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U-spin symmetry predicts equal CP rate asymmetries with opposite signs in pairs of �S = 0 and �S = 1
B meson decays in which initial and final states are related by U-spin reflection. Of particular interest are
six decay modes to final states with pairs of charged pions or kaons, including Bs → π+ K − and Bs →
K + K − for which asymmetries have been reported recently by the LHCb collaboration. After reviewing
the current status of these predictions, highlighted by the precision of a relation between asymmetries in
Bs → π+ K − and B0 → K +π−, we perform a perturbative study of U-spin breaking corrections, searching
for relations among asymmetries which hold to first order. No such relation is found in these six decays,
in two-body decays involving a neutral kaon, and in three-body B+ decays to charged pions and kaons.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Charmless hadronic B decays provide valuable tests for the pat-
tern of CP violation in the Cabibbo–Kobayashi–Maskawa (CKM)
framework. Methods using isospin symmetry of strong interactions
have been developed [1,2] and applied very successfully to a large
amount of data [3,4] testing the CKM framework to a high level of
precision. Flavor SU(3) relating B decay amplitudes [5,6] is much
richer than isospin alone. However, it involves symmetry-breaking
effects introducing ab initio unknown SU(3)-breaking parameters
into the analyses [7]. These parameters have been studied using
experimental data [8–13].

A particularly useful SU(2) subgroup of flavor SU(3) is U-spin
[14], under which the quark pair (d, s) behaves like a doublet
while the u quark and heavier quarks are singlets. The strangeness-
conserving and strangeness-changing parts of the effective weak
Hamiltonian responsible for B meson decays transform like d
(“up”) and s (“down”) components of a U-spin doublet operator.
This and unitarity of the CKM matrix [15], Im(V ∗

ub V us V cb V ∗
cs) =

− Im(V ∗
ub V ud V cb V ∗

cd), have led to the following very simple and
powerful general U-spin prediction phrased as a theorem [16]:
CP rate differences in pairs of decay processes in which both initial
and final states are obtained from each other by a U-spin reflection,
Ur : d ↔ s, are equal in magnitude and have opposite signs. A dozen
processes involving B meson decays to two pseudoscalars, divided
into half a dozen U-spin pairs obeying this theorem, were listed
in Ref. [16]. Other decays involving one or two vector mesons in
the final state have been discussed in the framework of U-spin in
Refs. [16] and [17]. Well-known examples, which have been stud-
ied extensively by experiments, are the pairs [16,18,19] (B0 →
K +π−, Bs → π+K −) and [20] (B0 → π+π−, Bs → K +K −) and
0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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two pairs of three-body B+ decays [21], (B+ → π+π+π−, B+ →
K +K +K −), (B+ → π+K +K −, B+ → K +π+π−).

Symmetry-breaking corrections in U-spin relations between CP
asymmetries have been discussed in [22] under various theoretical
assumptions including factorization. A general analysis of U-spin
breaking in decays including neutral vector mesons in the final
state has been presented in [23], with specific applications to B
decays into states involving a charm meson or a charmonium state.

Typical U-spin breaking corrections estimated by ∼ (ms − md)/

ΛQCD or f K / fπ − 1 are of order 20–30%. They may be assumed to
be treated perturbatively in hadronic matrix elements for B decays
to energetic two-body final states. Ideally, one would seek cases
in which first order U-spin breaking corrections vanish or cancel,
leaving second order corrections which are expected to be small at
a level of 5%. A quantity which has been shown recently to vanish
in the U-spin symmetry limit and to first order in U-spin break-
ing, leaving only second order U-spin breaking corrections, is the
D0–D̄0 mixing amplitude [24]. This property had been shown pre-
viously to follow from a broader assumption of flavor SU(3) [25].
Another case of SU(3) symmetry, in which first order SU(3) break-
ing corrections have been shown to be further suppressed by small
quantities, has been studied several years ago in a sum rule involv-
ing decay rates for B → Kπ and B → Kη(′) [26]. A U-spin behavior
similar to the one exhibited by D0–D̄0 mixing may apply to certain
U-spin relations among CP asymmetries in B decays. The purpose
of this Letter is to search for such relations.

