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Diversity of Listeria monocytogenes isolates of human and food origin
studied by serotyping, automated ribotyping and pulsed-field gel
electrophoresis
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ABSTRACT

Automated ribotyping, pulsed-field gel electrophoresis (PFGE) and serotyping were evaluated for the
epidemiological study of isolates of Listeria monocytogenes collected in Finland in 1997–1999 from human
blood (n ¼ 116) and the food industry (n ¼ 72). The isolates divided into six serotypes, 23 EcoRI
ribotypes, 54 AscI PFGE types, and 57 final subtypes if all results were combined. The discrimination
index of ribotyping was lower (0.873) than that of PFGE (0.946). Two final subtypes dominated among
human isolates, and identical subtypes were also found among food industry isolates. All PFGE types
were serotype-specific, whereas two ribotypes included isolates of two serotypes. Isolates of serotype 3a,
involved in an outbreak in Finland in 1999, matched one of these ribotypes, which also included some
food industry isolates of serotype 1 ⁄ 2a. Ribotyping with EcoRI would not have been sufficient to define
the outbreak in Finland caused by serotype 3a isolates. Although ribotyping is applicable as the first
method in outbreak situations, human and food isolates with identical ribotypes should be investigated
further by PFGE.
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INTRODUCTION

Listeria monocytogenes is an important food-borne
pathogen that causes listeriosis in humans. It is
found commonly in soil, in water and on plant
material. Its ability to survive for long periods
under adverse environmental conditions, and to
colonise, multiply and persist on processing
equipment, makes it a particular threat in the
food industry.

During the past 20 years, several outbreaks of
listeriosis have been described. Various food
items, e.g., coleslaw in Canada [1], paté in the
UK [2], soft cheese in Switzerland [3], rillettes in
France [4], rice salad [5] and sweet corn in Italy
[6], pasteurised milk [7], Mexican-style cheese [8],
shrimp [9], chocolate milk [10], hot dogs and deli

meats [11] in the USA, and butter in Finland [12],
have been implicated. Most of these outbreaks
involved invasive infections caused by isolates of
serotype 4b [1–4,7–9,11] and 3a [12], but two
involved gastrointestinal non-invasive infections
with fever caused by serotypes 1 ⁄ 2b [5,10] and 4b
[6]. In Finland, listeriosis has been connected only
on three occasions to a specific food source,
namely salted mushrooms in 1989 [13], rainbow
trout in 1998 [14], and butter in 1999 [12]. The
serotypes of the causative isolates found in these
foodstuffs were 4b, 1 ⁄ 2a and 3a, respectively.

Serotyping is a classic epidemiology tool [7,15].
However, when compared with other subtyping
methods, it has poor discriminatory power [16].
Thirteen serotypes of L. monocytogenes are recog-
nised, but most of the isolates that are important
in public health have been classified as serotypes
1 ⁄ 2a, 1 ⁄ 2b or 4b [17,18]. Other reported typing
methods include phage-typing [19], multilocus
enzyme electrophoresis [20], ribotyping [21],
pulsed-field gel electrophoresis (PFGE) [22],
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amplified-fragment length polymorphism analy-
sis [23] and randomly amplified polymorphic
DNA analysis [23]. PFGE is one of the most
discriminating and reproducible methods for the
subtyping of L. monocytogenes [22,24], but is time-
and labour-intensive. Thus, automated ribotyping
[25], which is also very reproducible, may offer
several benefits over manual molecular methods
[26], although the suitability of automated ribo-
typing for epidemiological studies of L. monocy-
togenes has not been clarified. Hollis et al. [27]
have made this type of comparison, but no Listeria
isolates were included in their study.

In Finland, ribotyping has not been used
previously to study the epidemiology of L. mono-
cytogenes isolates of human origin. The purpose of
this study was to evaluate the usefulness of
automated ribotyping and PFGE, in combination
with serotyping, in differentiating between iso-
lates for the detection of infection clusters and
their sources, as well as in tracing sporadic cases
of listeriosis. These methods were applied to
subtype L. monocytogenes isolates from human
blood and food industry specimens, collected
during the same period in Finland.

