Decompositions of complete graphs into blown-up cycles $C_m[2]$

Dalibor Frončeka, Petr Kovářb, Michael Kubesab

a Department of Mathematics and Statistics, University of Minnesota Duluth, 1117 University Dr., Duluth, MN 55812, USA
b Department of Applied Mathematics, VŠB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

Abstract

Let $C_m[K_2]$ stand for a cycle C_m in which every vertex is replaced by two isolated vertices and every edge by K_2. We prove that the complete graph $K_{m(k+1)}$ can be decomposed into graphs isomorphic to $C_m[K_2]$ for any $m \geq 3, k > 0$. Decompositions of complete graphs into certain collections of even cycles are obtained as a corollary. Also some special cases of Alspach Conjecture are resolved in this article. All proofs are constructive and use both graph theory and design theory techniques.

1. Introduction

In this paper we consider only finite undirected graphs without loops and multiple edges. By a G-decomposition of the complete graph K_n (or a decomposition of K_n into G) we understand a collection of subgraphs G_i, $i = 1, 2, \ldots, s$ of K_n such that $G_i \cong G$ for $i = 1, 2, \ldots, s$; $E(G_1) \cup E(G_2) \cup \cdots \cup E(G_s) = E(K_n)$, and $E(G_i) \cap E(G_j) = \emptyset$ for $i \neq j$, where $E(H)$ denotes the edge set of a graph H. In the language of design theory, a G-decomposition of K_n is called (K_n, G)-design or just G-design.

1.1. Summary of known results

Decompositions of complete graphs K_n into cycles have been extensively studied by many authors. Clearly, for n even, no cycle decomposition (or any 2-regular decomposition) is possible. A natural extension is to look for a cycle decomposition of $K_n - I$, where I is a 1-factor of K_n. For decompositions into uniform cycles a complete characterization is known. The necessary conditions for a cycle C_m to decompose a complete graph K_n (or $K_n - I$, respectively) is that m divides the number of edges of K_n and $m \leq n$. For both cases of n odd and even it was shown by Alspach and Gavlas [1] and Šajna [12] that the necessary conditions are also sufficient.

Theorem 1.1. Let n, m be integers with $n \geq m \geq 3$. Let K stand for K_n if n is odd and for $K_n - I$ if n is even. Then K can be decomposed into C_m whenever m divides the number of edges in K.

Obviously, for bipartite graphs no decomposition into odd cycles is possible. The even-cycle decomposition of $K_{m,n}$ was completely solved by Bermond, Huang, and Sotteau [2,13].

Theorem 1.2. K_{n_1,n_2} can be decomposed into C_m if and only if m, n_1, n_2 are all even, m divides n_1n_2, and both $n_1, n_2 \geq \frac{m}{2}$.

© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.disc.2009.10.018
By $G[H]$ we denote the composition (also called wreath product or lexicographic product) of graphs G and H which is obtained by replacing every vertex of G by a copy of H and every edge of G by the complete bipartite graph $K_{|H|,|H|}$. We say that $G[H]$ arose from G by blowing up by H and recall that \overline{K}_m stands for the complement of K_m, i.e., m independent vertices. We often use the following corollary of Theorem 1.2.

Corollary 1.3. A cycle C_m decomposes $C_k[\overline{K}_m]$ for every even $m \geq 3$.

Proof. We can decompose $C_k[\overline{K}_m]$ into k copies of $K_{m,m}$ and by Theorem 1.2 every $K_{m,m}$ is decomposable into C_m. □

A collection of results on graph products was given in [9] by A. Muthusamy and P. Paulraja. They have shown the following.

Theorem 1.4. If m and k are integers, $k \geq 3$, then C_k decomposes $C_k[\overline{K}_m]$.

In fact the results given in [9] are more general. The authors have shown the existence (or proved nonexistence) of factorizations of $C_k[\overline{K}_m]$ into collections of cycles of equal length p, where $k \mid p$. The following corollary will be particularly useful.

Corollary 1.5. Let m, k be integers, $k \geq 3$. If C_k decomposes G, then C_k decomposes $G[\overline{K}_m]$.