2. B0 → K +π− , Bs → π+ K − and U-spin related decays

In order to motivate our study we consider first the rather ad-
vanced experimental situation of the very early U-spin prediction
[16,18] for the ratio of asymmetries ACP(Bs → π+K −)/ACP(B0 →
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Table 1
Branching fractions and direct CP asymmetries for B0 and Bs decays to pairs involv-
ing a charged pion or kaon. Data are taken from Ref. [4] unless quoted otherwise.

Decay mode Branching fraction (10−6) Direct CP asymmetry

B0 → K +π− 19.57+0.53
−0.52 −0.082 ± 0.006

Bs → π+ K − 5.4 ± 0.6 0.26 ± 0.04

B0 → π+π− 5.10 ± 0.19 0.31 ± 0.05a

Bs → K + K − 24.5 ± 1.8 −0.14 ± 0.11 ± 0.03 [27]

B0 → K + K − 0.12 ± 0.05 –
Bs → π+π− 0.73 ± 0.14 –

a World-averaged value includes ACP = 0.38 ± 0.15 ± 0.02 from Ref. [27].

K +π−). Denoting CP rate differences by �Γ (B → f ) ≡ Γ (B̄ →
f̄ ) − Γ (B → f ), the U-spin theorem quoted in the introduction
predicts

�Γ
(

Bs → π+K −) = −�Γ
(

B0 → K +π−)
, (1)

or

ACP(Bs → π+K −)

ACP(B0 → K +π−)
= − τ (Bs)

τ (B0)

B(B0 → K +π−)

B(Bs → π+K −)
. (2)

That is, the ratio of Bs and B0 decay asymmetries is predicted to
be negative and equal in magnitude to the inverse ratio of corre-
sponding decay rates.

Branching fractions and direct CP asymmetries, taken from
Refs. [4] and [27], are given in Table 1 for all B and Bs decays
to pairs involving a charged pion or kaon. (We use the stan-
dard convention, ACP(B → f ) ≡ [Γ (B̄ → f̄ ) − Γ (B → f )]/[Γ (B̄ →
f̄ ) + Γ (B → f )].) Several of these measurements have been re-
cently improved substantially by the LHCb collaboration [28,29].
For the ratio of Bs and B0 lifetimes we will take the value [4]
τ (Bs)/τ (B0) = 0.998 ± 0.009.

Using the values in Table 1 we calculate

− τ (Bs)

τ (B0)

B(B0 → K +π−)

B(Bs → π+K −)
= −3.62 ± 0.41 (3)

for the one side of (2) and

ACP(Bs → π+K −)

ACP(B0 → K +π−)
= −3.17 ± 0.54 (4)

for the other. The ratio of asymmetries is negative and larger than
one around 3–4, consistent with the ratio of decay rates (3). Turn-
ing the argument around, one might have used the CP asymmetry
in B0 → K +π− to predict ACP(Bs → π+K −) = 0.30±0.04, in good
agreement with the value in Table 1 which has been obtained by
averaging very recent measurements by the LHCb and CDF collab-
orations [29,30].

The current precision of the U-spin prediction (1) may be mea-
sured by the deviation of −�(Bs → K −π+)/�(B0 → K +π−) from
one:

1 + �(Bs → π+K −)

�(B0 → K +π−)

= 1 + B(Bs → π+K −)ACP(Bs → π+K −)τ (B0)

B(B0 → K +π−)ACP(B0 → K +π−)τ (Bs)

= 0.12 ± 0.18. (5)

U-spin breaking in decay amplitudes is enhanced by a factor four
in (5), originating in the ratio of two differences of squared am-
plitudes for processes and their charge-conjugates. [See Eq. (19)
in Section 3.] We see that the U-spin asymmetry relation (1)
is obeyed quite well. Current experimental errors, dominated by
measurements of B(Bs → π+K −) and ACP(Bs → π+K −), allow for
its violation by about 20–30% including this factor of four. A re-
sulting stringent constraint on suitably normalized U-spin breaking
corrections in decay amplitudes, at most of order several percent,
will be given in Eq. (20).

