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Abstract

In this Letter we apply the formalism of local composite operators as developed by Verschelde et al. in combination with a constant chromo-
magnetic field as considered in the seventies by Savvidy and others. We find that a nonzero 〈A2

μ〉 minimizes the vacuum energy, as in the case with
no chromomagnetic field, and that the chromomagnetic field itself is near-to zero. The Nielsen–Olesen instability, caused by the imaginary part in
the action, also vanishes. We further investigate the effect of an external chromomagnetic field on the value of 〈A2

μ〉, finding that this condensate

is destroyed by sufficiently strong fields. The inverse scenario, where 〈A2
μ〉 is considered as external, results in analogous findings: when this

condensate is sufficiently large, the induced chromomagnetic field is lowered to a perturbative value slightly below the applied 〈A2
μ〉.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

In the seventies Savvidy [1] found that the SU(2) Yang–
Mills vacuum is unstable against formation of a constant chro-
momagnetic field. This new vacuum, though, is neither gauge
nor Lorentz invariant.

Not much later Nielsen and Olesen [2] showed that the ac-
tion in this new vacuum has an imaginary part, meaning that
the Savvidy vacuum is unstable as well. Ever since then many
ways have been explored in order to stabilize this, the most
well-known being a dynamical Higgs approach [2,3] and the
“spaghetti vacuum” [4] consisting of a superposition of many
domains with different orientations, forming a kind of liquid
crystal. Recently new roads of investigation have been explored
using the Cho–Faddeev–Niemi decomposition [5,6], see for ex-
ample [7–9].

In [10] Gubarev, Stodolsky and Zakharov proposed that
the condensate 〈A2

μ〉 might have a significance in the Yang–
Mills vacuum. Although gauge variant, this quantity has been
found to be relevant in detecting the condensation of magnetic
monopoles in compact QED. It can be shown that this quan-
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tity is minimized when working in the Landau gauge. Hence,
in that case, 〈A2

μ〉min can be given a gauge invariant interpreta-
tion [10].

In [11,12] one of us introduced the formalism of local com-
posite operators (LCOs) so as to enable them to calculate this
quantity. In [13] their method was applied to SU(N) Yang–
Mills theory, indeed resulting in a nonzero value for 〈A2

μ〉min. A
consequence of a nonvanishing value for 〈A2

μ〉 is the dynamical
generation of an effective gluon mass.

In this Letter we will combine the formalism of LCOs
with the constant chromomagnetic background field of Savvidy.
In Section 2 we will give a short review of the LCO formal-
ism in Yang–Mills theory. Section 3 will be devoted to cal-
culating the effective action, which will be discussed in Sec-
tion 4. There we search for minima of the action, and we
consider the effect of each field on the induced value of the
other one. Finally, in Section 5 our conclusions will be pre-
sented.

2. LCO formalism

In this section we will review the LCO formalism as pro-
posed in [13].

As a first step the gauge is fixed using the Landau condition,
i.e., the linear covariant gauge ∂μAμ = 0 with ξ → 0. Then,
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a term

(1)
1

2
Z2JA2

μ

is added to the Lagrangian density. Here Z2 is a multiplicative
renormalization constant and J is the source. As it stands, the
theory is not renormalizable. To correct this a new term

(2)−1

2
Zζ ζJ 2

has to be added. Here ζ is a new coupling constant and Zζ is its
renormalization factor. This Lagrangian is now multiplicatively
renormalizable, as shown in [14] using a BRST analysis. There
are several problems, though.

As a first problem we have introduced a new parameter, ζ ,
creating a problem of uniqueness. However, it is possible to
choose ζ to be a unique meromorphic function of g2 based on
the renormalization group equations. In [13] they found using
the MS scheme in d = 4 − ε dimensions (up to one-loop order
and with Nc the number of colors):

(3a)ζ = 9

13

N2
c − 1

Nc

1

g2
+ N2

c − 1

16π2

161

52
,

(3b)Zζ = 1 − g2Nc

16π2

13

3ε
,

(3c)Z2 = 1 − Ncg
2

16π2

3

2ε
.