Proof. Since C_k decomposes G, by blowing up each cycle with \overline{K}_m we get a $C_k[\overline{K}_m]$-decomposition of $G[\overline{K}_m]$. Now by Theorem 1.4 we can decompose each of these k-partite graphs into k-cycles. □

Examining the decomposition of $K_k[\overline{K}_m]$ into C_m one can easily observe that the existence for m even ($m \geq 3$) follows immediately from Theorem 1.2, since each cycle of K_k is blown up into a $K_{m,m}$ and these can be decomposed into C_m for m even. For odd m and k even obviously no cycle decomposition is possible, since $K_k[\overline{K}_m]$ is regular of odd degree. The remaining case for both m, k odd follows from a result by Ramírez–Alfonsin [10].

Theorem 1.6. If m and $k \geq 3$ are odd integers, then C_m decomposes $C_k[\overline{K}_m]$.

Since for odd K_k has a decomposition into Hamiltonian cycles C_k (Theorem 1.1), we can conclude the following theorem. The necessity is implied by the even-regularity condition.

Theorem 1.7. Let m, k be integers, $m \geq 3$. The cycle C_m decomposes $K_k[\overline{K}_m]$ if and only if either m is even or k is odd.

Many other papers have been published on cycle decompositions of complete graphs K_n and of $K_n − I$, complete bi-, tri-, or n-partite graphs $K_{\alpha}[\overline{K}_p]$; see [4–6]. We mentioned just the results that are relevant to the constructions below. In this paper, we examine decompositions of complete graphs into graphs that arise by “blowing up” cycles. A natural extension of the results above is to look for a $C_m[\overline{K}_p]$ decomposition of K_n and $K_n − I$. We restrict ourselves to $p = 2$. The graph $C_m[\overline{K}_2]$ (denoted by $C_m[2]$) which arises from the cycle C_m by replacing each vertex x by a pair of two independent vertices $x^′, x^′′$ and each edge xy by four edges $x'y', x'y'', x''y', x'y''$. See Fig. 2.

Also a wide collection of papers has been published on decompositions of graphs into 2-factors, where a 2-factor is a vertex-disjoint and spanning collection of cycles of arbitrary lengths. For a recent survey, see [3]. An important tool in finding such decompositions is the following lemma by Häggkvist; see [8].

Lemma 1.8. Let G be a path or a cycle with n edges and let H be a 2-regular graph on $2n$ vertices with all components even. Then $G[\overline{K}_2]$ can be decomposed into two edge-disjoint copies of H.

In Section 1.2 we list necessary conditions for $C_m[2]$ to decompose a complete graph. In Section 1.3 we give definitions of ρ- and α-labelings, which are useful tools for decompositions of complete graphs. The following three sections solve the $C_m[2]$ decomposition of K_{8mk+1} completely in three cases according to the value of k. In Section 2 we present direct constructions for any m and $k = 1$. In Section 3 we construct decompositions for $m \equiv 1, 2, 3 \pmod{4}$ and $k = 2$. In Section 4 we first prove an auxiliary result for decompositions of complete multipartite graphs into $C_m[2]$ and then use it for recursive constructions leading to decompositions of K_{8mk+1} into $C_m[2]$ for any $m \geq 3$ and $k \geq 3$. Finally, in Section 5.2 we show that a $C_m[2]$ decomposition of $K_{2n} − I$ is an easy corollary of Theorem 1.1. We will also show that our main result combined with Lemma 1.8 can yield new results in decompositions of complete graphs into non-uniform 2-regular subgraphs, i.e., unions of cycles of different lengths.

1.2. Necessary conditions

Necessary conditions for a $C_m[2]$ to decompose K_n are

1. $m \geq 3, n \geq 2m$,
2. the number of edges $4m$ of $C_m[2]$ divides the number of edges of K_n,
3. the degree $n − 1$ has to be a multiple of 4,
4. $\frac{n−1}{2} \equiv 0 \pmod{4}$.
Condition (4) follows from the fact that the number of edges \(\frac{n(n-1)}{2} \) of \(K_n \) has to be a multiple of 4 and \(n \) is odd. Thus for such a decomposition to exist we can conclude that

\[
6 \leq 2m \leq n, \quad n \equiv 1 \pmod{8}, \quad \text{and} \quad m \mid \frac{n(n-1)}{8}.
\]

We restrict ourselves only to the case when \(n = 8km + 1 \) (notice that all the necessary conditions hold) and solve the restricted problem completely. The cases where \(6 \leq 2m \leq n, n \equiv 1 \pmod{8} \), and \(m \mid \frac{n(n-1)}{8} \) but \(m \mid \frac{n-1}{8} \) remain open.