The apparent success of this prediction may be accounted for
by small U-spin breaking corrections such as occurring in an ap-
proximation based on naive factorization [22]. A question which
we will address in the next section is whether first order U-spin
breaking corrections in (1) are further suppressed or vanish in a
general perturbative analysis. Another possibility would be to com-
bine the rate asymmetries in (1) with asymmetries in other U-spin
related processes, to be discussed now, such that the combined
asymmetry vanishes at first order U-spin breaking.

The other two U-spin pairs in Table 1 (B0 → π+π− , Bs →
K +K −), (B0 → K +K − , Bs → π+π−), which require flavor-tagging
and time-dependence, involve considerably larger experimental er-
rors. The U-spin relation

�Γ
(

Bs → K +K −) = −�Γ
(

B0 → π+π−)
(6)

predicts a small negative asymmetry in Bs → K +K − ,

ACP
(

Bs → K +K −)

= − τ (Bs)

τ (B0)

B(B0 → π+π−)

B(Bs → K +K −)
ACP

(
B0 → π+π−)

= −0.064 ± 0.012. (7)

A very recent measurement reported by the LHCb collabora-
tion [27], ACP(Bs → K +K −) = −0.14±0.11±0.03, is in agreement
with this prediction but is also consistent with zero due to a large
statistical error. It would be interesting to watch the change in
central value with higher LHCb statistics and at the next run of
the LHC.

Finally, the quite rare processes in the third pair (B0 →
K +K −, Bs → π+π−), which are due to exchange amplitudes or fi-
nal state rescattering, have been predicted to have extremely small
branching fractions [31,32]. Asymmetry measurements in these de-
cays which would test the U-spin prediction

�Γ
(

Bs → π+π−) = −�Γ
(

B0 → K +K −)
(8)

are quite challenging.
We will now use U-spin symmetry to obtain relations among

the three pairs of processes in Table 1. We start by noting that
the initial states B0 ∼ b̄d and Bs ∼ b̄s are members of a U-spin
doublet, while the �S = 1 and �S = 0 parts of the Hamiltonian,
H�S=1

eff ∼ (b̄s), −H�S=0
eff ∼ −(b̄d), transform like a U-spin doublet

when a minus sign is assigned to the �S = 0 part. The neutral final
states involving the U-spin doublets (π−, K −) and (K +,−π+) are
superpositions of U-spin singlet (U = 0) and triplet (U = 1) states.
We denote �S = 0 and �S = 1 decay amplitudes into singlet and
triplet states by Ad,s

0 and Ad,s
1 , respectively. Each of these ampli-

tudes consists of two terms with specific CKM factors (occasionally
being referred to as “tree” and “penguin” amplitudes) [16],

Ad
0,1 = V ∗

ub V ud Au
0,1 + V ∗

cb V cd Ac
0,1,

As
0,1 = V ∗

ub V us Au
0,1 + V ∗

cb V cs Ac
0,1. (9)

A straight-forward U-spin decomposition gives:

(a) A
(

B0 → K +π−) = As
1,

A
(

Bs → π+K −) = Ad
1,

(b) A
(

B0 → π+π−) = 1
Ad

1 + 1
Ad

0,
2 2
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Table 2
Magnitudes of amplitudes and their charge-conjugates for processes in Table 1 cal-
culated using Eq. (12).