Secondly the presence of the J 2 term spoils an energy in-
terpretation for the effective potential defined via the Legendre
transform. In order to solve this, a Hubbard–Stratanovich trans-
formation is applied by inserting unity into the path integral:

1 =N
∫

[Dσ ] exp

(4)− 1

2Zζ ζ

∫ (
σ

g
+ 1

2
Z2A

2
μ − Zζ ζJ

)2

d4x,

with N an irrelevant constant. This eliminates the 1
2Z2JA2

μ and
Zζ ζJ 2 terms from the Lagrangian and introduces a new field σ .
The result is:

e−W(J) =
∫

[DAμ][Dσ ] exp−
∫ (

LYM[Aμ, c, c̄]

(5)+LLCO[Aμ,σ ] − σ

g
J

)
d4x.

Herein LYM is the well-known Yang–Mills Lagrangian with
Faddeev–Popov ghosts, fixed in the Landau gauge, and

LLCO[Aμ,σ ] = σ 2

2g2Zζ ζ
+ 1

2

Z2

g2Zζ ζ
gσAa

μAa
μ

(6)+ 1

8

Z2
2

Zζ ζ

(
Aa

μAa
μ

)2
.

Now J acts as a linear source for the σ field, so that we can
straightforwardly compute the effective action Γ (σ) using the
above expressions.

If we compare this to the original expression, we find that
the expectation value of σ corresponds to the expectation value
of the composite operator

(7)σ = −g

〈
1

2
Z2A

2
μ − Zζ ζJ

〉
.

In the limit J → 0 this operator corresponds (up to a multiplica-
tive factor) to A2

μ. We can also read off the effective gluon mass
in lowest order:

(8)m2 = Nc

N2
c − 1

13

9
gσ.

3. Effective action

3.1. Introductory matters

We now proceed to combine the formalism of a constant
chromomagnetic background field with the one of massive glu-
ons using the LCO formalism.

Since we are now working with a background field, it is
more appropriate to use the Landau background gauge [15]
Dμ[Â]Aμ = 0 instead of the usual Landau gauge prescription
∂μAμ = 0. Here Âμ is the background field. In order to do so,
some alterations are in order.

A BRST analysis (for BRST in the background gauge, see
for example [16]) shows that, in order for the LCO formalism
to stay renormalizable, the condensate A2

μ must be replaced by

(9)A2
μ − Â2

μ =A2
μ + 2AμÂμ,

with Aμ the total gauge field and Aμ the quantum fluctuations,
Aμ =Aμ + Âμ.

This replacement will change nothing in the expressions for
ζ and the renormalization constants. In the limit Âμ = 0 these
must reduce to the original expressions, and since these con-
stants are dimensionless and Âμ is the only dimensionful pa-
rameter they could otherwise depend on, they will not change
when switching on a nonzero background field.

As a result, the action we depart from is given by

L= 1

4

(
Fa

μν[Aμ + Âμ])2 − 1

2ξ

(
Dμ[Âμ]Aa

μ

)2

+ c̄aDμ[Âμ]Dμ[Aμ + Âμ]ca + σ 2

2g2Zζ ζ

+ 1

2

Z2

g2Zζ ζ
gσ

((
Aa

μ

)2 + 2Aa
μÂa

μ

)

(10)+ 1

8

Z2
2

Zζ ζ

((
Aa

μ

)2 + 2Aa
μÂa

μ

)2
.

For simplicity, we will work in SU(2). If we choose the
background field Ba

μ to be a chromomagnetic field in the
z-direction in space and in the 3-direction in isospace, we can
write

(11)Âa
μ = Hx1δ

a3gμ2.