1.3. \(\rho \)- and \(\alpha \)-labelings

Let \(\lambda \) be an injection from the vertex set of a graph \(G \) with \(h \) edges into the set \(L = \{0, 1, \ldots, 2h\} \) and let the length of every edge \(e = xy \) in \(G \) be determined by \(\ell(xy) = \min(|(\lambda(x) - \lambda(y)), 2h + 1 - |\lambda(x) - \lambda(y)|| \). Then we say that the graph \(G \) has a \(\rho \)-labeling (sometimes called rosy labeling) if \(G \) contains edges of all lengths from 1 to \(h \).

If \(G \) has a \(\rho \)-labeling such that only labels from \(L' = \{0, 1, \ldots, h\} \) are used and there exists \(\lambda_0 \in \{0, 1, \ldots, h\} \) such that for every edge \(xy \in E(G) \) with \(\lambda(x) < \lambda(y) \) it holds that \(\lambda(x) \leq \lambda_0 < \lambda(y) \), then \(\lambda \) is called an \(\alpha \)-labeling. Obviously only bipartite graphs can admit \(\alpha \)-labelings.

It is well known (see [11]) that \(\rho \)- and \(\alpha \)-labelings yield decompositions of complete graphs as described in the following two theorems.

Theorem 1.9. If a graph \(G \) with \(h \) edges has a \(\rho \)-labeling, then \(G \) decomposes \(K_{2h+1} \).

Theorem 1.10. If a graph \(G \) with \(h \) edges has an \(\alpha \)-labeling, then \(G \) decomposes \(K_{2hk+1} \) for every positive integer \(k \).

While it is easy to use Theorem 1.10, some of the graphs we are interested in admit only \(\rho \)-labelings, but not \(\alpha \)-labelings. Therefore, we need to use \(\rho \)-labelings of other graphs than just a single copy of \(C_m[2] \). We often will be using cyclic decompositions that will place \(k \) copies (\(k > 1 \)) of \(C_m[2] \) in the complete graph \(K_{8mk+1} \) at once. Notice, that we can allow distinct copies of \(C_m[2] \) to share vertices, but not edges. Let \(G \) be a graph that can be decomposed into \(k \) edge-disjoint copies of a graph \(H \) with \(h \) edges, say \(H_1, H_2, \ldots, H_k \). By Theorem 1.9, \(K_{2hk+1} \) can be decomposed into \(2hk+1 \) copies of \(G \). Since each copy of \(G \) can be in turn decomposed into \(k \) edge-disjoint copies of \(H \), it is obvious that \(K_{2hk+1} \) can be decomposed into \((2hk + 1)k \) copies of \(H \).

2. Decompositions of \(K_{8mk+1} \) into \(C_m[2] \) for \(k = 1 \)

We are looking for decompositions of \(K_{8mk+1} \) into \(C_m[2] \). All constructions in Sections 2 and 3 are based on giving an \(\alpha \)- or \(\rho \)-labeling. In some cases it is enough to present a labeling of \(C_m \) and describe how to extend it into an \(\alpha \)-labeling or an \(\rho \)-labeling of \(C_m[2] \). In some cases a more elaborate approach is required. If this is the case, we give a \(\rho \)-labeling of \(C_m[2] \).

We distinguish four cases depending on the congruence class of \(m \) modulo 4.

Lemma 2.1. If \(m \geq 3 \) is an integer, \(m \equiv 0 \pmod{4} \), then the graph \(C_m[2] \) admits an \(\alpha \)-labeling.

Proof. Let \(m \equiv 0 \pmod{4} \), say \(m = 4s \). An \(\alpha \)-labeling of \(C_m = C_{4s} \) is given in Fig. 1. It is easy to check that all lengths 1, \ldots, 4s are realized. The labeling is an \(\alpha \)-labeling wherever \(\lambda_0 = 2s - 1 \).

Then in \(C_{4s} \) we replace each vertex labeled \(p, p \leq 2s - 1 = \lambda_0 \), by two vertices labeled 4p and 4p + 1 and each vertex labeled \(q, q > 2s - 1 = \lambda_0 \), by two vertices labeled 4q and 4q - 2 (see Fig. 2). This way an edge \((p, q) \) of length \(l = q - p \) will be replaced by four edges \((4p + 1, 4q - 2), (4p, 4q - 2), (4p + 1, 4q), (4p, 4q) \) of lengths \(4l - 3 = 4q - 4p - 3, 4l - 2 = 4q - 4p - 2, 4l - 1 = 4q - 4p - 1, \) and \(4l = 4q - 4p \). This clearly gives edges of all lengths 1, 2, \ldots, 16s = 4m. Hence, \(C_{4s}[2] \) has an \(\alpha \)-labeling with \(\lambda_0 = 8s - 3 \). \(\Box \)

Lemma 2.2. If \(m \geq 3 \) is an integer, \(m \equiv 2 \pmod{4} \), then \(C_m[2] \) admits a \(\rho \)-labeling.

