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ABSTRACT

While it is thought that short-term memory arises from changes in protein dynamics that increase the
strength of synaptic signaling, many of the underlying fundamental molecular mechanisms remain
unknown. Our lab developed a Caenorhabditis elegans assay of positive olfactory short-term associative
memory (STAM), in which worms learn to associate food with an odor and can remember this association
for over 1h. Here we use this massed olfactory associative assay to identify regulators of C. elegans
short-term and intermediate-term associative memory (ITAM) processes. We show that there are unique
molecular characteristics for different temporal phases of STAM, which include: learning, which is tested
immediately after training, short-term memory, tested 30 min after training, intermediate-term memory,
tested 1 h after training, and forgetting, tested 2 h after training. We find that, as in higher organisms,
C. elegans STAM requires calcium and cAMP signaling, and ITAM requires protein translation. Additionally,
we found that STAM and ITAM are distinct from olfactory adaptation, an associative paradigm in which
worms learn to disregard an inherently attractive odor after starvation in the presence of that odor. Adap-
tation mutants show variable responses to short-term associative memory training. Our data distinguish
between shorter forms of a positive associative memory in C. elegans that require canonical memory path-
ways. Study of STAM and ITAM in C. elegans could lead to a more general understanding of the distinctions

between these important processes and also to the discovery of novel conserved memory regulators.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Learning and memory allow animals to navigate, find food, and
survive in a changing environment. In humans, memory declines
with age, and memory deficits are often a hallmark of neurodegen-
erative disorders, such as Alzheimer’s Disease (Hodges & Patterson,
1995; Salthouse, 1991). Therefore, an understanding of the molec-
ular bases of different forms of memory is essential to develop
treatments for memory loss.

Short-term memory lasts from minutes to hours, resulting from
changes in synaptic strength mediated by modifications at the syn-
apse in the appropriate neurons (Kandel, 2001). cAMP signaling
and calcium signaling are required for short-term memory in many
organisms (Hawkins, Kandel, & Bailey, 2006; Kandel, 2001). These
pathways are activated in response to neurotransmitter receptor

Abbreviations: STAM, short-term associative memory; ITAM, intermediate-term
associative memory.
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activity, can modulate receptor activity, and are thought to activate
synaptic proteins to facilitate memory formation and maintenance.
Several kinases (Giese & Mizuno, 2013; Kandel, 2012) and synaptic
cellular adhesion proteins (Cheng et al., 2001; Grotewiel, Beck, Wu,
Zhu, & Davis, 1998) have also been identified as regulators of short
and intermediate-term memory in higher organisms. However,
downstream targets or parallel regulatory pathways remain largely
unknown. Therefore, it is important to establish a model system in
which regulation of short-term memory is conserved and new
genetic regulators of short-term memory can be rapidly identified.

Caenorhabditis elegans has a simple nervous system comprised
of just 302 neurons, and its stereotypic neural connections (the
“connectome”) have been mapped (Varshney, Chen, Paniagua,
Hall, & Chklovskii, 2011; White, Southgate, Thomson, & Brenner,
1986). This small nematode can learn and form both associative
and non-associative memories, lasting as long as 24 h (Ardiel &
Rankin, 2010; Kauffman, Ashraf, Corces-Zimmerman, Landis, &
Murphy, 2010). We developed a protocol that pairs a relatively
neutral odor (butanone at a specific concentration) with food to
create a positive association, resulting in strong attraction to the
odor (Kauffman et al., 2010). Short-term associative memory
(STAM) after one conditioning period decays by 2 h after training,
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while long-term memory after spaced training (7 conditioning
cycles) lasts more than 16 h (Kauffman et al., 2010). Importantly,
because the worms display an increased response to odor after
training, our positive associative assay allows clear distinction
from non-associative forms of learning, such as habituation and
adaptation, which repress behavioral response to a stimulant and
therefore could be interpreted as negative associative learning.