Decay mode |A|(10−3) | Ā|(10−3)

B0 → K +π− 4.60 ± 0.06 4.24 ± 0.06
Bs → π+ K − 2.00 ± 0.12 2.61 ± 0.15
B0 → π+π− 1.90 ± 0.08 2.56 ± 0.07
Bs → K + K − 4.90 ± 0.49 5.00 ± 0.49
B0 → K + K − 0.35 ± 0.07 0.35 ± 0.07
Bs → π+π− 0.85 ± 0.08 0.85 ± 0.08

A
(

Bs → K +K −) = 1

2
As

1 + 1

2
As

0,

(c) A
(

B0 → K +K −) = −1

2
Ad

1 + 1

2
Ad

0,

A
(

Bs → π+π−) = −1

2
As

1 + 1

2
As

0. (10)

The identical U-spin structures of amplitudes within each of the three
pairs of processes (a), (b) and (c), each involving a U-spin reflection
d ↔ s, lead to the three asymmetry relations (1), (6) and (8). For in-
stance, the CP rate differences �Γ (B0 → K +π−) and �Γ (Bs →
π+K −) involve the same amplitude factor, Im[(Ac

1)
∗ Au

1], multiply-
ing equal CKM factors with opposite signs, 4 Im(V ∗

ub V us V cb V ∗
cs) =

−4 Im(V ∗
ub V ud V cb V ∗

cd) [16].
In addition, the six amplitudes in Eqs. (10) are seen to obey

two triangle relations for �S = 0 and �S = 1 transitions,

A
(

Bs → π+K −) − A
(

B0 → π+π−) + A
(

B0 → K +K −) = 0,

A
(

B0 → K +π−) − A
(

Bs → K +K −) + A
(

Bs → π+π−) = 0.

(11)

Similar relations are obeyed by charged-conjugated amplitudes.
These relations have been shown in Ref. [5] to hold under the
broader assumption of flavor SU(3) symmetry. We will now check
the validity of these triangle relations using current experimental
data.

Neglecting the tiny difference between B0 and Bs lifetimes and
omitting phase space factors, we calculate magnitudes for these six
amplitudes and their charge-conjugates:

|A|2 = B(1 − ACP), | Ā|2 = B(1 + ACP). (12)

The results are summarized in Table 2. In the absence of asym-
metry measurements for the rare decays B0 → K +K − and Bs →
π+π− we have assumed that these two asymmetries vanish. The
magnitudes calculated in Table 2 verify the closure of the two tri-
angles (11) and their charge-conjugates. This behavior predicted in
the U-spin symmetry limit is seen to be independent of the values
assumed for the asymmetries in B0 → K +K − and Bs → π+π− .

Neglecting the amplitudes of these two rare processes rela-
tive to the other corresponding �S = 0 and �S = 1 amplitudes,
which are almost an order of magnitude larger, would mean tak-
ing Ad,s

1 = Ad,s
0 . In this approximation the two triangles degener-

ate to straight lines, A(B0 → π+π−) = A(Bs → π+K −), A(Bs →
K +K −) = A(B0 → K +π−).

3. First order U-spin breaking

We will now study first order U-spin breaking corrections in
Eqs. (10), searching for possible relations among CP rate asymme-
tries which would be free of such corrections. U-spin breaking is
introduced in hadronic matrix elements by inserting a quark mass
term MUbrk ∝ s̄s − d̄d behaving like U = 1, U3 = 0, multiplying the
effective Hamiltonian which transforms as a U-spin doublet. Thus
the correction operator for �S = 1,0 transitions (corresponding to
U3 = 1/2,−1/2) transforms as a direct product 1 ⊗ 1/2 consisting
of U = 1/2 and U = 3/2 operators,

MUbrk H�S=1,0
eff ∝ ±(1,0) ⊗

(
1

2
,±1

2

)

= −
√

1

3
O

1
2

± 1
2

±
√

2

3
O

3
2

± 1
2
. (13)

The initial ± signs originate in the signs of +H�S=1
eff and −H�S=0

eff
transforming as two components of a U-spin doublet. Upper and
lower indices on operators denote values of U and U3, respec-
tively. First order corrections in (10) are given in terms of matrix

elements of O 1
2 and O 3

2 for final states with U = 0,1 and U = 1,
respectively.

