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We prove that the C1 interior of the set of all topologically
stable C1 incompressible flows is contained in the set of Anosov
incompressible flows. Moreover, we obtain an analogous result for
the discrete-time case.
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1. Introduction: basic definitions and statement of the results

We consider an n-dimensional (n � 3) closed and connected C∞ Riemannian manifold M endowed
with a volume-form ω. Let μ denote the measure associated to ω, that we call Lebesgue measure, and
let d(·,·) denote the metric induced by the Riemannian structure. We say that a vector field X : M →
T M is divergence-free if ∇ · X = 0 or equivalently if the measure μ is invariant for the associated flow,
Xt : M → M , t ∈ R. In this case we say that the flow is incompressible or volume-preserving. We denote
by Xr

μ(M) (r � 1) the space of Cr divergence-free vector fields on M topologized with the usual Cr

Whitney topology.
Given X ∈ X1

μ(M) let Sing(X) denote the set of singularities of X and R = R (M) := M \ Sing(X)

the set of regular points. We say that σ ∈ Sing(X) is a hyperbolic singularity if D Xσ has no eigenvalue
with null real part.
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Let X, Y ∈ X1
μ(M); Y is semiconjugated to X if the flow associated to Y is semiconjugated to

the one of X , i.e., there exists a continuous and onto map h : M → M and a continuous real map
τ : M × R → R such that

a) for any x ∈ M , τx : R → R is an orientation preserving homeomorphism where τ (x,0) = 0 and
b) for all x ∈ M and t ∈ R we have h(Y t(x)) = Xτ (x,t)(h(x)).

We say that X ∈ X1
μ(M) is topologically stable in X1

μ(M) if for any ε > 0, there exists δ > 0 such

that for any Y ∈ X1
μ(M) δ–C0-close to X , there exists a semiconjugacy from Y to X , i.e., there exists

h : M → M and τ : M × R → R satisfying a) and b) above, and d(h(x), x) < ε for all x ∈ M . It is worth
to emphasize that our definition of topological stability is restricted to the conservative setting and
not to the broader space of dissipative flows. We denote the set of topological stable incompressible
flows by TSμ(M).

A vector field is said to be Anosov if the tangent bundle T M splits into three continuous D Xt -
invariant nontrivial subbundles E0 ⊕ E1 ⊕ E2 where E0 is the flow direction, the sub-bundle E2 is
uniformly contracted and the sub-bundle E1 is uniformly expanded by D Xt for t > 0. Of course that,
for an Anosov flow, we have Sing(X) = ∅ which follows from the fact that the dimensions of the
subbundles are constant on the entire manifold.

For analogous definitions in the volume-preserving diffeomorphisms context see Section 4.
The concept of topological stability was first introduced by Walters. In [20] he proved that Anosov

diffeomorphisms are topologically stable. In [18] Nitecki proved that topological stability was a nec-
essary condition to get Axiom A plus strong transversality. Later, in [15], Robinson proved that
Morse–Smale flows are topologically stable. In the mid 1980’s, Hurley obtained necessary conditions
for topological stability (see [10–12]). It was proved by Moriyasu [16] that the C1-interior of the set
of all topologically stable diffeomorphisms is characterized as the set of all C1-structurally stable dif-
feomorphisms. About ten years ago it was proved by Moriyasu, Sakai and Sumi (see [17]) that, if X
is a vector field in the C1 interior of the set of topologically stable vector fields (in the broader space
of dissipative flows) then X satisfies the Axiom A and the strong transversality properties. Our main
result (Theorem 1) is a generalization of the main theorem in [17] for divergence-free vector fields.
Although this result is expectable, its proof uses perturbations techniques that only recently become
available.

Given a set A ⊂ X1
μ(M) let intC1 (A) denote the interior of A in X1

μ(M) with respect to the C1-
topology.

Theorem 1. If X ∈ intC1 (TSμ(M)) then X is Anosov.