We previously found that positive associative learning requires
conserved receptors, and that long-term associative memory
requires transcription as well as the activity of the Zn finger tran-
scription factor CREB (Kauffman et al., 2010). Here we show that C.
elegans STAM requires cAMP and calcium signaling pathways. We
also find that protein translation is required at two different steps:
it is first required during massed associative memory training to
extend memory past 30 min, and subsequently after memory
training to ensure proper decay of the associative memory, or for-
getting. Intermediate-term memory requires translation but not
transcription (Ashraf, McLoon, Sclarsic, & Kunes, 2006; Ghirardi,
Montarolo, & Kandel, 1995); our results show that massed training
results in both short-term (30 min) and intermediate-term (1 h)
associative memory (STAM and ITAM). Our data show that
shorter-term memory mechanisms in C. elegans are conserved with
higher organisms and further establish C. elegans as a good model
to study the genetic regulation of short-term and intermediate-
term associative memory.

C. elegans has been shown to associate starvation with a myriad
of sensory cues including olfactory, gustatory, thermosensory, and
pathogenic cues (Colbert & Bargmann, 1995; Mohri et al., 2005;
Saeki, Yamamoto, & lino, 2001; Zhang, Lu, & Bargmann, 2005).
Adaptation is a behavior in which worms display reduced respon-
siveness to an odor after a one-hour odor exposure in the absence
of food (Colbert & Bargmann, 1995). Stetak, Horndli, Maricq, van
den Heuvel, and Hajnal (2009) use the same odor/starvation condi-
tioning paradigm to induce what they refer to as a negative asso-
ciative short-term memory. Our massed associative memory
assay also involves a one-hour exposure to an odor, but in the pres-
ence of food rather than the absence of food, resulting in a positive
association between food and odor. Therefore, one hypothesis that
we set out to test is whether STAM is simply a response occurring
in the opposite direction of adaptation that requires the same
molecular machinery. However, we find that mutants that are
defective for adaptation have varying STAM/ITAM phenotypes,
including prolonged, reduced, and normal memory, establishing
positive olfactory STAM/ITAM as a distinct memory process in C.
elegans.

2. Methods
2.1. Worm cultivation

C. elegans were cultivated at 20 °C on High Growth Media (HG)
or Nematode Growth Media (NGM) seeded with OP50 E. coli using
standard methods (Brenner, 1974). Animals were synchronized by
hypochlorite treatment and tested for learning and memory at Day
1 of adulthood at room temperature.

2.2. Strains

Wild type: (N2 Bristol); mutant strains: KP1182 (acy-1(nu329)),
KG518 (acy-1(ce2)), KG532 (kin-2(ce179)), KG744 (pde-4(ce268)),
VC1052 (unc-43(gk452)), VC1408 (magi-1(gk657)), JH1270 (nos-
1(gv5)), JK3022 (fbf-1(0k91)), CX20 (adp-1(ky20)), RB995 (hpl-
2(0k916)), NL917 (mut-7(pk204)), and DR466 (him-5(e1490)) were
obtained from the Caenorhabditis Genetics Center (University of
Minnesota, Minneapolis, MN). egl-4(ky95); him-5(e1490) was a

kind gift from N. L’Etoile (University of California, San Francisco,
San Francisco, CA).

2.3. Behavioral assays

2.3.1. Short-term associative memory training

STAM assays were performed as previously described
(Kauffman et al., 2010, 2011). Briefly, synchronized day 1 her-
maphrodites were starved for 1 h in M9 buffer. Worms were then
transferred to 6 cm NGM plates with 500 pL of OP50 and 2 pL of
10% butanone in ethanol on the lid and conditioned for 1 h. After
conditioning, 100-500 worms from the trained population of
worms were tested once for chemotaxis to butanone either imme-
diately (0 h) or after being transferred to 10 cm NGM plates with
900 pL fresh OP50 for specified intervals before testing (30 min-
4 h). Graphs display the average chemotaxis index at each time-
point for 3 or more separate biological replicate experiments, with
each experiment displayed as a pale colored curve behind this
average line. Each experiment included at least 3 technical repli-
cates per time-point, with the exception of one of four biological
replicate experiments for acy-1(nu329) and kin-2(ce179) mutants
that had only one technical replicate per time-point. Significance
was calculated by comparing the experimental and control groups
using two-way ANOVAs (p < 0.05 for significant experiments) fol-
lowed by Bonferroni-corrected post hoc unpaired t-tests compar-
ing the experimental and control at each time-point (Bonferroni-
correction per t-test: ppons < 0.05).