Proof. Let \(m = 4s + 2 \). A \(\rho \)-labeling of \(C_m \) is given in Fig. 3.

The edges then have lengths 4s, 4s - 1, 4s - 2, 4s - 4, 4s - 3, 4s - 5, 4s - 6, 4s - 7, \ldots, 2s, 2s - 1, 2s - 3, 2s - 4, 2s - 5, 2s - 6, \ldots, 3, 2, 1, 2s - 2, 4s + 2, 4s + 1. Then in \(C_{4s+2} \) again we replace each vertex labeled \(p, p \leq 2s - 1 \), by two vertices labeled 4p and 4p + 1, the vertex labeled 8s - 5 by vertices labeled 32s - 23, 32s - 22 and each vertex labeled \(q, q < 2s - 1 < q \leq 4s + 4 \), by two vertices labeled 4q + 2. This way an edge \((p, q) \) of length \(l = q - p \) (recall that \(p, q \neq 8s-5 \)) will be replaced by four edges \((4p + 1, 4q - 2), (4p, 4q - 2), (4p + 1, 4q), (4p, 4q) \) of lengths \(4l - 3 = 4q - 4p - 3, 4l - 2 = 4q - 4p - 2, 4l - 1 = 4q - 4p - 1, 4l = 4q - 4p \). Thus, from edges of lengths \(l \in \{1, 2, \ldots, 4s + 2\} \setminus \{4s - 3, 4s - 4\} \) we obtain all edges of lengths between 1 and \(16s + 8 \) with the exception of lengths from \(16s - 19 \) to \(16s - 12 \). But the missing lengths are covered by the edges \((16s - 4, 32s - 23), (16s - 6, 32s - 23), (16s - 4, 32s - 22), (16s - 6, 32s - 22) \) and \((16s - 8, 32s - 23), (16s - 10, 32s - 23), (16s - 8, 32s - 22), (16s - 10, 32s - 22) \) that arise from the edges \((4s - 1, 8s - 5) \) and \((4s - 2, 8s - 5) \). This clearly gives edges of all lengths 1, 2, \ldots, 16s + 8 = 4(4s + 2) = 4m. \(\Box \)
Lemma 2.3. If \(m \geq 3 \) is an integer, \(m \equiv 1 \) (mod 4), then \(C_m[2] \) admits a \(\rho \)-labeling.

Proof. Let \(m = 4s + 1 \). For small values \(s = 1, 2, \ldots, 7 \) the \(\rho \)-labeling is given in Figs. 4 and 5. In Fig. 6 we give a general construction for any \(s \geq 8 \). It is easy to verify that all lengths \(1, 2, \ldots, 16s + 4 = 4m \) are realized and thus it is a \(\rho \)-labeling. \(\Box \)

Lemma 2.4. If \(m \geq 3 \) is an integer, \(m \equiv 3 \) (mod 4), then \(C_m[2] \) admits a \(\rho \)-labeling.

Proof. Let \(m = 4s + 3 \). The \(\rho \)-labeling of \(C_m \) is given in Fig. 7. The edges have lengths \(4s + 1, 4s, 4s - 1, 4s - 2, 4s - 3, \ldots, 2s + 3, 2s + 2, 2s - 1, 2s - 2, 2s - 3, \ldots, 4, 3, 2, 1, 4s + 3, 1, 4s + 2 \).

Then in \(C_{4s + 1} \) we replace each vertex labeled \(p, p \leq 2s - 1 \), by two vertices labeled \(p \) and \(p + m \); the vertex labeled \(6s + 4 \) by vertices labeled \(18s + 13 \) and \(22s + 16 \); each vertex labeled \(q, 2s - 1 < q < 4s + 1 \) and \(q = 4s + 3 \), by two vertices labeled \(m + q \) and \(3m + q \), respectively; and the vertex labeled \(4s + 2 \) by vertices labeled \(4m - 1 \) and \(3m + 1 \). This way an edge \((p, q) \) of length \(l = q - p \) (recall that \(p, q \neq 4s + 2, 6s + 4 \)) will be replaced by four edges \((m + q, p + m), (m + q, p), (3m + q, p + m), (3m + q, p) \) of lengths \(q - p = l, q - p + m = l + m, q - p + 2m = l + 2m, q - p + 3m = l + 3m \).