Due to well-know results (see [14]) about the restrictions of the existence of manifolds supporting
Anosov flows, we obtain that, for general manifolds, the C1-interior of topological stable incompress-
ible flows must be empty. It is also interesting to note that, in the geodesic flow context, Anosov
systems are not necessarily topological stable (see [19]).

Given x ∈ R (X) we consider its normal bundle Nx = X(x)⊥ ⊂ Tx M and define the linear Poincaré
flow by P t

X (x) := ΠXt (x) ◦ D Xt
x where ΠXt (x) : T Xt (x)M → N Xt (x) is the projection along the direction

of X(Xt(x)). Let Λ ⊂ R be an Xt -invariant and compact set. We say that Λ is a hyperbolic set for the
linear Poincaré flow if there exist constants λ ∈ (0,1), C > 0 and a splitting Nx = Nu

x ⊕ Ns
x such that

for all x ∈ Λ we have:

∥∥(
P t

X (x)−1)∣∣
Nu

x

∥∥ < Cλt and
∥∥P t

X (x)
∣∣

Ns
x

∥∥ < Cλt .

We say that X ∈ G 1
μ(M) if there exists a neighborhood V of X in X1

μ(M) such that any Y ∈ V , has
all the closed orbits and all the singularities of hyperbolic-type.

The following result, which is important per se, will be crucial to obtain Theorem 1.

Theorem 2. If X ∈ intC1 (TSμ(M)) then X ∈ G 1
μ(M).
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The next result was proved recently by Ferreira [9] and is a generalization of a three-dimensional
theorem by the authors [6].

Theorem 3. (See Ferreira [9].) If X ∈ G 1
μ(M) then X is Anosov.

Theorem 1 is a direct consequence of Theorem 2 and Theorem 3 and for this reason we just have
to concentrate on the proof of Theorem 2.

2. Perturbation lemmata

2.1. Perturbations near singularities

Some key results to perform perturbations in the conservative setting are available (see [2]). Nev-
ertheless, neither [2, Theorem 3.1] nor [2, Theorem 3.2] are adequate to go on with the proof of our
result. Therefore, we need to obtain an upgrade of these pasting lemmas and this is the content of
Lemma 2.1. We believe that this lemma is interesting by itself and should be used in other situations
where special C1-perturbations of conservative vector fields are required. We also would like to thank
Carlos Matheus for a valuable suggestion for the proof of it.

Lemma 2.1. Let M be a compact and boundaryless Riemannian manifold of dimension � 2. Given ε > 0,
X ∈ X1

μ(M), a compact K ⊂ M and an open neighborhood U of K, there are δ > 0 and an open set K ⊂ V ⊂ U
such that, if Y ∈ X2

μ(M) is δ–C1-close to X in U , then there exists Z ∈ X1
μ(M) satisfying

a) Z = Y in V ,
b) Z is ε–C1-close to X, and
c) Z = X outside U .

Proof. We consider V ⊃ K such that ∂V is C∞ , V ⊂ U and {U , int(M \ V )} is an open covering of M .
Let α : M → [0,1] be a C∞ function such that α = 1 in V , α = 0 outside U and |∇α| � K , where K
is a positive constant depending only on U and V . Define

Z0(x) := α(x)Y (x) + (
1 − α(x)

)
X(x), (2.1)

where Y ∈ X2
μ(M) is δ–C1-close to X on a small open neighborhood U of K, where δ > 0 will be

fixed in (2.3). We observe that Z0 = Y inside K and Z0 = X outside U , and thus ∇ · Z0 = 0 in the
closed set V ∪ (M \ U ). However, although ∇ · Z0 is close to zero in U \ V , in general ∇ · Z0 �= 0.
Actually,

∇ · Z0 = (∇α) · Y + α(∇ · Y ) − (∇α) · X + (1 − α)∇ · Y

= (∇α) · Y − (∇α) · X = (∇α) · (Y − X),

and we have |∇ · Z0| < Kδ.
Now we will make use of [8, Theorem 2] in order to obtain Z1 ∈ X2

μ(M) (supported in U \ V ) such
that ∇ · Z1 = −∇ · Z0 and Z1 = 0 in ∂(U \ V ). For more details we refer the reader to [2, §3].