2.3.2. Chemotaxis assay

Chemotaxis assays were performed as previously described
(Bargmann, Hartwieg, & Horvitz, 1993). Briefly, 100-500 day 1
adult worms were placed at the origin on a 10 cm NGM plate with
butanone (1 pL 10% butanone in ethanol +1 pL NaN3) and ethanol
control (+1 pL NaNs3) equidistant from the origin. After 1 h., black
and white images of each plate were taken using a Basler A fire
wire camera (Basler AG, Ahrensburg, Germany) using “Measure-
ment and Automation” software (National Instruments) to capture
images. Images were analyzed using count_worms_v7.3 (Kauffman
et al., 2011). The chemotaxis index = [(Nattractant) — (Mcontrol)]/
[(TOtal - norigin)]-

2.3.3. Drug treatments

200 pg/mL Actinomycin D > 95% (Sigma Aldrich, Saint Louis,
Missouri) was added to M9 buffer for the final 30 min of starvation
and added to S basal during conditioning along with 1:1000 Buta-
none and OP50 Escherichia coli bacteria that had been grown over-
night. Cycloheximide > 94% (Sigma Aldrich, Saint Louis, Missouri)
was added to NGM at 0.8 mg/mL. Plates were poured and solidified
overnight at 4 °C, seeded with OP50 E. coli, and then used for Short-
term associative memory training either during conditioning or
after training. To ensure 1 h of drug treatment for 30 min condi-
tioning, worms were added to cycloheximide plates with no food
for the last 30 min of starvation followed by 30 min of conditioning
on cycloheximide with OP50 and 10% butanone.

3. Results

3.1. C. elegans STAM and ITAM require conserved memory
mechanisms

3.1.1. Blocking translation, but not transcription, inhibits both memory
maintenance and forgetting

We and others have shown that long-term memory in C. elegans
requires both transcription and translation (Kauffman et al., 2010;
Timbers & Rankin, 2011; Vukojevic et al., 2012), as is required for
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long-term memory in other organisms. While transcription is not
required for temporal phases other than long-term memory, pro-
tein translation is required for intermediate-term (1-3 h) phases
of memory (Davis & Squire, 1984; Ghirardi et al., 1995; Hawkins
et al., 2006; Jin, Kandel, & Hawkins, 2011; Michel, Green,
Gardner, Organ, & Lyons, 2012; Parvez, Stewart, Sangha, &
Lukowiak, 2005; Sutton, Masters, Bagnall, & Carew, 2001) and for
what is termed negative associative short-term memory in C. ele-
gans that may actually be intermediate-term memory
(Hadziselimovic et al.,, 2014). As in our previously published
short-term associative memory assay, several thousand day 1 adult
worms are starved for 1 h, conditioned with food and 10% buta-
none for 1 h, and then held on food before subsets of the trained
population are tested for memory using a chemotaxis assay at spe-
cific time-points after training (Fig. 1A) (Kauffman et al., 2010).

In order to assess the requirement for transcription and transla-
tion in C. elegans short-term associative memory, we used actino-
mycin D and cycloheximide, respectively, during conditioning or
after training to inhibit these processes in wild-type day 1 adult
worms (Fig. 1A). To test whether STAM requires transcription, we
treated worms with 200 pg/mL actinomycin D during the final
30 min of starvation and in S Basal + OP50 and 1:1000 butanone
during conditioning. We tested worms 30 min after training, allow-
ing them to regain motility after submersion (Fig. 1A). While treat-
ment with actinomycin D during spaced training was sufficient to
inhibit long-term associative memory (Kauffman et al., 2010), we
found that inhibiting transcription during training does not inhibit
short-term memory formation or retention (Fig. 1B). This is consis-
tent with our previous observation that short-term associative
memory is not dependent on the cAMP Response Element-Binding
Protein (CREB) transcription factor (Kauffman et al., 2010).