Therefore the edges of lengths \(l \in \{ 1, 2, \ldots, 4s + 2, 4s + 3 \} \setminus \{ 4s + 3, 4s + 2, 2s + 1, 1 \} \) after blowing up give edges of all lengths between 1 and \(16s + 12 \) with the exception of lengths \(4s + 3, 4s + 3 + m = 8s + 6, 4s + 3 + 2m = 12s + 9, 4s + 3 + 3m = 16s + 12, 4s + 2, 4s + 2 + m = 8s + 5, 4s + 2 + 2m = 12s + 8, 4s + 2 + 3m = 16s + 11, 2s + 1, 2s + 1 + m = 6s + 4, 2s + 1 + 2m = 10s + 7, 2s + 1 + 3m = 14s + 10, 1, 1 + m = 4s + 4, 1 + 2m = 8s + 7, 1 + 3m = 12s + 10 \).

The remaining edges of lengths \(4s + 2, 1 \) and \(4s + 3, 2s + 1 \), respectively, which are incident with the vertices \(4s + 2 \) and \(6s + 4 \) in \(C_{4s + 3} \), will be blown up as follows. The edges \((2m, 4m - 1), (4m, 4m - 1), (2m, 3m + 1), (4m, 3m + 1) \)
arising from the edge \((4s + 3, 4s + 2)\) have lengths \(2m - 1 = 8s + 5, 1, m + 1 = 4s + 4, m - 1 = 4s + 2\). The edges \((4m - 1, 0), (4m - 1, m), (3m + 1, 0), (3m + 1, m)\) arising from the edge \((4s + 2, 0)\) have lengths \(4m - 1 = 16s + 11, 3m - 1 = 12s + 8, 3m + 1 = 12s + 10, 2m + 1 = 8s + 7\). The edges \((2s + 1 + m, 18s + 13), (2s + 1 + 3m, 18s + 13), (2s + 1 + m, 22s + 16), (2s + 1 + 3m, 22s + 16)\) arising from \((2s + 1, 6s + 4)\) have lengths \(16s + 12 - m = 12s + 9, 16s + 12 - 3m = 4s + 3, 20s + 15 - m = 16s + 12, 20s + 15 - 3m = 8s + 6\). Finally, the edges \((4s + 3 + m, 18s + 13), (4s + 3 + 3m, 18s + 13), (4s + 3 + m, 22s + 16), (4s + 3 + 3m, 22s + 16)\) arising from \((4s + 3, 6s + 4)\) have lengths \(14s + 10 - m = 10s + 7, 14s + 10 - 3m = 2s + 1, 18s + 13 - m = 14s + 10, 18s + 13 - 3m = 6s + 4\).

Hence, from above it follows that \(C_{4s+3}^2\) has a \(\rho\)-labeling and the proof is complete. \(\square\)

The next theorem follows immediately from Lemmas 2.1–2.4 and Theorems 1.9 and 1.10.

Theorem 2.5. The graph \(C_{m}^2\) decomposes \(K_{8m+1}\) for every \(m \geq 3\).

We proved in Lemma 2.1 that \(C_{m}^2\) for \(m \equiv 0 (mod 4)\) admits an \(\alpha\)-labeling. Therefore, the following theorem is an immediate consequence of Lemma 2.1 and Theorem 1.10. It gives a complete characterization of decompositions of \(K_{8km+1}\) into \(C_{m}^2\) for the case of \(m \equiv 0 (mod 4)\).

Theorem 2.6. The graph \(C_{m}^2\) with \(m \equiv 0 (mod 4)\) decomposes \(K_{8mk+1}\) for every \(k > 0\) and \(m \geq 3\).

Thus we can omit this case in the following sections.

3. Decompositions of \(K_{8mk+1}\) into \(C_{m}^2\) for \(k = 2\)

For a \(C_{m}^2\) decomposition of \(K_{8m+1}\) when \(k = 2\) we use different techniques based on the congruence class of \(m\) modulo \(4\). For \(m \equiv 0 (mod 4)\) the decomposition follows from Theorem 2.6. For \(m \equiv 2 (mod 4)\) we give a labeling for \(C_{m}\) and show how to extend it to a \(\rho\)-labeling of edge-disjoint union of \(k\) copies of \(C_{m}^2\). Finally for \(m \equiv 1, 3 (mod 4)\) we give \(\rho\)-labelings for an edge-disjoint union of \(2\) copies of \(C_{m}^2\) directly.