Finally, we define

Z := Z0 + Z1. (2.2)

Of course that, by construction, ∇ · Z = 0 and c) holds.
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In U \ V we have

‖Z − Y ‖C1 = ‖Z0 + Z1 − Y ‖C1 � ‖Z1‖C1 + ‖Z0 − Y ‖C1

� C‖∇ · Z1‖C0 + ‖Z0 − Y ‖C1 ,

where C > 0 is a constant given in Dacorogna–Moser theorem (see [8, Theorem 2.3]) that depends
only on U .

Going back to the beginning of the proof, we take

δ < min

{
ε,

ε

2C K

}
. (2.3)

Now, using |∇ · Z0| < Kδ we get,

‖Z − Y ‖C1 � C‖∇ · Z1‖C0 + ‖Z0 − Y ‖C1 � C Kδ + ∥∥αY + (1 − α)X − Y
∥∥

C1

� ε

2
+ ∥∥(1 − α)X − (1 − α)Y

∥∥
C1 � ε

2
+ |1 − α|‖X − Y ‖C1

� ε

2
+ ‖X − Y ‖C1 � ε

2
+ δ < ε. �

The next lemma is the divergence-free vector fields version of [17, Lemma 1.1].

Lemma 2.2. Let σ be a singularity of X ∈ X1
μ(M). For any ε > 0 there exist δ0 > 0 and ε0 > 0 such that if

Yδ : Tσ M → Tσ M is a traceless linear map δ
2 –C0-close to D Xσ (with δ < δ0) then there exists Zδ ∈ X1

μ(M),

such that Zδ = Yδ in Bε0/4(σ ), Zδ is ε–C1-close to X and Zδ = X outside the set Bε0(σ ).

Proof. Let (U , φ) be a conservative chart given by Moser’s theorem [13] such that σ ∈ U and
φ(σ ) = 0. Now we will work on the euclidean space R

n .
We fix δ ∈ (0, δ0) where δ0 > 0 will be defined in the sequel. For simplicity we assume that

Yδ : R
n → R

n is written in the canonical coordinates. Now, we consider the divergence-free linear
vector field in R

n defined (in the canonical coordinates) by

(ẋ1, . . . , ẋn) = Yδ(x1, . . . , xn). (2.4)

Now, let K = Bε0/4(0) and U = Bε0 (0). Since, by hypothesis, the map Yδ is δ
2 –C0-close to D X0 , if

we choose ε0 very small, then X is δ0
2 –C1-close to D X0 when restricted to U . Therefore Yδ (defined

in (2.4)) and X are δ0–C1-close in U . This conditions gives ε0 depending on δ0. So, by Lemma 2.1,
fixed ε , there exist δ0 and there are an open set V ; K ⊂ V ⊂ U and Zδ ∈ X1

μ(M) such that Zδ = Yδ

in V , Zδ is ε–C1-close to X and Zδ = X outside U for δ < δ0. The lemma is proved. �
2.2. Perturbations near closed orbits

Lemma 2.3 below is a Franks’ lemma for incompressible flows.
Define Γ (p, τ ) = {Xt(p); t ∈ [0, τ ]}. Let V , Ṽ ⊂ N p , dim(V ) = j, 2 � j � n − 1, and N p = V ⊕ Ṽ .

A one-parameter linear family {At}t∈R associated to Γ (p, τ ) and V is defined as follows:

• At : N p → N p is a linear map, for all t ∈ R,
• At = id, for all t � 0, and At = Aτ , for all t � τ ,
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• At |V ∈ sl( j,R), and At |Ṽ ≡ id, ∀t ∈ [0, τ ], in particular we have det(At) = 1, for all t ∈ R, and
• the family At is C∞ on the parameter t .