We then tested whether protein translation is required for
short-term associative memory. We treated worms with 0.8 mg/
ml cylcoheximide in growth medium during or after STAM training
(Fig. 1A). Worms treated with cycloheximide during conditioning
had a small reduction in learning (p = 0.046) that may be due to
the stress of the treatment (Fig. 1C). However, 30 min memory
was normal. 1 h memory was significantly reduced compared to
untreated controls. These data suggest that memory 30 min after
training is a translation-independent short-term memory, and that
by 1 h after training C. elegans have formed an intermediate-term
memory, since intermediate-term memory requires translation
but not transcription (Ghirardi et al., 1995). (For continuity, we will
continue to refer to our training as “STAM training”, although the
same training also induces ITAM.) We also tested whether condi-
tioning worms for only 30 min would result in a fully transla-
tion-independent memory, since we had previously shown that
30min of conditioning is enough to maximize learning
(Kauffman et al., 2010). We treated worms for 1 h with cyclohexi-
mide, as in our initial experiment, by treating for the last 30 min of
starvation followed by the full 30 min of conditioning. Interest-
ingly, we found that duration of memory after 30 min of condition-
ing was equivalent to that of 1 h of conditioning, and 1 h memory
was dependent on translation (Sup. Fig. 1).

Unexpectedly, worms treated with cycloheximide after training
showed increased chemotaxis at both at 2 and 4 h, after untreated
worms have lost their attraction to butanone; in fact, memory is
still close to 0 h post-training levels after 4 h, suggesting a decrease
in forgetting (blue trace, Fig. 1D). (The full duration of memory for
C. elegans treated after cycloheximide training could not be tested
due to the impairment of worm motility after 4+ hours of cyclo-
heximide exposure.) Forgetting a negative associative memory also
requires translation (Hadziselimovic et al., 2014). Taken together,
these data indicate that forgetting is an actively regulated process
that requires protein translation.

3.1.2. Conserved genetic pathways regulate STAM and ITAM

We and others have shown that C. elegans associative learning
is dependent on AMPA type receptors (Kauffman et al., 2010; Lau,
Timbers, Mahmoud, & Rankin, 2013; Vukojevic et al., 2012), as in
other organisms (Cui et al., 2011; Li, Roberts, & Glanzman, 2005;
Sanderson et al., 2008; Zamanillo et al., 1999). In order to identify
genes that are required for memory, we examined calcium sig-
naling genes downstream of receptor activity, specifically cal-
cium-activated CaMKII and components of the cAMP pathway
that are required for learning and memory in many organisms
(Hawkins et al., 2006; Squire & Kandel, 2008). cAMP activates
Protein Kinase A (PKA) and modulates memory in a concentra-
tion-dependent manner in Drosophila (Feany, 1990). Adenylate
cyclase catalyzes the conversion of ATP to cAMP and is required
for short-term memory in mice, Drosophila, and Aplysia (Davis,
Cherry, Dauwalder, Han, & Skoulakis, 1995; Hawkins et al.,
2006; Wang, Phan, & Storm, 2011). Protein Kinase A is activated
by cAMP and is required for memory in many organisms (Li,
Tully, & Kalderon, 1996; Michel et al., 2012; Nguyen & Woo,
2003; Squire & Kandel, 2008). We found that loss-of-function
mutants of adenylate cyclase, acy-1(nu322), have reduced chemo-
taxis compared to WT, but can learn to associate butanone and
food. Memory after training is significantly reduced by 30 min
compared to wild-type worms (Fig. 2A). To take the naive
chemotaxis index (CI) of acy-1(nu322) mutants into account,
we calculated the learning index after training (Learning
Index = Claeertraining — Clnaive) (Sup. Fig. 2). We find that memory
at 1h after training is still significantly reduced in acy-1(nu322)
mutants compared to WT. acy-1(ce2) gain-of-function mutants
have normal naive chemotaxis, but reduced 30 min and 1-h
memory (Fig. 2B). Taken together, these data indicate that cAMP
signaling is required for STAM and ITAM. kin-2(ce179) mutants
are mutated in the PKA inhibitory domain and have increased
PKA activity; kin-2(ce179) mutants have reduced one-hour mem-
ory compared to WT (Fig. 2C). cAMP phosphodiesterase (PDE), is
required for memory in Drosophila (Dudai, Jan, Byers, Quinn, &
Benzer, 1976). However, pde-4(ce268) mutants have normal
short-term associative memory (Sup. Fig. 3) though this may be
due to the partial loss-of-function of available mutants. Ca®*/cal-
modulin-dependent protein kinase II (CaMKII) is required for
memory in many organisms (Ashraf et al., 2006; Giese, Fedorov,
Filipkowski, & Silva, 1998; Hawkins et al., 2006) and required
for forgetting adaptation in C. elegans (Inoue et al, 2013).
Mutants of the C. elegans CaMKIl homolog unc-43(gk452) have
reduced memory by 1 h. (Fig. 2D).

