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Abstract

Zhan, S., On hamiltonian line graphs and connectivity, Discrete Mathematics 89 (1991)
89-95.

A well-known conjecture of Thomassen says that every 4-connected line graph is hamiltonian.
In this paper we prove that every 7-connected line graph is hamiltonian-connected.

1. Introduction

Large connectivity of graph cannot always guarantee the graph to be
hamiltonian in following sense: For any given positive integer n there exists a
nonhamiltonian graph with the connectivity at least n. For instance, K, ,,,, is an
n-connected nonhamiltonian graph. The example in [11] shows that there exists a
3-connected nonhamiltonian claw-free graph, which is also a line graph of some
graph. Moreover, one can immediately get infinitely many 3-connected non-
hamiltonian line graphs L(G) by setting r =3 and & < 3/4 in following results.

Theorem 1 (Harary and Nash-Williams [8]). If G is a graph with at least 4
vertices, then its line graph L(G) is hamiltonian if and only if G has a closed trail
which includes at least one end-vertex of each edge of G or G is isomorphic to
K, s, for some integer s = 3.

Theorem 2 (Jackson and Parsons [10]). For a given integer r =3 and any real
€ >0, there exists an integer N(r, €) > 0 such that if r is even and p = N(r, €), or if
ris odd and p is even and p = N(r, €), then there exists an r-regular r-connected
graph with p vertices such that the length of the longest cycle in G is less than ep.

For line graph, C. Thomassen [1] made the following conjecture.

Conjecture. Every 4-connected line graph is hamiltonian.
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Thomassen [3] announced that he had verified the conjecture in the special case
that G is 4-edge-connected. Furthermore, in [14] we prove that if G is
4-edge-connected then its line graph L{G) is hamiltonian-connected. The main
result of this paper is the following theorem.

Theorem 3. Every 7-connected line graph is hamiltonian-connected.

2. Notation and terminology

Let G =(V, E) be a finite undirected graph with vertex set V(G) and edge set
E(G)—we allow G to have multiple edges but no loops. Let k(G), A(G), w(G)
and &(G) denote the connectivity, edge-connectivity, the number of components
and the minimum degree of G respectively.

If V* is a subset of the vertex set V(G), then we use G —V* denote the
induced subgraph G[V\V*] (i.e., V(G—V*)=V —V* and E(G-V*)={uve
E(G): u, v e VAV*}). If E* is a subset of the edge set E(G), then we use G — E*
denote the spanning subgraph G[E\E*}(i.e., V(G — E*)=V(G)and E(G — E*) =
E(G)—-E™).

A subset D of the vertex set V(G) is a dominating set if every edge has at least
one end-vertex in D.

Let uTv be a trail T with end-vertices u and v. We write xTy when we wish to
emphasize the end-edges x and y of the trail 7. We also use xTx denote a closed
trail 7 containing the edge x. A trail is a dominating trail, denoted uT,v (or
xT,y), if each edge of G is incident with at least one internal vertex of the trail. A
trail is a spanning trail, denoted uT,v (or xT,y), if it is a dominating trail which
contains all the vertices of G. A graph is dominating trailable if for each pair x
and y of edges of G there exists a dominating trail xT,y with end-edges x and y.
Similarly one can define the spanning trailable graph. A graph is hamiltonian-
connected if for each pair u and v of vertices of G there exists a hamiltonian path
with end-vertices u and v. For other definitions, we refer the reader to [4].

3. Reduction

It is trivial to prove the following lemma by a slight modification of the proof of
Theorem 1.

Lemma 4. Let G be a graph with at least 4 vertices. Then the line graph L(G) is
hamiltonian-connected if and only if G is dominating trailable.
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Let G be a graph (possibly with multiple edges). We define operations R1 and
R2 on G as follows:

R1: delete a vertex, which has degree at most 3 but is adjacent to at most one
vertex, and delete its incident edges;

R2: delete a vertex u with degree 2 and its incident edges uv and uw while
v ¥ w and add a new edge vw.

(Reduced Graph R(G))

Fig. 1.

For convenience, a graph G is called a multi-star if it is obtained from some star
K, by adding some multiple edges. The edge multiplicity of a graph G is the
maximum number of multi-edges joining two vertices in G.