Lemma 2.3. (See [4, Lemma 3.2].) Given ε > 0 and a vector field X ∈ X4
μ(M) there exists θ0 = θ0(ε, X)

such that ∀τ ∈ [1,2], for any periodic point p of period greater than 2, for any sufficient small flowbox T of
Γ (p, τ ) and for any one-parameter linear family {At}t∈[0,τ ] such that ‖ Ȧt A−1

t ‖ < θ0 , ∀t ∈ [0, τ ], there exists
Y ∈ X1

μ(M) satisfying the following properties

(A) Y is ε–C1-close to X ;
(B) Y t(p) = Xt(p), for all t ∈ R;
(C) P τ

Y (p) = P τ
X (p) ◦ Aτ , and

(D) Y |T c ≡ X |T c .

3. Proof of Theorem 2

In order to go on with our proof we observe that the main steps are based on the arguments in
[17, Section 2]. From Section 3.1 and Section 3.2 below it follows that any X ∈ intC1 (TSμ(M)) has all
its singularities and closed orbits of hyperbolic-type. Therefore, intC1 (TSμ(M)) ⊂ G 1

μ(M).

3.1. Singularities

We are going to prove that, if X ∈ intC1 (TSμ(M)), then any singularity of X is hyperbolic. By
contradiction let us assume that there exists a non-hyperbolic singularity σ ∈ Sing(X). According to
Lemma 2.2 we consider a family of divergence-free vector fields {Zδ}δ�0, where Zδ is linear and Z0 =
D Xσ in B ε0

4
(σ ), and δ is sufficiently small to assure that this family is contained in intC1 (TSμ(M)).

We observe that we can chose δ′ arbitrarily small such that σ is a hyperbolic singularity for Zδ′ and
such that Zδ′ is semiconjugated to Z0, that is, there exists a continuous and onto map h : M → M
(arbitrarily close to the identity depending on δ′) and a continuous real map τ : M ×R → R such that
for any x ∈ M , τx : R → R is an orientation preserving homeomorphism where τ (x,0) = 0 and for all
x ∈ M and t ∈ R we have

h
(

Zt
δ′(x)

) = Zτ (x,t)
0

(
h(x)

)
. (3.5)

As σ is non-hyperbolic for Z0, there exists z ∈ M such that

σ /∈ {
Bε

(
Zt

0(z)
)
: t ∈ R

}
and

{
Bε

(
Zt

0(z)
)
: t ∈ R

} ⊂ B ε0
8
(σ )

and ε <
ε0
16 . Let w ∈ h−1(z). From (3.5) we get that h(Zt

δ′ (w)) = Zτ (w,t)
0 (z) and, since h is arbitrarily

close to the identity, we obtain that

{
Zt

δ′(w): t ∈ R
} ⊂ {

Bε

(
Zt

0(z)
)
: t ∈ R

} ⊂ B ε0
8
(σ ),

which is a contradiction because σ is a hyperbolic singularity of Zδ′ and, when restricted to B ε0
8

(σ ),

the vector field Z0 is linear.

3.2. Closed orbits

Fix X ∈ intC1 (TSμ(M)). Now we are going to prove that all the closed orbits of X are hyperbolic.
Assume that X has a non-hyperbolic closed orbit p of period π(p). In order to proceed with the

arguments in [17, Section 2] we need to C1-approximate the vector field X by a new one which is
linear in a neighborhood of the closed orbit p. To perform this task, in the conservative setting, it is
required more differentiability of the vector field (cf. Lemma 2.3).
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If X is of class C∞ , take Z = X , otherwise we use [21] in order to obtain a C∞ incompressible
vector field Y ∈ intC1 (TSμ(M)), arbitrarily C1-close to X , and such that Y has a closed orbit1 q, close
to p, and with period π(q) close to π(p). If q is not hyperbolic take Z = Y . If q is hyperbolic for
Pπ(q)

Y (q), then, since Y is C1-arbitrarily close to X , the distance between the spectrum of Pπ(q)
Y (q)

and S
1 can be taken arbitrarily close to zero (weak hyperbolicity). Now, we are in position to apply

Lemma 2.3 to obtain a new vector field Z ∈ X∞
μ (M) ∩ intC1 (TSμ(M)), C1-close to Y and having a

non-hyperbolic closed orbit.2

Now, we argue as in [5, §3] in order to obtain L ∈ intC1 (TSμ(M)) such that L is linear (equal to
P t

Z ) in a neighborhood of the closed non-hyperbolic orbit, Γ .
Finally, we C1-approximate L by W ∈ intC1 (TSμ(M)) such that Γ is hyperbolic (for W ). This is

a contradiction because W is semiconjugated to L, although there is an Lt -orbit (different from Γ )
contained in a small neighborhood of Γ and the same cannot occur for W t because Γ is a hyperbolic
closed orbit for W t .