With this expression, the effective potential at one loop is given
by:
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Veff = 1

2
H 2 + σ 2

2g2Zζ ζ
− log det

(
D2)

+ 1

2
log det

(
gμνδ

ab Z2

g2Zζ ζ
gσ − gμνD2

ab

(12)+
(

1 − 1

ξ

)
(DμDν)

ab + 2gεab3HS3
μν

)
,

where the limit ξ → 0 is implied, and

(13)S3
μν =

⎛
⎜⎜⎜⎝

0

0 −1

1 0

0

⎞
⎟⎟⎟⎠ .

3.2. Spectrum of D2

We start by calculating the determinant of the ghost operator.
If we use the eigenbasis of εab3, we first have the “3” ghosts,

for which the covariant derivative reduces to an ordinary one,
and then we have the “+” and the “−” ghosts with eigenvalues
±ı. For those last ones the covariant derivative equals Dμ =
∂μ ± ıgHx1gμ2.

The “3” ghosts give a trivial contribution of tr log ∂2 = 0.
For the “+” and the “−” ghosts we need the eigenfunctions

of D2 = ∂2 ± 2ıHx1g∂2 − g2H 2x2
1 . This is a harmonic oscilla-

tor, and we readily find:

−D2eı �x· �pψn

(√
gHx1 ± p2√

gH

)

(14)

= (
gH(2n + 1) + p2

3 + p2
4

)
eı �x· �pψn

(√
gHx1 ± p2√

gH

)
,

where ψn (n ∈ N) is the nth eigenfunction of the harmonic os-
cillator and with �a = (a3, a4). We get with dimensional (d =
4−ε) and zeta function regularization (

∑
n(n+q)−s = ζ(s;q),

the Hurwitz zeta function):

(15)tr logD2 = 2
gH

2π

+∞∑
n=0

∫
dd−2p

(2π)d−2
ln

(
gH(2n + 1) + �p2)

= g2H 2

3(4π)2

(
2

ε
+ 1 − ln

2gH

μ̄2

(16)− 12ζ ′(−1) − ln(2)

)
,

where ζ(s) = ∑
n n−s is the Riemann zeta function. Here, the

factor of two comes from the contributions of both “+” and
“−” ghosts.

3.3. Spectrum of the gluons

The gluons can be split into two classes: the ones obeying
the Landau gauge prescription Dμψμ = 0, giving

(17)

1

2
trDμψμ=0 log

(
gμνδ

ab Z2

g2Zζ ζ
gσ − gμνD2

ab + 2gεab3HS3
μν

)

and the ones not satisfying the prescription, giving
(18)
1

2
trDμψμ �=0 logDμDν + constant,

where the irrelevant constant part contains limξ→0 ln ξ .
The spectrum of this last operator can be reduced to the spec-

trum of D2. If ψμ is an eigenfunction of DμDν with eigenvalue
k �= 0, we also have that D2Dμψμ = kDμψμ so that Dμψμ is
an eigenfunction of D2 with eigenvalue k. This means that all
eigenvalues of DμDν are also eigenvalues of D2. Conversely,
if f is an eigenfunction of the operator D2 with eigenvalue p,
then Dμf will be an eigenfunction of DμDν with the same
eigenvalue. Thus we see that these two operators have an iden-
tical spectrum and we can write

(19)trDμψμ �=0 logDμDν = tr logD2.

The expression on the right-hand side has been calculated
above. Since the ghosts will come with a factor −1 and the glu-
ons with a factor 1/2, exactly minus one half of the result given
there will remain.

For the gluons fulfilling the gauge prescription, we start with
the “3” gluons. A straightforward calculation yields for the
three polarizations in dimensional regularization:

3 − ε

2
tr log

(
Z2

g2Zζ ζ
gσ − ∂2

)

(20)= − 3Z2
2σ 2

4g2Z2
ζ ζ

2(4π)2

(
2

ε
+ 5

6
− ln

Z2σ

2gZζ ζ μ̄2

)
.