In addition to cAMP and calcium signaling pathways, short-
term memory requires changes at the synapse (Grotewiel et al.,
1998; Hawkins et al., 2006; Stetak et al., 2009). We have previously
shown that the AMPA receptor subunit GLUR1 homolog, glr-1, is
required for learning (Kauffman et al., 2010). Membrane-associ-
ated guanylate cyclase (MAGUK) proteins regulate receptor distri-
bution at the synapse in many organisms, including C. elegans
(Deng, Price, Davis, Mori, & Burgess, 2006; Dobrosotskaya, Guy, &
James, 1997; Hirao et al., 1998; Stetak et al., 2009), and MAGI-1
regulates GLR-1 and is required for C. elegans negative associative
memory (Stetak et al., 2009). We tested the role of MAGI-1 in
our STAM assay, and interestingly, found that magi-1(gk657)
mutants have positive short-term associative memory that is sim-
ilar to wild-type’s (Fig. 2E), indicating that negative and positive
associative memories in C. elegans may be regulated differently
at the synapse.

Together, these data indicate that C. elegans STAM requires
cAMP signaling, and ITAM requires both cAMP and CaMKII signal-
ing, as is required for short and intermediate-term memory in
other organisms.
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Fig. 1. C. elegans positive olfactory short-term associative memory (STAM) requires translation but not transcription. (A) lllustration of short-term associative memory assay
and changes for drug treatment protocols. For Actinomycin D (AD) treatment, worms were starved in M9 with 200 pg/mL AD added during the final 30 min of starvation then
conditioned in OP50 in S-Basal with 200 pg/mL AD and 0.1% butanone. Untreated worms were tested using the same protocol without AD. For Cycloheximide (CH) treatment,
0.8 mg/mL CH was added to nematode growth media (NGM) when plates were poured. OP50 was grown overnight on NGM plates with or without drug and worms were
treated either during the STAM conditioning period or during the holding period after training. Otherwise the protocol followed the normal STAM assay. (B) There is no
change in memory retention with Actinomycin D treatment. Worms were either not treated (black), or treated during starvation and conditioning (green). n = 3 experiments
(pale lines). (C) Cycloheximide treatment during training causes a slight decrease in learning (red; ppons= 0.046), at at 1 h (ppons= 0.007), but 30-min memory does not require
translation. Chemotaxis index of treated worms at 2 h was also significantly below that of controls (black; ppons= 0.023). n = 6 experiments. (D) Cycloheximide treatment after
training (blue) shows that translation is required for normal forgetting (pyons=0.001 at 2 h. ppons=0.010 at 4 h). n =5 experiments. Error bars represent the mean + SEM.
Asterisks indicate significance as determined by an unpaired student T-test with a Bonferroni correction for multiple comparisons.
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mean + SEM. Asterisks indicate significance as determined by an unpaired student T-test with a Bonferroni correction for multiple comparisons.

3.2. C. elegans STAM and adaptation are molecularly distinct
behavioral paradigms

Adaptation is a plastic response in which C. elegans learn to
ignore the presence of odors persisting in their environment
(Colbert & Bargmann, 1995). Many of the molecular mechanisms
underlying this behavioral response have been previously eluci-
dated using a negative associative assay that pairs odor with
starvation to induce adaptation (Colbert, Smith, & Bargmann,
1997; Juang et al, 2013; Kaye, Rose, Goldsworthy, Goga, &
L’Etoile, 2009; L’Etoile et al., 2002). Adaptation to butanone and
benzaldehyde requires AWC®", the sensory neuron required for
sensing butanone (Kaye, Rose, Goldsworthy, Goga, & L’Etoile,
2009). Because our short-term associative memory assay tests
C. elegans’ response to butanone after 1 h of butanone exposure
with food as opposed to without food, as in adaptation studies,
and butanone is also sensed by AWC", one hypothesis is that
adaptation and our short-term associative memory use the same
molecular machinery. If this were true, we would expect that

mutants that cannot adapt to butanone would extend memory
after STAM training.

