum into dyadic levels, so that each level corresponds to a suitably
scaled summation for the case p = co. This allows to apply a modification of the
counting algorithm of Brassard et al. [3] to each level. A proper balancing over the
levels leads to the desired error estimate. For the sake of completeness, we recall
some key steps.

Since trivially e;{(SNQhQZ[]]V )<1 for all neNy (just use the zero algorithm), it
suffices to prove the result under the assumption

nz=20-P/2k, (31)
Define 837 : LY >R for / =0, ...,k,c = 0,1 as
SYf=(=D727 N Y S0
21 (=1)f (i) <2/
if /=1 and
SV/ =N S S
0<(-1)77(i)<1

It is shown in [8] (based on the counting algorithm of Brassard et al. [3]), that there is
a constant ¢ > 0 such that for each choice of v,,n,eN (/ =0, ...,k), there are
algorithms 4,, (/ =0, ...,k, ¢ =0,1) with n,(A4,,) <v/n, and
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(use the relation following (27) in [8], together with (21) and (22) of that paper). Now
choose

ny = [2-0/2=pA0k=0,
and

ve=[2loglk —/+1)] +4.
Due to (31),

n/<27(1/27p/4)(k7/)+1n. (32)
Let the algorithm A be defined by

A= Z (=1)72'4,,.

0</<ko=0,1

(We refer again to Heinrich [8, Section 2], for a formal definition.) Taking into
account (32), it follows that

ny(4)<2 IZC(Dlog(k L+ 1)) +4)[ 2702 E T < ey, (33)
/=0

Moreover, since

k
222 g; (k—¢+1)"

we get

e(SN,2k7 A7 @IIJV)

N
o

QU+ =0 =1y ol +(1=p/ k=), 2

N

M~ I~

c QU2+ =1 | ok=pk=0)/2,-2)

/=0
2(] p/2k -1 _’_2/(}172)

which together with (33) and a suitable scaling of n implies the desired result. [J

Theorem 3. Let 1 <p<2. There are constants co,c > 0 such that for all n, N e N with

n=coV/N
el(Sw, ,%;V) <cen P N*P~"max(log(n/V/'N), 1)2/1771.

Proof. The key idea is as follows: We choose a suitable k so that computing Sy

reduces to computing Sy », by the multilevel splitting of Proposition 2, and SN o> DY

the search procedure from Proposition 1.
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First note that
G?V(SNv ﬁg) =0.

(34)

Next, observe that it follows readily from Lemma 3 in [8] (reducing the error
probability by repeating the algorithm and computing the median) that there is a

constant ¢yeN such that for all n,k, NeN,
el (Sy, B))<el(Syaw, B)) + €l(Sy 2, BY).
Now let n satisfy
VN<n<N
and choose keN in such a way that
21 <) (N /n)*Pmax(log(n/v/N), 1)¥? <2,
where ¢; >1 is the constant from Corollary 3. Consequently, we have
en(Sy o QN) =0.
Moreover, with ¢, being the constant from Proposition 2,
en(Sn o, 93,];\')
< (Ut 4 2k 2

2

< (N/ ) -0/ ]max<log " P
<c3 n n —,
vN

2/p
n
+ (N/n 2/”n_zmax<lo —71>
(N/n) i
2p—1,-2/ n 2!
= ¢3| NP7 'n Pmax| log—, 1
: ( SN )

2/p
+ N¥Pp=2/P=2max (lo L, 1) .
g VN

Using (again) x>1In(1 4+ x) for x > —1, we have

”2>1n<”2+1)>21n no_ 2 > 1o
NT \N TN loge g\/ﬁ g\/ﬁ

Consequently, recalling our assumption n>+v N, we get

n—2>max(lo o l)
N/ g\/ﬁ’ )

and therefore

2/p—1
NZ/p—ln—2/pmaX<10 L7 > >N2/”n_2/”_2max(lo L,l)
Vi &N

2/p

(35)
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From (35), (37), (38), and the relation above we get

el (Sn, B))< el(Sya, )

2/p—1
< 2¢; N7~ n=2/Pmax (10 L, 1) 39
3 g JN (39)
for all n with /N <n<N. With a suitable scaling of #, the result follows from (39)
and (34). O

5. Lower bounds

We need some general results from Section 4 of Heinrich [8], Let D and K be
nonempty sets, let LeN, and let to each u = (u, ...,u;_;)€{0,1}* an f, e 7 (D, K)
be assigned such that the following is satisfied:

Condition (1): For each te D there is an /, 0</<L — 1, such that f,(¢) depends
only on u, in other words, for u,1' € {0, 1}*, u, = u, implies £, (¢) = fu ().