Secondly there are the “+” and the “−” gluons:

(21)
1

2
trDμψμ=0 log

(
gμν

Z2

g2Zζ ζ
gσ − gμνD2 ± 2ıgHS3

μν

)
,

with Dμ = ∂μ ± ıgHx1gμ2. We start with the “+” gluons. We
now pass to the polarization basis wherein S3

μν is diagonal. We
get:

S3
μν =

⎛
⎜⎜⎜⎝

ı

−ı

0

0

⎞
⎟⎟⎟⎠ ,

(22)Dμ = (
√

gHâ ı
√

gHâ† ∂3 ∂4 ) ,

with â and â† the ladder operators of the harmonic oscil-
lator from Eq. (14). This reduces the problem to four one-
dimensional harmonic oscillators with the same eigenfunctions
as in (14). The eigenvalues are gH(2n + 1 + 2s) + p2

3 + p2
4 +

Z2σ/(gZζ ζ ) with s = −1,1,0,0 the spin eigenvalue of the
state.

Now we have to restrict the spectrum according to the Lan-
dau background gauge. For this purpose we construct the fol-
lowing vector functions from the scalar eigenfunctions

fn = eı �x· �p

⎛
⎜⎜⎜⎜⎜⎝

e1ψn+1(
√

gHx1 + p2√
gH

)

e2ψn−1(
√

gHx1 + p2√
gH

)

e3ψn(
√

gHx1 + p2√
gH

)

e4ψn(
√

gHx1 + p2√
gH

)

⎞
⎟⎟⎟⎟⎟⎠

,

(23)n = −1,0,1,2, . . . ,
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where ψn with n negative is defined to be zero. The vector
eμ is a polarization vector. These functions have eigenvalues
Z2σ/(gZζ ζ ) + gH(2n + 1) + p2

3 + p2
4. To see whether they

obey the gauge condition, we calculate

(24)

Dμf μ
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n = −1,

(e1
√

gH + ıe3p3 + ıe4p4)e
ı �x· �pψ0(. . .), n = 0,

(e1
√

gH
√

n + 1 + ıe2
√

gH
√

n + ıe3p3

+ ıe4p4)e
ı �x· �pψn(. . .), n > 0.

We conclude that, for n = −1, there is but one polarization with
a contribution of 1/2 tr log(Z2σ/(gZζ ζ )−gH +p2

3 +p2
4). For

n = 0, of the three, one is eliminated by the gauge prescription,
leaving us with 2 polarizations (2 − ε in dimensional regular-
ization) each contributing 1/2 tr log(Z2σ/(gZζ ζ )+gH +p2

3 +
p2

4). For n > 0 we have the usual 3 (3 − ε) polarizations with
the usual contribution. For ease of calculation, we calculate the
second and third groups together with 3 polarizations, so that
we have to subtract the contribution of n = 0 exactly once.

The gluons with n = −1 give

gH

4π

∫
d2−εp

(2π)2−ε
log

(
Z2σ

gZζ ζ
− gH + p2

)

(25)=
gH( Z2σ

gZζ ζ
− gH)

(4π)2

(
2

ε
+ 1 − ln

Z2σ
gZζ ζ

− gH

μ̄2

)
.

For the gluons with n = 0 there remains:

−gH

4π

∫
d2−εp

(2π)2−ε
log

(
Z2σ

gZζ ζ
+ gH + p2

)

(26)= −
gH(

Z2σ
gZζ ζ

+ gH)

(4π)2

(
2

ε
+ 1 − ln

Z2σ
gZζ ζ

+ gH

μ̄2

)
.

And finally all the other states contribute

(3 − ε)
gH

4π

+∞∑
n=0

∫
d2−εp

(2π)2−ε
log

(
Z2σ

gZζ ζ
+ gH(2n + 1) + p2

)

= −
3Z2

2σ 2

g2Z2
ζ ζ 2 − g2H 2

4(4π)2

(
2

ε
+ 1

3
− ln

2gH

μ̄2

)

(27)+ 6(gH)2

(4π)2

∂ζ

∂s

(
−1; 1

2
+ Z2σ

2g2HZζ ζ

)
.