We define first order U-spin breaking corrections to decay am-
plitudes,

εs,d
1 ≡

√
1

3
〈U = 0|O

1
2

± 1
2

∣∣∣∣U = 1

2

〉
,

εs,d
2 ≡

√
1

3
〈U = 1|O

1
2

± 1
2

∣∣∣∣U = 1

2

〉
,

εs,d
3 ≡

√
2

3
〈U = 1|O

3
2

± 1
2

∣∣∣∣U = 1

2

〉
. (14)

These corrections have CKM structures similar to (9) [16],

εd
i = V ∗

ub V udε
u
i + V ∗

cb V cdε
c
i ,

εs
i = V ∗

ub V usε
u
i + V ∗

cb V csε
c
i (i = 1,2,3). (15)

A straight-forward U-spin decomposition including these correc-
tions gives:

(a) A
(

B0 → K +π−) = As
1 − εs

2 − 1

2
εs

3,

A
(

Bs → π+K −) = Ad
1 + εd

2 + 1

2
εd

3,

(b) A
(

B0 → π+π−) = 1

2
Ad

1 + 1

2
Ad

0 + 1

2
εd

1 + 1

2
εd

2 − 1

2
εd

3,

A
(

Bs → K +K −) = 1

2
As

1 + 1

2
As

0 − 1

2
εs

1 − 1

2
εs

2 + 1

2
εs

3,

(c) A
(

B0 → K +K −) = −1

2
Ad

1 + 1

2
Ad

0 + 1

2
εd

1 − 1

2
εd

2 + 1

2
εd

3,

A
(

Bs → π+π−) = −1

2
As

1 + 1

2
As

0 − 1

2
εs

1 + 1

2
εs

2 − 1

2
εs

3.

(16)

We note that at this order in U-spin breaking the U-spin struc-
tures of two amplitudes within any given pair are not identi-
cal as required for obtaining relations between corresponding CP
rate asymmetries. While the leading terms within each pair of am-
plitudes have the same U-spin structures and equal signs, the first or-
der U-spin breaking corrections have the same structures but oppo-
site signs. Consequently two CP rate differences for a given pair
of processes now involve equal CKM factors with opposite signs,
4 Im(V ∗

ub V us V cb V ∗
cs) = −4 Im(V ∗

ub V ud V cb V ∗
cd), which are however

multiplied by different amplitude factors.
Denoting by δ the difference between these first order ampli-

tude factors, we now have [33]

�Γ
(

B0 → f
) + �Γ (Bs → Ur f ) = 4 Im

(
V ∗

ub V us V cb V ∗
cd

)
δ, (17)

where Ur f is a final state obtained from f by U-spin reflection,
Ur : d ↔ s. δ vanishes in the U-spin symmetry limit. Expressions of
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δ for the above three pairs of processes are readily obtained from
Eqs. (16):

(a) δa = 2 Im

[
Ac∗

1

(
εu

2 + 1

2
εu

3

)]
− [c ↔ u],

(b) δb = 1

2
Im

[(
Ac∗

1 + Ac∗
0

)(
εu

1 + εu
2 − εu

3

)] − [c ↔ u],

(c) δc = 1

2
Im

[(−Ac
1
∗ + Ac∗

0

)(
εu

1 − εu
2 + εu

3

)] − [c ↔ u]. (18)

That is, all three asymmetry relations (1), (6) and (8) obtain first
order U-spin breaking corrections given by Eqs. (17) and (18). Fur-
thermore, these corrections do not cancel in any arbitrary linear
combination of the three sums of CP rate differences (17) because,
as one can see by inspection, there exists no linear combination of
δa, δb and δc that vanishes identically.

As mentioned in Section 2 U-spin breaking corrections in am-
plitudes are enhanced by a factor four in (5):

1 + �(Bs → π+K −)

�(B0 → K +π−)
= 4 Im[Ac∗

1 (εu
2 + 1

2εu
3 )] − [c ↔ u]

Im(Ac∗
1 Au

1) − [c ↔ u] . (19)

Thus current measurements imply that suitably normalized U-spin
breaking corrections are at most of order several percent,

Im[Ac∗
1 (εu

2 + 1
2εu

3 )] − [c ↔ u]
2 Im(Ac∗

1 Au
1)

= 0.03 ± 0.04. (20)