To test this hypothesis, we examined adaptation mutants. Loss-
of-function mutations in nos-1, fbf-1, egl-4, mut-7, hpl-2, and adp-1
result in the inability to adapt to an attractive odor after exposure
(Colbert & Bargmann, 1995; Juang et al, 2013; Kaye, Rose,
Goldsworthy, Goga, & L’Etoile, 2009; L’Etoile et al., 2002). FBF-1,
a Pumilio homolog, facilitates the translation of EGL-4, a cyclic
GMP-dependent protein kinase (Kaye, Rose, Goldsworthy, Goga,
& L’Etoile, 2009). Both fbf-1(0k91) and egl-4(ky95), which is
mutated only at the site of FBF-1 binding, have prolonged memory
after STAM training, decaying by 4 h instead of 2 h (Fig. 3A and B).
Similarly, adp-1(ky20), which was identified in a screen for adapta-
tion mutants but remains uncloned (Colbert & Bargmann, 1995),
displayed extended memory after STAM training that decays by
4 h (Fig. 3C). Thus, fbf-1, egl-4, and adp-1 mutants all extend STAM,
as would be expected of a mutant that cannot adapt.

By contrast, nos-1(gv5), a mutant of one of three C. elegans
Nanos homologs, has reduced memory by 30 min as compared to
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Fig. 3. C. elegans STAM and Adaptation are molecularly distinct behavioral paradigms. (A) egl-4(ky95); him-5(e1490) mutants (blue) have extended memory compared to WT
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naive-4 h. (C) adp-1(ky20) mutants (blue) have extended memory compared to WT (black) (pyons=0.037 at 2 h) n = 3 experiments for naive-2 h. and 5 experiments for naive-
4 h. (D) nos-1(gv5) mutants (red) have no memory by 30 min after training (ppons=0.001 at 30 min. and ppons=0.001 at 1 h). n =4 experiments. (E) mut-7(pk720) mutants
(purple) have reduced learning and memory as compared to WT (black) (ppons= 0.002 at 0 h. and pyo,r= 0.013 at 30 min). n = 3 experiments. (F) hpl-2(0k916) mutants (green)
have normal memory compared to WT (black). n = 5 experiments. Error bars represent the mean + SEM. Stars indicate significance as determined by an unpaired student T-

test with a Bonferroni correction for multiple comparisons.

wild-type (Fig. 3D). Adaptation requires EGL-4 translocation into
the nucleus, where it phosphorylates MUT-7 and HPL-2 and regu-
lates the expression of odr-1, a transmembrane guanylyl cyclase
required for normal olfaction (Bargmann et al., 1993; Juang et al.,
2013). After STAM training, mut-7(pk20) mutants of the RNAse III
homolog have reduced learning and memory ability (Fig. 3E).
Mutants of heterochromatin protein 1 homolog hpl-2(ok196) have
normal learning and memory (Fig. 3F). Together, these data indi-
cate that disrupting genes required for adaptation causes varying
STAM phenotypes. While FBF-1, EGL-4, and ADP-1 may have over-
lapping functions between adaptation and STAM, NOS-1, HPL-2,
and MUT-7 play different roles in adaptation and STAM, suggesting
that the two paradigms are at least partially distinct.