MATERIALS AND METHODS

Isolates

Isolates of L. monocytogenes were collected in Finland in
1997–1999 from human (n ¼ 116) and food industry (n ¼ 72)
samples (Table 1). All human isolates (one ⁄patient) were
isolated from blood cultures by standard methods in clinical
microbiology laboratories, and were submitted subsequently
to the Laboratory of Enteric Pathogens at the National Public
Health Institute (Helsinki, Finland) for verification and
serotyping. Identification of the strains was by standard
methods [28,29]. Twenty-five human isolates were connected
with a listeriosis outbreak [12]. The food industry isolates
were collected during hygiene surveys in 11 food-processing
plants: one meat, one poultry, one ready-to-eat food, three

dairy and five fish plants. The samples were taken from
equipment in contact with the food being processed, from
surfaces not in direct contact with the product, such as
tables, floors, doors, drains, tools and aprons, as well as
from raw materials and products. The enrichment, cultiva-
tion and preliminary identification method used was that
recommended by the Nordic Committee on Food Analysis
[30]. For ribotyping (see below), the identification databases
of DuPont Qualicon (Wilmington, DE, USA) and VTT
(Espoo, Finland) were also used to confirm the identification
of the isolates. Isolates were stored at ) 70�C in sterilised
skimmed milk (human isolates) or in glycerol 5% v ⁄v (food
isolates).

Serotyping

Isolates were serotyped using antisera against somatic (O) and
flagellar (H) antigens according to the instructions of the
manufacturer (Denka Seiken, Tokyo, Japan) with minor mod-
ifications. Briefly, isolates were revived by growth on sheep
blood agar (Oxoid, Basingstoke, UK) overnight at 37�C before
inoculation on brain–heart infusion (BHI) agar (Difco, Detroit,
MI, USA). A bacterial suspension in NaCl 0.2% w ⁄v was then
heated for 1 h at 100�C for determination of the O antigens. For
determination of H antigens, isolates were passed four times at
25�C through semi-liquid BHI broth in Craigie’s tubes (con-
taining agar 0.2% w ⁄v).

Ribotyping

The isolates were ribotyped using the automated RiboPrinter
System (Dupont Qualicon) following the manufacturer’s
standard instructions, as described by Bruce [31]. Bacterial
cells were picked from sheep blood agar (human isolates) or
BHI agar (food isolates). DNA was digested with EcoRI
(DuPont Qualicon). The automated system processed the
batches and generated a pattern for each sample and marker
lane using proprietary algorithms. Isolates were assigned a
ribogroup from the data base, or a new one was created, and
similarities were calculated (Qualicon software v. 12.2). A
ribogroup was defined as a set of closely related patterns
(threshold similarity ‡ 0.96) that were mathematically indis-
tinguishable from one another by the system [31]. The
ribogroup patterns were composite patterns for all the
isolates of the group, analysed with the same instrument.
The isolates were called ribotypes and had the same code as
the relevant ribogroup, i.e., RT-1–RT-23. The patterns of all
new ribogroups were analysed three times to test their
reproducibility.

PFGE

DNA preparation from L. monocytogenes isolates was per-
formed as described previously [32]. The isolates were grown
on blood agar overnight at 37�C, and then for 17–18 h at 37�C
in BHI broth. The BHI broth culture (2 mL) was mixed with
5 mL of cold PIV buffer (10 mMM Tris pH 7.5, 1 MM NaCl) and
centrifuged at 3000 g for 15 min at 4�C. The pellet was
resuspended in 750 lL of cold PIV buffer and mixed in equal
parts with molten low-melting-point agarose (Sea Plaque
agarose; FMC BioProducts, Rockland, ME, USA) 2% w ⁄v.
The mixture was pipetted into plug moulds. The plugs were
incubated overnight at 37�C in EC buffer (6 mMM Tris-HCl

Table 1. Source of Listeria monocytogenes isolates included
in the study

Source Number of isolates (n = 188)

1997 (n = 53) 1998 (n = 80) 1999 (n = 55)