Here, ζ(s;q) denotes the analytic continuation of the Hurwitz
zeta function, which for first argument greater than one is de-
fined as

(28)ζ(s;q) =
+∞∑
k=1

(k + q)−s ,

or by its integral representation

(29)ζ(s, q) = 1

Γ (s)

∞∫
0

t s−1e−qt

1 − e−t
dt.

The derivative ∂ζ/∂s stands for the derivative with respect
to the first argument. In this last calculation we have made
Fig. 1. The effective action (31) in function of H and σ ′ . The black line denotes
σ ′ = H , where the imaginary part of the action vanishes.

use of the relation between the Hurwitz zeta function and the
Bernoulli polynomials, in our case:

(30)ζ(−1, x) = −B2(x)

2
= −x2

2
+ x

2
− 1

12
.

The “−” gluons give exactly the same contribution, so that
the above expressions must be multiplied by a factor of two.

3.4. Total

If we sum all the terms we have calculated, and we substitute
the values for the renormalization constants, we get:

Veff = 1

2
H 2 + 27

26

σ ′2

2

− 9g2σ ′2

4(4π)2

(
1

2
+ 161

78
− 1

3
ln

gσ ′

μ̄2
− 2

3
ln

2gH

μ̄2

)

− 2g2Hσ ′

(4π)2
ln

σ ′ − H

σ ′ + H

− g2H 2

(4π)2

(
4 − 2 ln

gσ ′ − gH

μ̄2
− 2 ln

gσ ′ + gH

μ̄2

+ 1

3
ln

2gH

μ̄2
− 2ζ ′(−1) − 1

6
ln(2)

)

(31)+ 12g2H 2

(4π)2

∂ζ

∂s

(
−1; 1

2
+ σ ′

2H

)
,

where we have set

(32)gσ ′ = 26

27
gσ,

so that the effective gluon mass squared is m2
eff = gσ ′. The real

part of (31) is plotted in Fig. 1.
In the limit H → 0 this expression reduces to the one ob-

tained in [13], and when taking σ → 0 we get the result of
Nielsen and Olesen [2] modulo some differences due to the use
of another subtraction scheme and gauge.

When H > σ ′ our potential (31) has an imaginary part

(33)− ıg2H
(H − σ ′),
8π
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which reduces to the Nielsen and Olesen result for σ ′ = 0. It
turns out to vanish for H � σ ′, so that the Nielsen–Olesen prob-
lem of the Savvidy vacuum is then resolved, as predicted would
happen by Nielsen and Olesen [2] themselves.

4. Discussion

In the next two subsections, we will find that the minimum
of the effective potential is for H = 0 (or virtually zero) and σ ′
the value calculated in [13].

In order to do so, we will consider two cases: first H will
be considered as an external field and σ ′ as an effective gluon
mass induced by quantum effects, and next we will investigate
the influence of a nonzero σ ′ on the value of the Savvidy field.
When looking at small values of the external fields, the analy-
ses can be done analytically by expanding the potential in this
small parameter. The scale can then be chosen according to
renormalization group considerations. For bigger values of the
external fields, however, we proceed numerically. In this last
case the scale μ̄2 is, for the ease of calculation, fixed equal to
μ̄2 = 4.12Λ2

MS
, the value of gσ ′ in the global minimum of the

effective action. In that point the coupling constant is reason-
ably small:

(34)
g2

8π2
= 36

187
≈ 0.19.

4.1. Effect of H on σ ′

If H is set to zero, the effective potential has a perturbative
extremum (a maximum) in σ ′

p = 0 and a non-perturbative min-
imum at

(35)gσ ′
np = Λ2

MS
e

24π2

11g2 = 4.12Λ2
MS

,

where the scale was chosen equal to gσ ′
np.