Lemma 3.1. If \(k \geq 2\) and \(m \geq 3\) are integers, \(m \equiv 2 (mod 4)\), then there exists an edge-disjoint union of \(k\) copies of \(C_{m}^2\) that admits a \(\rho\)-labeling.
Proof. Let \(m = 4s + 2 \). We want to show that the edge-disjoint union of \(k \) copies of \(C_{4s+2} \) admits a \(\rho \)-labeling for \(k > 1 \) and \(s \geq 1 \). Thus, we give a labeling of the edge-disjoint union of \(k \) copies of \(C_{4s+2} \) that contains edges of all lengths from 1 to \(4ks + 2k \).

First let \(C_{m}^{i} = C_{4s+2}^{i} \) for \(i = 0, 1, \ldots, k - 1 \) be labeled as in Fig. 9, where \(C_{4s+2}^{i} \) stands for \(i \)th copy of \(C_{4s+2} \) in edge-disjoint union of \(k \) copies of \(C_{4s+2} \). This construction in Fig. 9 yields a \(\rho \)-labeling only for \(s > 1 \), the case \(s = 1 \) is treated separately.

The path \(P = 4i + 4s - 2, 4i + 3, 4i + 4, \ldots, 4i + 3s, 4i + s + 1, 4i + 3s - 2, 4i + s + 2, 4i + 3s - 3, 4i + s + 3, \ldots, 4i + 2s + 2, 4i + 2s - 2, 4i + 2s + 1, 4i + 2s - 1, 4i + 2s, 4i + 2 \) contains the edges of lengths \(4i + 4s - 4i - 5, 4i + 4s - 4i - 6, 4i + 4s - 4i - 7, \ldots, 4i + 2s - 4i - 1, 4i + 2s - 4i - 3, 4i + 2s - 4i - 4, 4i + 2s - 4i - 5, 4i + 2s - 4i - 6, \ldots, 4i + 4s - 4i - 4, 4i + 4s - 4i + 3, 4i + 4s - 4i + 2, 4i + 4s - 4i - 1, 4i + 2s - 4i - 2 \). We see that the edges listed above cover all lengths between 1 and \(4ks - 4k \) with the exception of lengths \(4s - 4, 8s - 8, 12s - 12, \ldots, 4ks - 4k \). But the missing lengths are covered by the edges \((4ks - 3k + 3i + 2, 4ks + 4s - 3k - i - 2) \) of lengths \(4ks - 3k + i + 1 \) and \(4ks - 3k - i \) cover all lengths between \(4ks - 4k + 1 \) and \(4ks - 2k \). The edges \((4ks - k + i + 1, 0) \) and \((4ks - k + i + 1, 2i + 1) \) of lengths \(4ks - k + i + 1 \) and \(4ks - k - i \) cover all lengths between \(4ks - 2k + 1 \) and \(4ks \). Finally, the edges \((4ks + 2k + i + 2, 0 = 8s + 4k + 1) \) and \((4ks + 2k + 2i + 2, 4i + 2) \) of lengths \(4ks + 2k - 2i - 1 \) and \(4ks + 2k - 2i \) cover all lengths from \(4ks + 2k \) to \(4ks + 2k + 2 \). It follows that the edge-disjoint union of \(k \) copies of \(C_{4s+2} \) has a \(\rho \)-labeling for \(k, s > 1 \).

Similarly as in the proof of Lemma 2.2 we replace each vertex labeled \(p, p \leq 4i + 2s \), by two vertices labeled \(4p \) and \(4p + 1 \); the vertex labeled \(4ks + 4s + 3k - i - 2 \) by vertices labeled \(16ks + 16s + 16s - 12k - 4i - 10, 16ks + 16s + 16s - 12k - 4i - 11 \); and each of the remaining vertices labeled \(q, 4i + 2s + 1 < q \), by two vertices labeled \(4q \) and \(4q - 2 \). Hence, every edge \((p, q)\) of length \(l = q - p \) for \(p, q \neq 4ks + 4s + 3k - i - 2 \) will be replaced by four edges of lengths \(4l, 4l - 1, 4l - 2, 4l - 3 \). We still have to check that two edges of lengths \(4i + 4s - 4i - 4 \) and \(4ks - 3k - i \), which are incident with the vertex \(4ks + 4s + 4s - 3k - i - 2 \) give, after blowing up their endvertices, the edges of lengths \(16s + 16s - 16i - 16 - r \) and \(16s - 12k - 4i - r \), where \(r = 0, 1, 2, 3 \).
Fig. 6. ρ-labeling of $C_m[2]$ for $m = 4s + 1$ and $s \geq 8$.