Human (n ¼ 116)
Blood 41 35 40

Food industry (n ¼ 72)
Fish 12 12 4
Dairy 0 2 5
Meat 0 14 0
Ready-to-eat foods 0 0 6
Poultry 0 17 0
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pH 7.5, 1 MM NaCl, 100 mMM EDTA, Brij-58 0.5% w ⁄v, sodium
deoxycholate 0.2% w ⁄v, sodium lauroylsarcosine 0.5% w ⁄v)
with lysozyme 1 mg ⁄mL. The plugs were then incubated
overnight at 55–57�C in ES buffer (0.5 MM EDTA pH 9.5, sodium
lauroylsarcosine 1% w ⁄v) with proteinase K 0.3 mg ⁄mL.
Washing of the plugs and conditions for restriction endonuc-
lease digestion and PFGE were as described previously [33].
Chromosomal DNA was digested overnight with 5 U of AscI
(New England BioLabs, Beverly, MA, USA). Electrophoresis
was performed at 210 V on agarose (Pronadisa D-5; Hispanlab,
Madrid, Spain) 1% w ⁄v gels with the CHEF Mapper or CHEF-
DR systems (Bio-Rad Laboratories, Richmond, CA, USA).
Running conditions for AscI-digested DNA comprised pulse
times of 1–28 s for 10 h, followed by 28–30 s for 10 h. Low
Range PFG Markers (New England BioLabs) were used as
molecular size standards. The gels were photographed with an
AlphaImager 1220 (Alpha Innotec Corporation, San Leandro,
CA, USA). The images were analysed by BioNumerics soft-
ware (Applied Maths, Kortrijk, Belgium) and normalised by
means of the size standards on each gel. Banding patterns from
each normalised image were compared with the L. monocyto-
genes PFGE types of human isolates collected since 1990. Any
difference between two profiles was considered sufficient to
distinguish two different PFGE profiles. The new PFGE
profiles were marked by successive numbers, including a
letter V if the profile of a food industry isolate had not been
found previously in the collection of L. monocytogenes isolates
of human origin. Similarity values were calculated by the
unweighted pair-group method with arithmetic averages and
the DICE coefficient by the BioNumerics software.

The discriminatory power

The discriminatory power of each typing method was deter-
mined by calculating the discriminatory index (DI) [34].

RESULTS

Serotyping (Table 2) divided the 188 isolates into
six O:H serotypes: serotype 1 ⁄ 2a (59 human,
57 food industry isolates); 1 ⁄ 2b (one human
isolate); 1 ⁄ 2c (five food isolates); 3a (29 human
and four food isolates); 3b (one food isolate); and
4b (27 human and five food isolates). The DI for
serotyping was 0.562. Table 3 summarises the
number of ribotypes and PFGE types contained in
each serotype.

Automated ribotyping divided the isolates into
23 EcoRI ribotypes (Table 2). Eight of the ribo-
types were generated only from human isolates
and were new to the data base, seven included
both human and food isolates, and eight com-
prised food industry isolates only. There were
three main ribotypes (RT-1, RT-2, RT-4), which
were related closely to each other (similarity 0.90–
0.94), and contained 76 (66%) of the 116 human
isolates and 33 (46%) of the 72 food industry
isolates. The DI for ribotyping was 0.873, while

the DI values for the most common serotypes
1 ⁄ 2a, 3a and 4b were 0.803, 0.229 and 0.762,
respectively. Table 4 summarises the number of
serotypes and PFGE types in each ribotype.

Enzyme AscI divided the isolates into 54 PFGE
types (Table 2). Eleven of these types included
both human and food isolates. The three main
PFGE types were 1, 5 and 71. The DI for PFGE
was 0.946. All PFGE patterns were serotype-
specific; i.e., identical PFGE types were not
found among different serotypes. Three PFGE
types (27, 42 and V19) were each divided into
two different ribotypes: RT-6 and RT-14 (simi-
larity 0.92), RT-3 and RT-4 (similarity 0.92), and
RT-8 and RT-13 (similarity 0.86), respectively.
Two of the ribotypes (RT-1 and RT-4) contained
isolates of two serotypes (1 ⁄ 2a and 1 ⁄ 2c, and
1 ⁄ 2a and 3a, respectively). The three main
ribotypes (RT-1, RT-2, RT-4) contained 11, seven
and four PFGE types, respectively (Table 4).
Similarity values of PFGE types among the
isolates of ribotype RT-1, RT-2 and RT-4 were
c. 50–93%, 75–100% and 70–87%, respectively
(data not shown).