For small H the equations can be expanded in a series in H :

Veff(H,σ ′) = 27

26

σ ′2

2
− 9g2σ ′2

4(4π)2

(
5

6
+ 161

78
− ln

gσ ′

μ̄2

)

+ 1

2
H 2 − g2H 2

(4π)2

(
1

2
− 7

2
ln

gσ ′

μ̄2
− 1

6
ln

2gH

μ̄2

(36)− 2ζ ′(−1) − 1

6
ln(2)

)
+O

(
H 3 lnH

)
.

To obtain this, we used the expansion of the Hurwitz zeta func-
tion for large arguments, which can be straightforwardly calcu-
lated from the integral representation (29). From this can easily
be obtained that, up to this order,

(37)gσ ′
np = gσ ′

H=0 − 7gH 2

9σ ′
H=0

,

so that σ ′
np decreases with a raising of H . The vacuum energy

changes like

Evac = EH=0 − 4
H 2 + g2H 2

2

(
1231
13 (4π) 156
(38)+ 1

6
ln

4H

σ ′
H=0

+ 2ζ ′(−1)

)
+ · · · .

We see that for very small H the term of order H 2 lnH will
dominate, lowering the vacuum energy. Very fast, though, this
term will be supplanted by the terms of order H 2, and the en-
ergy will start increasing again. The effective potential in this
regime is depicted in Fig. 2. The lowest value is reached when

H = σ ′ exp

(
384π2

13g2
− 1257

26
− 2 ln 2 − 12ζ ′(−1)

)

(39)= 3.92 × 10−13σ ′.

Since this result is astronomically small, there is no reason
why it would not disappear when higher-order corrections or

Fig. 2. The difference between Evac(H) and Evac(H = 0) for very small val-
ues of H in the non-perturbative minimum for σ ′. A shallow minimum (order
10−27Λ2

MS
) is seen for H ≈ 7 × 10−13Λ2

MS
.

Fig. 3. Real (full line) and imaginary part (dashed line) of the potential for
H = 0.4Λ2

MS
.



D. Vercauteren, H. Verschelde / Physics Letters B 660 (2008) 432–438 437
Fig. 4. Left: The various values of σ ′ as functions of H . The full line is the non-perturbative value of σ ′ , the dashed line is the value of σ ′ in the lower minimum,
and the dotted line is σ ′ = H , drawn for reference. Right: The vacuum energy in the minima as a function of H . In both plots the thick dot indicates where the
higher minimum in the effective potential disappears.
Fig. 5. Real (full line) and imaginary part (dashed line) of the potential for
σ ′ = 0.5Λ2

MS
.

any other effects are taken into account. For all practical pur-
poses one can say that the vacuum energy is lowest when
H = 0 and σ ′ has the value given in (35). One would ex-
pect terms containing lnH to be replaced with ln(H + σ)

when switching on a mass, causing this residual chromomag-
netic field to vanish. This does not happen, though, because the
ghosts and the unphysical gluon do not cancel. This is related
to the unitarity problem of the model, which could be solved
non-perturbatively in the zero color sector when incorporating
confinement [13].

When H is increased, analytic methods have to be aban-
doned and we solve the equations numerically instead. A quali-
tative sketch of the effective potential in this regime is depicted
in Fig. 3. A nonzero imaginary part exists ever when σ ′ < H ,
as mentioned above. In the real part of the action, the point with
σ ′ = 0 is no longer an extremum, but a new perturbative mini-
mum forms for σ ′ between zero and H . This is separated from
the original non-perturbative minimum by a little hill with a top
at σ ′ slightly above H . The value of σ ′ in the non-perturbative
minimum decreases with increasing H . For higher H a point is
reached where the minimum with smaller σ ′ has a lower energy
than the one with greater σ ′. We thus find a first-order phase
transition around H = 0.40Λ2

MS
. For H yet higher, the non-

perturbative minimum disappears altogether and only the per-
turbative one remains. These evolutions can be seen in Fig. 4.