Lemma 5. If G is a graph, which is not a multi-star with the edge multiplicity at
most 3 and, if its line graph L(G) has connectivity at least 4, then there is a unique
graph (up to an isomorphism) R(G), so called reduced graph of G, obtained by
applying a sequence of operations R1 and R2 from G such that:
(i) 6(R(G))=3;
(i) x(L(R(G)))= k(L(G));
(iii) V(R(G)) is a dominating set of G.

Proof. First we prove D = {v e V(G): degs(v) =3 and v is adjacent to at least
two vertices in G} is a dominating set of G. If not, there must be an edge u’v’ of
G which is not incident with any vertex of D. Since L(G) is 4-connected, we can
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assume that v’ is adjacent to a vertex v of D. Since #’ and v’ are not in D, {vv'}
must be a cut set of L(G) which contradicts the assumption on the connectivity of
L(G).

Now we prove that D = V(R(G)). It is obvious that V(R(G))c D. In the
process of carrying out the reductions R1 and R2 from G, if we delete a vertex v
of D in some step from G’ to G”, then the set of edges incident with v in G which
is correpondent to the set of edges incident with v in G’ is a cut set of L(G) and
has cardinality at most three. This contradicts to the connectivity of L(G). So
D = V(R(G)).

Therefore edoe uv is in R(G) onlv if the edoe yv ig in or there is a vertey w
1 ge uv 1s 1n ](G if e uv 1s 1n or there 15 a vertex w

herefore ed ) only if the edg i

C

t
with degree 2 such that uw and vw are both in G. Hence R(G) is unique and
non-empty and (i), (ii) and (iii) follows immediately. O

Lemma 6. If G is a graph, which is not a multi-star with the edge multiplicity at
most 3 and, if its line graph L(G) has connectivity at least 4, then G is dominating
trailable if its reduced graph R(G) is spanning trailable.

Proof. Let x = uv and y = st be any two edges of G. We choose edges x’ and y’
in R(G) as follows: If x is in R(G), then choose x’ to be x; If x is incident with a
vertex v of degree 2 in G while uv and vw are two edges of G and u # w, then
choose x' to be uw in R(G) and if x is incident with a vertex v of degree 1 in G,
then choose any other edge x' in R(G) incident with u. Choose y’ similarly
(y'#x'). Since R(G) is spanning trailable, there is a spanning trail x'T)y’ in
R(G). Let T be a trail in G corresponding to the trail x'T}y’. Now one can
naturally extend T to a dominating trail x7;y in G by Lemma 5(iii). O

If G is a multi-star, then Theorem 3 is true obviously. So from Lemma 6 it
suffices to show that if a graph G has minimum degree at least 3 and its line graph
L(G) has connectivity at least 7 then G is spanning trailable. Hence we can
always suppose that G satisfies 6(G)=3 and x(L(G))=7 in the remaining
sections except in Theorem 7.

4. Packing trees

In order to find a spanning trail x7;y for any edges x and y in G, we decompose
the graph G into two connected factors (or say, pack two spanning trees into G).
The following theorem of Nash-Williams and Tutte [12-13] will be used in our
proof.

Theorem 7 (Nash-Williams and Tutte [12-13]). In order that a finite graph G

shall be decomposable into n connected factors it is necessary and sufficient that
S| =zn(w(G—-S)—1)

for each subset S of the edge set E(G).
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Let G,,...,G,,...,G,...,G, be all the components of G —§, where
G,, ..., G, are the (possibly empty set of) components consisting of a single
vertex of degree 3 in G and G,,,..., G, are the (possibly empty set of)
components containing at least one vertex which is adjacent to some vertices of
s V(G) and G4y, ..., G, are the remaining (possibly empty set of)
components of G — S for some 1<r<s<w=w(G —S§). Let M(H) denote the
set of edges of G which have precisely one end-vertix in V(H) and m(H) be the
cardinality of M(H) for a subgraph H of G.

Lemma 8. If w(G — 8) =3 for a subset S of the edge set E(G), then
(i) m(G,))=3, forl<i=r;
(i) m(G)) =6, forr+1=<i=<t,
(iii) m(G,) =4, fort+1=<i<w;
(iv) Xi-rs1m(G)=Eioim(G);
v) Uz M(G) eS.