One may also consider differences of CP rate differences for each
one of the three U-spin pairs,

�Γ
(

B0 → f
) − �Γ (Bs → Ur f ) = 4 Im

(
V ∗

ub V us V cb V ∗
cd

)
σ . (21)

First order U-spin breaking corrections do cancel in σ which depends
only on U-spin invariant amplitudes,

(a) σa = −2 Im
(

Ac∗
1 Au

1

)
,

(b) σb = 1

2
Im

[(
Ac∗

1 + Ac∗
0

)(
Au

1 + Au
0

)]
,

(c) σc = 1

2
Im

[(
Ac∗

1 − Ac∗
0

)(
Au

1 − Au
0

)]
. (22)

These three quantities are linearly independent. Thus in general
one is unable to form a linear combination of all six rate asymmetries
which would vanish to first order in U-spin breaking.

We checked that first order U-spin breaking cannot be avoided
also in relations between CP rate asymmetries for the follow-
ing three U-reflected pairs of processes obeying the U-spin the-
orem [16], (B0 → K 0π0, Bs → K̄ 0π0), (B0 → K 0 K̄ 0, Bs → K̄ 0 K 0)

and (B+ → K 0π+, B+ → K̄ 0 K +).
In the approximation of neglecting the small amplitudes for

B0 → K +K − and Bs → π+π− , which we have seen is equivalent
to taking Ad,s

1 = Ad,s
0 or Ac,u

1 = Ac,u
0 , one has σa = −σb , namely

�Γ
(

B0 → K +π−) − �Γ
(

Bs → π+K −)
= �Γ

(
Bs → K +K −) − �Γ

(
B0 → π+π−)

. (23)

This relation holds experimentally largely because of the current
large error on ACP(Bs → K +K −) [27]. It will be interesting to
watch the effect of improving this asymmetry measurement on the
validity of this equality neglecting rescattering in comparison with
that of (6) neglecting U-spin breaking.

Turning next to the amplitude triangle relations (11) we ob-
serve that both relations are violated by purely �U = 3/2 first
order U-spin breaking corrections:
A
(

Bs → π+K −) − A
(

B0 → π+π−)
+ A

(
B0 → K +K −) = 3

2
εd

3,

A
(

B0 → K +π−) − A
(

Bs → K +K −)
+ A

(
Bs → π+π−) = −3

2
εs

3. (24)

4. Three-body B+ decays to charged pions and kaons

The LHCb collaboration reported CP asymmetry measurements
in all four decay modes of three-body B+ decays to charged pions
and kaons, B+ → K +K +K − , K +π+π− , π+π+π− , π+K +K − [34,
35]. These processes may be divided into two pairs involving U-
spin reflected final states obeying relations between total CP rate
asymmetries similar to (1),

�Γ
(

B+ → K +K +K −) = −�Γ
(

B+ → π+π+π−)
,

�Γ
(

B+ → K +π+π−) = −�Γ
(

B+ → π+K +K −)
. (25)

These predictions have been analyzed recently in Ref. [21] and
were found to agree reasonably well with the LHCb measurements,
in particular with respect to relative signs of �S = 0 and �S = 1
asymmetries and their magnitudes which currently involve size-
able errors. We will now study U-spin breaking corrections in (25)
in a manner similar to our study of two-body decays in the previ-
ous two sections.

We start by observing that the initial B+ state is a U-spin scalar.
Each one of the four final states consisting of three members of U-
spin doublets can be decomposed into two doublets, depending on
whether the two positively charged mesons combine to U = 0 or
U = 1, and one triplet state. Only the doublets contribute to the
�U = 1/2 transitions in the U-spin symmetry limit. Two ampli-
tudes, A0 and A1, defined by the U-spin of the two positively charged
mesons, depend also on the three meson momenta, p1, p2, p3,
defining a point in the Dalitz plane.