4. The volume-preserving diffeomorphisms case

Let Diff 1
μ(M) denote the set of volume-preserving (or conservative) diffeomorphisms defined on

M , and consider this space endowed with the C1 Whitney topology. In this section we assume that
dim(M) � 2. We say that a diffeomorphism f is Anosov if, there exist λ ∈ (0,1) and C > 0 such
that the tangent vector bundle over M splits into two D f -invariant subbundles T M = Eu ⊕ Es , with
‖D f n|Es ‖ � Cλn and ‖D f −n|Eu ‖ � Cλn .

We say that f ∈ F 1
μ(M) if there exists a neighborhood V of f in Diff 1

μ(M) such that any g ∈ V
has all the periodic orbits hyperbolic. In [1] Arbieto and Catalan proved the following result.

Theorem 4. If f ∈ F 1
μ(M) then f is Anosov.

Given f , g ∈ Diff 1
μ(M) we say that g is semiconjugated to f if there exists a continuous and onto

map h : M → M such that for all x ∈ M one has h(g(x)) = f (h(x)).
We say that f is topologically stable in Diff 1

μ(M) if, for any ε > 0, there exists δ > 0 such that

for any g ∈ Diff 1
μ(M) δ–C0-close to f , there exists a semiconjugacy from g to f , i.e., there exists

h : M → M satisfying h(g(x)) = f (h(x)) and d(h(x), x) < ε , for all x ∈ M . Once again we emphasize that
our definition of topological stability is restricted to the conservative setting and not to the broader
space of dissipative diffeomorphisms. We denote the set of topological stable volume-preserving dif-
feomorphisms by TSμ(M).

In this section we obtain the discrete-time version of Theorem 1.

Theorem 5. If f ∈ intC1 (TSμ(M)) then f is Anosov.

The proof is similar to the one done in Section 3.2 and, for this reason, we present a brief highlight
of it. As before, given f ∈ intC1 (TSμ(M)), we prove that all its periodic orbits are hyperbolic; from this
it follows that intC1 (TSμ(M)) ⊂ F 1

μ(M). Then, using Theorem 4, we obtain that any f ∈ intC1 (TSμ(M))

is Anosov.
Once again we assume, by contradiction, that there is some non-hyperbolic orbit. Now, to argue as

in the flow case, we make use of the following two ingredients:

(1) a way to linearize the diffeomorphism in a neighborhood of a periodic point and
(2) a “perturbation of the derivative” result in the vein of Lemma 2.3.

1 Notice that q may not be the analytic continuation of p. This is precisely the case when 1 is an eigenvalue of Pπ(p)
X (p).

2 Observe that if the vector field Y in Lemma 2.3 is of class C∞ , then the resulting vector field Z is also of class C∞ .



3966 M. Bessa, J. Rocha / J. Differential Equations 250 (2011) 3960–3966
The item (2) is available in the literature (see [7, Proposition 7.4]).
For (1) we just have to approximate f ∈ intC1 (TSμ(M)) by a diffeomorphism g ∈ intC1 (TSμ(M)) ∩

Diff∞
μ (M) using a recent result by Avila [3], and then we use the Pasting lemma [2, Theorem 3.6] to

obtain

h ∈ intC1

(
TSμ(M)

) ∩ Diff∞
μ (M),

such that h = Dgp in a neighborhood of the periodic orbit p. This is precisely what we need to obtain
a contradiction as we did in Section 3.2.
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