Proof. Parts (i), (iv) and (v) are obvious from the definition of G; and m(G,). In
part (ii), let G, be the component of G — § having a vertex adjacent to a vertex of
G; in G for some l<a=r. If M(G;UG,) is a vertex cut of L(G), then
m(G;UG,) =17 as k(L(G)) =7 which immediately implies m(G;) = 6. If M(G;U
G,) is not a vertex cut of L(G), then M(G,; U G,) must separate G; U G, from
some single vertex components in G and, since w(G —S)=3 then m(G;) =6.
Part (iii) follows directly from the definition of G, and k(L(G)=7. O

Lemma 9. If S is a subset of E(G), then
S| =z2w0(G—S5)—1, ifr=land w=2;
IS]=2w(G — S), otherwise.

Proof. It is easy to verify if r =0 or w <2. So we may assume that » #0 and
w = 3. From (i), (iii) and (v) of Lemma 8 we have

512 |0 MG)| =3 3 m(G)
i= i=1

=32 m(G)+3 2 m(G)+3 X m(G)
i=1 i=r+1 i=t+1
t
=13r+1 > m(G)+ 34w —1).

i=r+1
If r =2(¢ —r), then, by (ii) of Lemma 8,
IS|=33r+36(t—r)+ 34w —t)=2w+ (t—7r) - ir=2o.
If r >2(t — r), then, by (iv) of Lemma 8,

IS|=43r +33r + 340 — 1) =20 +r — 2(t — r) > 2. O
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From Theorem 7 and Lemma 9 we have the following corollary.

Corollary 10. For every pair x and y of edges of G, the subgraph G — {x, y}, or
G — {x} if x and y have an end-vertex of degree 3 in common, can be decomposed
into two connected factors F, and F,.

Proof. If x and y are incident with a common vertex u of degree 3, then
|S| =2w(G — 8) — 1 by Lemma 9 for any subset S of the edge set E(G) and hence

SU{xH=2w0(G - [{x}US]) -1
for any subset S of the edge set E(G — {x}), i.e.,
[S|Z20([G — {x}] - S)—2.

So the subgraph G — {x} can be decomposed into two connected factors by the
Theorem 7.

If x and y are not incident with a common vertex of degree 3, then either r #1
or w # 2 for the components of G — [{x, y} US] (=[G — {x, y}] — S) of G and for
any subset S of the edge set E(G — {x, y}). By Theorem 9,

C ISULyH=20(G - [{x y}US),
ie.,

IS1=20([G ~ {x, y}] - S) -2

So the subgraph G — {x, y} can be decomposed into two connected factors by the
Theorem 7.

5. Proof of Theorem 3

Lemma 11. Lef x, y and z be edges of G. If x and y are incident with a common
vertex of degree 3, then there is a spanning closed trail containing y and z but not
containing x; If x and y are not incident with a common vertex of degree 3, then
there is a spanning closed trail containing z but not containing x or y.

Proof. Let F, and F, be the two factors in Corollary 10. So z must be in one of
them, say, in F,. Let B be the set of odd degree vertices in F;. Then |B| must be
even, say, |B| = 2k. Pair off the vertices of B arbitrary and let P, P, ..., P be
the paths joining the two correspondent vertices of each pair in F5. Let D be the
set of all edges which appear an odd number of the F; in ;. Then F, + D must be
eulerian. Regarded as a closed trail of G, F, + D is the trail we need. [

Lemma 12. G is spanning trailable.

Proof. Let x and y be any two edges of G. If x and y are incident with a common
vertex of degree 3 in G, by Lemma 11, there is a spanning closed trail yT.y
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containing y but not containing x (where z can be any edge except x). Then xT}y,
by adding the edge x in the trail yT,y, is a spanning trail in G with end-edges x
and y; If x and y are incident with a common vertex u which is not of degree 3, by
Lemma 11, there is a spanning closed trail z7;z in G containing z but not
containing x or y, where z is an edge sharing the common vertex u with x and y in
G. Then xT;zy is a spanning trail in G; Otherwise if x and y are non-adjacent in
G and z = uv where u and v are end-vertices of x and y respectively, then by
Lemma 11 there is a spanning closed trail z7,z which contains z but does not
contain x or y (if z is not in G, then we take G + {z}, which also has
6(G + {z})=3 and x(L(G + {z})) =7, instead of G in Lemma 11). Then xT,y is
a spanning trail. O

Proof of Theorem 3. The proof follows from Lemma 4, Lemma 6 and Lemma 12
immediately. O
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