Using these notations one obtains [36],

(d) A
(

B+ → K +(p1)K +(p2)K −(p3)
) = 2As

1(p1, p2, p3),

A
(

B+ → π+(p1)π
+(p2)π

−(p3)
) = 2Ad

1(p1, p2, p3),

(e) A
(

B+ → K +(p1)π
+(p2)π

−(p3)
)

= As
1(p1, p2, p3) −As

0(p1, p2, p3),

A
(

B+ → π+(p1)K +(p2)K −(p3)
)

= Ad
1(p1, p2, p3) −Ad

0(p1, p2, p3), (26)

where factors 1/
√

2, and 1/
√

6 have been absorbed in Ad,s
0 and

Ad,s
1 which involve CKM factors as in (9). The identical U-spin struc-

tures of amplitudes within each of the two U-spin reflected pairs of
processes (d) and (e) lead upon phase space integration to the two asym-
metry relations (25).

In order to introduce first order U-spin breaking in (26) we
calculate additional contributions to decay amplitudes from the U-
spin breaking operator MUbrk Heff given in (13). Corrections include
matrix elements of this operator for U-spin doublet final states
|(U = 1/2)0〉 and |(U = 1/2)1〉, in which the two positively charged
mesons combine to U = 0 and U = 1, and for a U-spin triplet final
state |U = 3/2〉. Defining

E s,d
1 ≡ 1√

6

〈(
U = 1

2

)
0

∣∣∣∣O
1
2

± 1
2
|U = 0〉,

E s,d
2 ≡

√
2

3

〈(
U = 1

2

) ∣∣∣∣O
1
2

± 1 |U = 0〉,

1 2
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E s,d
3 ≡

√
2

3

〈
U = 3

2

∣∣∣∣O
3
2

± 1
2
|U = 0〉, (27)

where E s,d
i have CKM structures as in (15), we calculate

(d) A
(

B+ → K +K +K −) = 2As
1 − E s

2 + E s
3,

A
(

B+ → π+π+π−) = 2Ad
1 + Ed

2 − Ed
3 ,

(e) A
(

B+ → K +π+π−) = As
1 −As

0 + E s
1 − 1

2
E s

2 − E s
3,

A
(

B+ → π+K +K −) = Ad
1 −Ad

0 − Ed
1 + 1

2
Ed

2 + Ed
3 . (28)

We note that, just as in two-body decays, the U-spin breaking
terms within each pair of three-body processes have the same U-
spin structures but opposite signs. Consequently the asymmetry
relations (25) are violated by first order U-spin breaking correc-
tions in a form analogous to Eq. (17). Using arguments similar to
those associated with Eqs. (18) and (22) for two-body decays, we
conclude that these corrections cannot be avoided by considering
arbitrary linear combinations of these four asymmetries.

Before concluding we note that while we were writing-up this
work a paper appeared [37], in which SU(3) symmetry amplitude
relations and SU(3) breaking corrections in these three-body decay
amplitudes have been studied under several additional assump-
tions with which we do not completely agree. Among these as-
sumptions are: (a) Two equalities, A(B+ → π+π+π−) = A(B+ →
π+K +K −) and A(B+ → K +K +K −) = A(B+ → K +π+π−),
claimed to follow from SU(3) symmetry. (b) The absence of
SU(3) breaking corrections in A(B+ → π+π+π−) and A(B+ →
K +K +K −). Point (a) is in clear contradiction with Eqs. (26) and
Bose symmetry [36] while point (b) requires Eu,c

2 = Eu,c
3 in Eqs.

(28).

5. Conclusion

We have summarized the current experimental status of U-
spin relations predicted among CP rate asymmetries in B decays
to two charged pseudoscalar mesons, noticing a rather small U-
spin breaking in �Γ (Bs → K −π+) = −�Γ (B0 → K +π−). Intro-
ducing an s̄s − d̄d quark mass term for U-spin breaking, we have
performed a general analysis of first order U-spin breaking correc-
tions in two-body B0 and Bs decays and in three-body B+ decays
involving charged pions and kaons. We have shown that these cor-
rections cannot be made to cancel by a judicious choice of a linear
combination of several CP rate asymmetries.
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