4. Discussion

While many learning and memory paradigms have been
described and several genes that regulate these plastic processes
have been identified, many aspects of the process remain
unknown. We previously developed a novel C. elegans positive
olfactory short-term associative memory assay. Here we show that
STAM does not require gene transcription, but that protein transla-
tion is required for longer memory after training and for forgetting.
When we inhibited translation during training, memory was estab-
lished, but was impaired by 1 h post-training. We have therefore
identified a form of C. elegans intermediate-term associative mem-
ory. Though intermediate-term memory is a less well-defined
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phase of memory, translation is required for later memory time-
points after massed training in Drosophila, as well as for intermedi-
ate-term memory in Aplysia (Ashraf et al., 2006; Hawkins et al.,
2006). Recently, a non-translation dependent intermediate-term
memory had been identified for habituation in C. elegans and a
translation-dependent negative-associative memory has been
identified but was not characterized as intermediate-term memory
(Hadziselimovic et al., 2014; C. Li et al., 2013). Furthermore, we
found that protein translation is necessary for normal forgetting.
Little is known about the process of forgetting in any organism.
Previously, forgetting has been considered a passive process, possi-
bly related to basal phosphatase deactivation of kinases that estab-
lish short-term memory (Jonides et al., 2008; Wixted, 2004).
However, recent experiments in both flies and C. elegans suggest
that forgetting involves active processes, including remodeling of
the actin cytoskeleton at the synapse (Hadziselimovic et al.,
2014; Shuai et al., 2010). Forgetting of a negative benzaldehyde
odor association in C. elegans is regulated by an UNC-43-activated
MAP kinase pathway in AWC (Inoue et al., 2013). However, in our
positive associative assay, unc-43 is required for memory mainte-
nance, which may mask any potential role in forgetting.

We also show that as in higher organisms, C. elegans uses the
conserved cAMP and calcium signaling pathways for the formation
and maintenance of short-term and intermediate-term memory.
Interestingly, our data show that both loss-of-function and gain-
of-function adenylate cyclase (acy-1) mutants have reduced mem-
ory, suggesting that, as in Drosophila, a balanced (or adjustable)
level of cAMP is required for normal memory. In addition to aden-
ylate cyclase, ITAM requires PKA and CaMKII activity.Though the
PKA regulatory subunit mutant, kin-2, has an ITAM defect, STAM
may be affected as it is in other organisms (Dudai, 1988; Kandel,
2012) by knocking down the catalytic domain of PKA, kin-1, an
experiment we have not been able to do due to the essential
requirement of kin-1.

In C. elegans, CaMKII regulates neuronal cell fate and, through a
separate pathway, regulates forgetting after adaptation (Chuang &
Bargmann, 2005; Inoue et al., 2013). In higher organisms, different

A STAM

Learning \
N

Chemotaxis Index

/

Chemotaxis

WT STAM

CaMKII alpha and beta mutations specifically affect behaviors from
learning to long-term memory (Giese & Mizuno, 2013), and
CaMKII autophosphorylation is essential for learning after massed
training in mice (Irvine, Vernon, & Giese, 2005). Further research
could determine whether our CaMKII mutant intermediate-term
memory defect is specific to our positive olfactory associative
assay, the particular CaMKII isoforms involved, and/or C. elegans
behavior.

Our behavioral assay has allowed us to determine the temporal
points at which particular gene products affect different phases of
positive associative memory after massed training (Fig. 4A and B).
Specifically, we find that mut-7, casy-1, glr-1, and hen-1 (Kauffman
et al., 2010), are required for learning, while acy-1 and nos-1 are
required for STAM. kin-2, acy-1 and unc-43 are required for ITAM,
and finally, egl-4 and fbf-1 are required for forgetting.

The fact that forgetting requires protein translation is also inter-
esting to consider in the context of the relationship between STAM
and adaptation. We found that a mutation in the 3'UTR of the egl-4
Protein Kinase G that inhibits its binding to translational activator
FBF-1 (Kaye, Rose, Goldsworthy, Goga, & L’Etoile, 2009) inhibits
forgetting, as does deletion of fbf-1. These genes are uniquely co-
expressed in the AWB and AWC neurons (Kaye, Rose,
Goldsworthy, Goga, & L'Etoile, 2009), so forgetting may occur in
the sensory neuron through translation of EGL-4. The memory
inhibitor MSI-1 has been found to reduce synapse size after nega-
tive STAM training through its translational repression of the
ARP2/3 complex in command motor neurons downstream of the
sensory neuron, and translation is required for forgetting a nega-
tive short-term associative memory (Hadziselimovic et al., 2014).
Taken together, these data suggest that forgetting is an active pro-
cess involving translation, possibly of multiple proteins that alter
cellular machinery in both the sensory and command motor
neurons.