When the results of serotyping, ribotyping and
PFGE were combined, 57 final subtypes were
obtained (Table 2). Ten of these subtypes con-
tained both human and food isolates, 21 were
found only among isolates from the food indus-
try, and 26 only among isolates from humans.
Three of the 57 final subtypes (1, 9 and 42)
contained 36% of the isolates (51% of the human
isolates and 11% of the food isolates).

DISCUSSION

Isolates of L. monocytogenes from patients with
invasive listeriosis and from the food-processing
industry were analysed by serotyping, automa-
ted ribotyping and PFGE. All 188 isolates were
typeable by the three methods used. The
discriminatory power of ribotyping and PFGE
depends on the restriction enzymes used, and
EcoRI and AscI, respectively, have been used for
typing L. monocytogenes with these methods.
The discriminatory power of ribotyping was
lower (DI ¼ 0.873) than that of PFGE
(DI ¼ 0.946), as reported previously for EcoRI
or PvuII with manual ribotyping, and for ApaI
or SmaI with PFGE [16,22]. However, this was
substantially higher than the DI of conventional
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O:H serotyping (DI ¼ 0.562). Although ribotyp-
ing was not as discriminatory as PFGE, it was
rapid, simple to conduct, highly standardised,
objective and labour-saving. The automated
system was able to handle eight samples in
8 h, and four runs can be loaded during each
working day. However, it is very expensive to
purchase, the running costs are high, a good

maintenance service is needed, and effective
use of the system requires a comprehensive
data base for the relevant strains. In contrast
PFGE is a time-consuming method, although
a 30-h standardised protocol has been des-
cribed for L. monocytogenes [35] which has
made it more competitive with automated
ribotyping.

Table 2. Subtypes of Listeria mono-
cytogenes isolates defined by analysis
of serotypes, ribotypes and PFGE
types

Serotype Ribotype PFGE type Final subtype

No. of

isolates

(n = 188)

Isolated from

Patients

(n = 116)

Food-processing

industry

(n = 72)

1 ⁄ 2a RT-1 5 1 17 14 3
1 ⁄ 2a RT-1 44 2 1 1 0
1 ⁄ 2a RT-1 66 3 1 1 0
1 ⁄ 2a RT-1 V2 4 2 0 2
1 ⁄ 2a RT-1 V9 5 1 0 1
1 ⁄ 2a RT-1 V10 6 1 0 1
1 ⁄ 2a RT-1 V13 7 1 0 1
1 ⁄ 2a RT-1 V20 8 1 0 1
1 ⁄ 2a RT-2 1 9 22 18 4
1 ⁄ 2a RT-2 23 10 4 4 0
1 ⁄ 2a RT-2 57 11 2 1 1
1 ⁄ 2a RT-2 58 12 1 1 0
1 ⁄ 2a RT-2 63 13 2 2 0
1 ⁄ 2a RT-2 200 14 9 5 4
1 ⁄ 2a RT-2 225 15 1 1 0
1 ⁄ 2a RT-3 2 16 6 1 5
1 ⁄ 2a RT-3 33 17 2 2 0
1 ⁄ 2a RT-3 42 18 3 1 2
1 ⁄ 2a RT-4 42 19 2 0 2
1 ⁄ 2a RT-4 V1 20 2 0 2
1 ⁄ 2a RT-4 V21 21 5 0 5
1 ⁄ 2a RT-6 27 22 1 1 0
1 ⁄ 2a RT-6 62 23 1 1 0
1 ⁄ 2a RT-6 96 24 7 2 5
1 ⁄ 2a RT-6 V4 25 5 0 5
1 ⁄ 2a RT-8 53 26 1 1 0
1 ⁄ 2a RT-8 V12 27 1 0 1
1 ⁄ 2a RT-8 V15 28 1 0 1
1 ⁄ 2a RT-8 V19 29 2 0 2
1 ⁄ 2a RT-9 V16 30 1 0 1
1 ⁄ 2a RT-9 V17 31 1 0 1
1 ⁄ 2a RT-12 V3 32 2 0 2
1 ⁄ 2a RT-13 V19 33 1 0 1
1 ⁄ 2a RT-14 27 34 1 0 1
1 ⁄ 2a RT-18 14 35 1 1 0
1 ⁄ 2a RT-20 V7 36 3 0 3
1 ⁄ 2a RT-23 202 37 1 1 0
1 ⁄ 2b RT-21 64 38 1 1 0
1 ⁄ 2c RT-1 V5 39 2 0 2
1 ⁄ 2c RT-1 V6 40 2 0 2
1 ⁄ 2c RT-1 V11 41 1 0 1
3a RT-4 71 42 29 28a 1
3a RT-10 V8 43 2 0 2
3a RT-11 V18 44 1 0 1
3a RT-22 244 45 1 1 0
3b RT-7 V14 46 1 0 1
4b RT-5 7 47 7 4 3
4b RT-5 11 48 5 3 2
4b RT-5 68 49 1 1 0
4b RT-15 65 50 3 3 0
4b RT-16 69 51 1 1 0
4b RT-16 72 52 2 2 0
4b RT-16 201 53 1 1 0
4b RT-17 56 54 1 1 0
4b RT-17 67 55 1 1 0
4b RT-17 70 56 3 3 0
4b RT-19 61 57 7 7 0