The conclusion is that a nonzero chromomagnetic field de-
creases the effective gluon mass, and when the field is suffi-
ciently high a phase transition occurs, lowering the mass to a
value slightly lower than gH .

4.2. Effect of σ ′ on H

We can take the limit σ ′ = 0, giving

Leff(σ = 0) = 1

2
H 2 − g2H 2

(4π)2

(
4 − 11

3
ln

gH

μ̄2

(40)+ 4ζ ′(−1) + 2

3
ln(2)

)
− ıg2H 2

8π
.

Here we used that ζ(s,1/2) = (2s − 1)ζ(s). Ignoring the imag-
inary part, and putting μ̄2 equal to the value of gH in the global
minimum, we obtain a perturbative extremum in H = 0 and a
non-perturbative one in

gH = μ̄2 exp

(
−24π2

11g2
+ 13

22
+ 12

11
ζ ′(−1) + 2

11
ln(2)

)

(41)≈ 1.71Λ2
MS

.

When expanding in a series in σ ′, the next term in the real
part is

(42)−3g2Hσ ′
2

ln 2,

(4π)
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Fig. 6. Left: The induced value of H as a function of σ ′ (full line). For higher values of σ ′ this nears the asymptotic H = σ ′ (dashed line). Right: The vacuum
energies in the non-perturbative minimum (full line) and in H = 0 (dashed line). The branch for H = 0 is the same as the potential calculated in [13], reaching its
lowest value for σ ′

np = 1.06Λ2
MS

.

meaning the non-perturbative minimum will be lowered. This
also increases the induced value of H by an amount of
9σ ′ ln 2/22 ≈ 0.28σ ′.

When going to higher values of σ ′, we find that H = 0 (or
near-to zero) turns into a local minimum of the potential. For
H slightly below σ ′ there is a maximum and for H higher than
σ ′ there is a non-perturbative minimum (see Fig. 5). When in-
creasing σ ′, this last one first deepens out, reaching a lowest
value for σ ′ = 0.40Λ2

MS
, and it then goes up again. The value

of H in this point grows with increasing σ ′. For σ ′ big enough
this H asymptotically goes to σ ′.

The value of the effective action in H = 0 decreases for ris-
ing σ ′, so that around σ ′ = 0.48Λ2

MS
it dives lower than the

energy in the non-perturbative minimum. This means that, at
this point, there is a first-order phase transition from the state
with H > σ ′ to the one with H ≈ 0, causing the imaginary part
in the action to vanish. This is depicted in Fig. 6.

We conclude that switching on a nonzero gluon mass first
makes H increase, and then destroys it completely. When the
gluon mass is sufficiently large, the vacuum is no longer unsta-
ble against the formation of a constant chromomagnetic field,
and the Nielsen–Olesen instability, caused by the imaginary
part, also is resolved.

5. Conclusions

We found that, when considering both a constant chromo-
magnetic field and an 〈A2

μ〉 condensate, the effective action was
minimized for zero (or near-to zero) chromomagnetic field with
a non-perturbative value for 〈A2

μ〉 as found by Verschelde et
al. [13]. There are no unstable modes any longer, and the imag-
inary part in the action is zero in this minimum.

When considering the situation in which H is an external
field, we found that applying such a field first lowers the value
of the induced mass, and for H around 0.40Λ2
MS

the non-
perturbative mass is destroyed, leaving only a perturbative value
slightly smaller than H . The action then has a (small) imaginary
part as in the Savvidy case.

When, on the other hand, considering the effect of the mass
on the Savvidy field, we found that a sufficiently high gluon
mass (σ ′ � 0.48Λ2

MS
) destroys the induced H field, at the same

time causing the Nielsen–Olesen instability (the imaginary part
in the action) to vanish.
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