Define the function o(L,7,/’) for LeN, 0</#/ <L by

L min,_, ,+/j(L — j)

Q(L7/7/,): |/_//| |/_//|

(40)

The following was proved in [8], using the polynomial method of Beals et al. [2] and
based on a result of Nayak and Wu [11]:

Lemma 1. There is a constant ¢y > 0 such that the following holds: Let D,K be
nonempty sets, let F< % (D, K) be a set of functions, G a normed space, S : F>G a
function, and LeN. Suppose (f,;)ue{o 1y =7 (D, K) is a system of functions satisfying
condition (1). Let finally 0</ #¢' <L and assume that

fu€F whenever |u|e{/,/'}. (41)
Then

en(S, F)=smin{||S(f.) — S(fu)llllul = ¢, /| = '} (42)
Sfor all n with

n<coo(L,/,0"). (43)

The next result contains lower bounds matching the upper ones from Theorem 3
up to a logarithmic factor.

Theorem 4. Let 1<p<2. Then there are constants cgy,ci,cy > 0 such that for all
n,NeN with cov/N<n<ciN,

el(Sy, %j,v) > con 2P NPT
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Proof. Let ¢y be the constant from Lemma 1, and let
e = co/V12.
By assumption,
c()\/]_\’_<n <c|N.
We set
L=N, (=[2¢**N"], /' =¢+1.
It follows from (45) that />2. Moreover, from (46),
n<con/{N/2
and, taking into account that />2,
()2t —1<2c?n* N7,
hence, by (44) and (45),
/+1<3//2<6¢,*n* N~ <6¢;’ciN = N/2.
We have, by (46)—(48).

n<c0v/N/2<c0/:rr/1‘i/r}rl V(N —j)<coo(L, 2, ).

Now we define ;e L) (j=0,...,L — 1) as

i) = (¢+1)""’N if i ].,
0 otherwise.

We have
Swip; = (¢ +1)" PN

For each u = (up, ...,u;_1)€{0,1}" define
L—

Ju= Z up;.

J=0

—

(50)

Since the functions ; have disjoint supports, the system (f,),. (0.1} satisfies

condition (I). Moreover, f, e,@;\' whenever |u| = /,/ + 1. Lemma 1, relation (49) and

the left and middle part of (48) give

el (S, #)) = smin{[Snf, — Snfulllul =/, || = £ + 1}
:%(/_'_ 1)—1/pN1/p—1 2% (6Ca2n2N71)—l/pN1/p71

0/ -2/ 2/p—1
- p P
- 1/ n N . D
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6. Comments

Let us first mention that there remains another gap in the order of the quantity
eZ(SN,%‘;V) in all the results of Theorems 1, 2, and Corollaries 1, 2, namely, the
region ¢ N<n<N. As we mentioned before, we have ez(SN,,%’]],V) =0 for n=N
(classical computation of the sum). Hence filling this gap means determining how
fast ed(Sy, ﬂ]],v) goes to zero in the region close to classical computation. We did not

consider this problem further. It is theoretically interesting, but one should also
mention that its solution would not say much about the speed-up due to quantum
computation: With an effort, just by a constant factor higher, the problem can be
solved with the same error (in fact, even up to any needed precision) by classical
computation.

Finally, we discuss the cost of our algorithm in the bit model of computation. Here
we assume that both N and # are powers of two. The algorithm behind Proposition 1
and Corollary 3 needs O(nm"”) quantum gates (see [12, Chapter 4], for basics on
quantum gates), ¢(m") qubits, and makes O(n>N~'/max(log(n/+/N),1)) measure-
ments to reach error ((2°¢N="") The bit cost of the classical computations is
negligible as compared to the number of quantum gates: We need O(n”?N~'m")
classical bit operations to sort out the wrong elements and to add the right ones. The
bit cost of the algorithm in connection with Proposition 2 was already analyzed in
[8]. It amounts to @(nlog N) quantum gates, (/(log N) qubits, and ((k log k) (which
is O(lognloglogn)) measurements. The number of classical bit operations is
O(lognloglognlog N), and thus, again dominated by the number of quantum gates.
Summarizing this for the algorithm of Theorem 3, we see that we can implement it
with @(nlog N) quantum gates, on ()(log N) qubits, and with

O(m*N~' /max(log(n/v/N), 1) + log(N /n)log log(N /n))

measurements. Thus the quantum bit cost differs by at most a logarithmic factor
from the quantum query complexity.
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