aAt least 25 isolates were connected to an outbreak in 1998–1999 [12].
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Although the benefit of serotyping is limited, it is
a rapid screening method if an outbreak is suspec-
ted [12]. In the present study, the most common
serotypeswere 1 ⁄ 2a (62%of isolates) and 4b (17%).
The high incidence of isolates belonging to sero-
type 3a (18%) is a result of the linkwith an outbreak
in 1999 [12]. Isolates with this serotype were also
identified from 1997 and 1998, although, at that
time, the outbreak was not detected. However, in
1998, three food isolates of this rare serotype were
isolated from food sources other than butter, and
had different ribotypes and PFGE patterns from
those causing the outbreak.

Only five (7%) isolates of serotype 4b were
isolated from food industry samples, whereas
27 (23%) human isolates belonged to this sero-
type. This supports earlier findings that, even
though serotype 4b has caused a number of
outbreaks, it has been isolated rarely from food-
stuffs, which are contaminated mainly by sero-
type 1 ⁄ 2 isolates [36,37]. Buncic et al. [38] found
that 1 ⁄ 2a isolates tended to be more resistant than
4b isolates to two tested anti-listerial bacteriocins

at 4�C. However, after cold storage at 4�C, 4b
isolates tended to be more resistant to heat
treatment at 60�C, and were more pathogenic
than 1 ⁄ 2a isolates when transferred from cold
storage to body temperature. These findings may
explain why 1/2a isolates are obtained more often
from foodstuffs in industrial processing, while 4b
has caused more outbreaks.

In the present study, only 18% of the final
subtypes included both human and food industry
isolates, although the isolates were collected dur-
ing the same time period. However, two final
subtypes (1 and 9) predominated among human
isolates, and identical subtypes were also obtained
from food-processing plants in Finland. In addi-
tion, 26% of PFGE types identified among food
industry isolates had never been found among
human isolates from Finland in 1990–2001. It
would be interesting to compare the pathogenicity
of isolates representing PFGE types isolated fre-
quently from invasive infections and that of iso-
lates not identified among human pathogens.

PFGE patterns were serotype-specific. How-
ever, three PFGE types divided into two different
ribotypes each and, in three cases, ribotyping was
more discriminatory than PFGE. In general, one
ribotype included isolates of only one serotype,
except RT-1 and RT-4, which included isolates
belonging to two different serotypes, namely 1 ⁄ 2a
and 1 ⁄ 2c, and 1 ⁄ 2a and 3a, respectively. This is in
agreement with previous results [15]. In addition,
the ribotype profiles of the isolates within these
serotypes have been reported to belong to the
same genetic ribotype subgroup [15,20].