Fig. 7. ρ-labeling of C_{4s+3}.

The edge $(4ks - 3k + 3i + 2, 4ks + 4is + 4s - 3k - i - 2)$ is replaced by edges $(16ks - 12k + 12i + 6, 16is + 16s - 12k - 4i - 10), (16ks - 12k + 12i + 6, 16is + 16s - 12k - 4i - 11), (16ks - 12k + 12i + 6, 16is + 16s - 12k - 4i - 12)$.
Let $\rho = 0 = 2k + 1$, $k + 3i + 2$, $2i + 1$, $6k + 2i + 2$, $4i + 2$.

Fig. 8. Labeling of C_6.

$4ks - k + i + 1$, $0 = 8ks + 4k + 1$

$4ks - 3k + 3i + 2$, $2i + 1$

$4i + 4s - 2$, $4ks + 4is + 4s - 3k - i - 2$

$4i + 3$, $4is + 4s - 3$

$4i + 4$, $4is + 3s + 1$

$4i + s$, $4is + 3s$

$4i + s - 3$, $4is + 3s - 2$

$4i + s + 1$, $4is + 3s + 2$

$4i + s + 3$, $4is + 2s - 2$

$4i + 2s - 1$, $4is + 2s$

$4i + 2$, $4is + 2s + 2$

$8, 16ks + 16is + 16s - 12k - 4i - 10, (16k + 12i + 8, 16ks + 16is + 16s - 12k - 4i - 11)$ of lengths $16is + 16s - 16i - 16, (16is + 16s - 16i - 16) - 1, (16is + 16s - 16i - 16) - 2, (16is + 16s - 16i - 16) - 3$, respectively.

The edge $(4is + 4s - 2, 4ks + 4is + 4s - 3k - i - 2)$ is replaced by edges $(16is + 16s - 10, 16ks + 16is + 16s - 12k - 4i - 10), (16is + 16s - 10, 16ks + 16is + 16s - 12k - 4i - 11), (16is + 16is - 8, 16ks + 16is + 16s - 12k - 4i - 10), (16is + 16s - 8, 16ks + 16is + 16s - 12k - 4i - 11)$. Thus the edge-disjoint union of k copies of $C_{4s+2}[2]$ has edges of all lengths from 1 to 16ks + 8k = 4k(4s + 2) and therefore the edge-disjoint union of k copies of $C_{4s+2}[2]$ admits a ρ-labeling for $k, s > 1$.

Now we have to show that the edge-disjoint union of k copies of C_{4s+2} admits a ρ-labeling also for $s = 1$ and $k > 1$. Let every cycle $C_6^0, i = 0, 1, \ldots, k - 1$, of an edge-disjoint union of k copies of C_6 be labeled so that $C_6^0 = 0, 9k + i + 1, 2i + 1, k + 3i + 2, 4i + 2, 6k + 2i + 2, 0$ (see Fig. 8). Then the edges $(k + 3i + 2, 4i + 2)$ and $(k + 3i + 2, 2i + 1)$ of lengths $k - i$ and $k + 1$ cover all lengths between 1 and 2k, the edges $(9k + i + 1, 2i + 1)$ and $(9k + i + 1, 0)$ of lengths $3k + i + 1$ and $3k - i$ cover all lengths from 2k + 1 to 4k, and the edges $(6k + 2i + 2, 4i + 2)$ and $(6k + 2i + 2, 0)$ cover all lengths 6k - 2i and $6k - 2i - 1$ cover all lengths between 4k + 1 and 6k.

If we replace in the edge-disjoint union of k copies of C_6 each vertex labeled $p, p = 0, 2i + 1, 4i + 2$, by two vertices $4p$ and $4p + 1$ and each vertex labeled $q, q = k + 3i + 2, 6k + 2i + 2, 9k + i + 1$, by two vertices $4q$ and $4q - 2$, then we obtain an edge-disjoint union of k copies of $C_6[2]$ with a ρ-labeling.