Adaptation involves starvation-induced desensitization to a
previously attractive odor after long-term exposure. Since our
assay involves a 60-min exposure to butanone in the presence
rather than the absence of food, we tested whether STAM and
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Fig. 4. Molecular regulation of phases of memory after massed training. (A) Schematic of normal shorter-term associative memory phases. Before training, a test is run to
determine naive attraction to butanone (chemotaxis ability). Following training, learning is immediately tested. Short-term memory (STAM) is tested 30 min following

training, and Intermediate-term memo

ITAM) at 1 h. Forgetting is tested 2 h after training when wild-type memory has decayed. (B) Genes and molecular processes that

regulate each phase of memory based on our current data and our previously published learning data (Kauffman et al., 2010).
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Table 1
Adaptation and STAM phenotypes for mutants tested in both paradigms.

Mutant Homolog Protein Cellular Localization | Adaptation Phenotype STAM Phenotype
egl-4(ky95) PKG Cytoplasm - +
fbf-1(ok91) PUF Protein Cytoplasm - +
adp-1(ky20) Uncloned Unknown - +
nos-1(gv5) Nanos Unknown - -

mut-7(pk720) RNAse Il Nucleus and Cytoplasm - = learning
hpl-2(0k916) HPI Nucleus - WT

(—) reduced compared to WT. (+) increased compared to WT (Colbert & Bargmann, 1995; Juang et al., 2013; Kaye, Rose, Goldsworthy, Goga, & L'Etoile, 2009; L’Etoile et al.,

2002).

adaptation are regulated by the same molecular mechanisms.
Adaptation results in part from the translation of EGL-4, mediated
by FBF-1, and subsequent EGL-4 translocation into the nucleus,
where it phosphorylates HPL-2 and MUT-7, which then reduce
the levels of odr-1 guanylyl cyclase (Juang et al., 2013; Kaye
et al,, 2009). While all of the adaptation mutants have defective
adaptation to AWC-sensed odors (Juang et al., 2013; Kaye et al,,
2009; L'Etoile et al., 2002; Lee et al., 2010), we found here that they
have varying STAM phenotypes (Table 1). The Nanos homolog
mutant nos-1 could learn, but could not remember, while adp-1
had impaired forgetting. The cytoplasmic components of the adap-
tation pathway, egl-4 and fbf-1, have forgetting defects, as one
might have expected if STAM and adaptation are the same process.
However, HPL-2, a nuclear component of the adaptation pathway,
had normal memory when mutated, suggesting that it is only
required for adaptation, not STAM. MUT-7, a nuclear component
of the adaptation pathway that is expressed in both the cytoplasm
and nucleus, is required for learning after STAM training, so its role
in memory is not clear. Our data suggest that memory after massed
training may only share the cytoplasmic components of the adap-
tation pathway, and that EGL-4 may have unidentified targets out-
side of the nucleus that regulate forgetting. Therefore, STAM and
adaptation are separate but related learning and memory para-
digms. Since adaptation is either non-associative or a result of a
negative association (Pereira & van der Kooy, 2012), STAM that is
formed after a positive association may be regulated differently
by similar pathways. Indeed, Insulin/IGF-1-like signaling differen-
tially regulates negative vs. positive associative learning and mem-
ory (Kauffman et al.,, 2010; Stein & Murphy, 2012). By testing
adaptation mutants, we were able to identify conserved genes that
have not previously been known to regulate associative memory
(nos-1) and forgetting (egl-4 and fbf-1) in higher organisms, though
their mechanisms of action remain to be studied.

Here we have identified many genetic regulators of STAM and
ITAM, including several conserved regulators, and we have deter-
mined when these regulators are temporally required. Importantly,
we have established a positive olfactory associative paradigm that
tests a conserved form of shorter-term memory. It is complicated
to rule out possible habituation or adaptation defects in associative
memory mutants using negative olfactory associative assays; a
positive associative assay avoids these complications, allowing
more precise determination of the temporal requirements of asso-
ciative memory. Together, our data provide a molecular framework
for future studies of short-term memory formation, maintenance,
and forgetting.
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