In the present study, the isolates of one ribo-
type belonged to several PFGE types; for example,
RT-1 isolates had 11 PFGE types, while RT-2
isolates had seven PFGE types, and RT-4 isolates
had four PFGE types, with similarity values of 50–
93%, 75–100% and 70–87%, respectively. Isolates
with PFGE profiles differing by more than seven
fragments are unrelated according to Tenover
et al. [39]. This corresponds to similarity values of
c. 70% or less, indicating that some of the RT-1
and RT-4 isolates are unrelated. Since any differ-
ence between two profiles was considered suffi-
cient to distinguish two PFGE profiles, some of the
isolates with these PFGE types might also have
been related closely. In large ribogroups, which
include patterns of many different isolates in
the database, the ability to accept a new pattern is
lower than in small groups including only patterns

Table 4. Number of serotypes and PFGE types in each
ribotype

Ribotype No. of isolates No. of serotypes No. of PFGE types

RT-1 30 2 11
RT-2 41 1 7
RT-3 11 1 3
RT-4 38 2 4
RT-5 13 1 3
RT-6 14 1 4
RT-7 1 1 1
RT-8 5 1 4
RT-9 2 1 2
RT-10 2 1 1
RT-11 1 1 1
RT-12 2 1 1
RT-13 1 1 1
RT-14 1 1 1
RT-15 3 1 1
RT-16 4 1 3
RT-17 5 1 3
RT-18 1 1 1
RT-19 7 1 1
RT-20 3 1 1
RT-21 1 1 1
RT-22 1 1 1
RT-23 1 1 1

Table 3. Number of ribotypes and PFGE types in each
serotype

Serotype No. of isolates No. of ribotypes No. of PFGE types

1 ⁄ 2a 116 13 34
1 ⁄ 2b 1 1 1
1 ⁄ 2c 5 1 3
3a 33 4 4
3b 1 1 1
4b 32 5 11
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of one isolate. For example, ribogroup RT-1 already
contains 286 patterns with a mean similarity value
of 0.98 ± 0.03. This suggests that automated ribo-
typing has limits in its applications, especially for
closely related isolates and large ribogroups.

An international collaborative study sponsored
by the World Health Organisation reported that
the discriminatory power of manual ribotyping
with EcoRI for serotype 4b may not be adequate
for epidemiological investigations [21]. In the
present study, the ribotyping DI was lower for
serotype 4b (0.762) than for the most common
serotype 1 ⁄ 2a (0.803). However, De Cesare et al.
[40] studied the suitability of 15 different enzymes
for discrimination of L. monocytogenes isolates in
automated ribotyping and found that the use of
other enzymes (PvuII, EcoRI, XhoI) may improve
discrimination significantly among isolates of
serotype 4b. As most of the serotype 3a isolates
originated from an outbreak, a low DI value was
recorded.

RT-4 included nine isolates of serotype 1 ⁄ 2a
originating from food industry samples with three
PFGE types, and 29 isolates of serotype 3a repre-
senting PFGE type 71, including the isolates
connected to the outbreak in Finland in 1999
[12]. According to these results, ribotyping with
EcoRI alone was not sufficient to discriminate the
outbreak isolates of serotype 3a. Although the
benefit of serotyping is usually considered to be
limited, it was useful in this outbreak caused by
isolates with a rare serotype. Thus, ribotyping and
serotyping were a useful combination, and sero-
typing alone, despite its low DI, may reveal the
emergence of an epidemic subtype, as it did in
Finland in 1999 [12]. Automated ribotyping is a
useful tool in the first stages of an epidemiological
survey, as a large number of isolates can be
analysed rapidly and it is not labour-intensive.
However, during an outbreak, suspected out-
break-associated isolates must be investigated by
a more discriminative method, as is commonly
recommended for other subtyping methods
[16,41,42], but use of another restriction enzyme
might increase the discrimination provided by
automated ribotyping [40,43].
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