We illustrate the lemma for $k = 2$ in Fig. 10. Note that while we have proved an existence of a ρ-labeling of an edge-disjoint union of k copies of $C_6[2]$, in the figure we are showing the labeling of the two edge-disjoint copies of $C_6[2]$ separately. Therefore, some labels repeat in both copies of $C_6[2]$. We will use this approach for the reader’s convenience in our figures throughout this section.

Lemma 3.2. If $m \geq 3$ is an integer, $m \equiv 1 \pmod{4}$, then there exists an edge-disjoint union of two copies of $C_m[2]$ that admits a ρ-labeling.

Proof. Let $m = 4s + 1$. For small s the decomposition is given by a ρ-labeling (see Fig. 11). In Fig. 12 we give a general construction of a ρ-labeling for any $s \geq 3$. Vertex labels for a fixed s will repeat only for (most) vertices placed on the right. There is no edge between any two of them and one can check that no edge of the complete graph is covered more than once by evaluating the edge lengths and verifying that all lengths $1, 2, \ldots, 32s + 8$ are realized.

Lemma 3.3. If $m \geq 3$ is an integer, $m \equiv 3 \pmod{4}$, then there exists an edge-disjoint union of two copies of $C_m[2]$ that admits a ρ-labeling.

Proof. Let $m = 4s + 3$. For small s the decomposition is given by a ρ-labeling (see Fig. 13). In Fig. 14 we give a general construction of a ρ-labeling for any $s \geq 3$. Again it can be checked in the figures that all lengths $1, 2, \ldots, 32s + 24$ are realized.
From Lemmas 3.1–3.3, Theorems 2.6, 1.9 and 1.10 we have the following theorem.

Theorem 3.4. The graph $C_m[2]$ decomposes K_{8m^k+1} for $k = 2$ and for every $m \geq 3$.

4. **Decompositions of K_{8m^k+1} into $C_m[2]$ for $k \geq 3$**

In this section we use a different approach to construct the $C_m[2]$ decomposition of K_{8m^k+1} for any $m \geq 3$ and any $k \geq 3$. Since the following construction does not depend on the modularity of m, some of the results below will cover cases discussed already in Sections 2 and 3, namely the $C_m[2]$ decomposition of $K_{8m_{k+1}}$ for $m \equiv 0, 2 \pmod{4}$. Nonetheless we give the statements in their general form rather than just rephrasing them for the missing cases only.

We do the decomposition in two stages. First we decompose the graph K_{8m^k+1} into k copies of K_{8m^k} (all sharing exactly one vertex) and one complete multipartite graph with k partite sets and $8m$ vertices in each partite set. Then we decompose
each of the graphs K_{8m+1} into $C_m[2]$ using the constructions from Section 2. We are left with the problem of decomposing the complete multipartite graph $K_k[\overline{K}_{8m}]$ into $C_m[2]$. See Fig. 15.

We can state this observation as the following lemma.

Lemma 4.1. Let m, k be integers, $m \geq 3$. If $C_m[2]$ decomposes K_{8m+1}, then $C_m[2]$ decomposes K_{8mk+1}.

Proof. In Section 2 it was proved that $C_m[2]$ decomposes K_{8m+1} for every $m \geq 3$. Therefore a decomposition of $K_k[\overline{K}_{8m}]$ into $C_m[2]$ together with a $C_m[2]$ decomposition of each of the k copies of K_{8m+1} gives a decomposition of K_{8mk+1} into $C_m[2]$. □

Now combining the results from Section 1 we show the following

Lemma 4.2. If m and k are integers, $m, k \geq 3$, then $C_m[2]$ decomposes the multipartite graph $K_k[\overline{K}_{8m}]$.

Proof. We notice that $K_k[\overline{K}_{2}] \cong K_{2k} - I$. The number of edges of $K_{2k} - I$ is $2k(k - 1)$; therefore, by Theorem 1.1 $K_k[\overline{K}_{2}]$ can be decomposed into both C_k and C_{k-1}. Obviously one of the numbers k and $k - 1$ is odd. We distinguish two cases.

(1) If k is odd ($k \geq 3$) then we can decompose $K_k[\overline{K}_{2}]$ into C_k and we blow up each C_k by m. Since k is odd, each of the $C_k[2m]$ can be decomposed into C_m by Theorem 1.6 for m odd and by Corollary 1.3 for m even. Hence, we have $C_k[2m]$-decomposition of $K_k[\overline{K}_{2m}]$. Now by blowing up by K_2 and by Corollary 1.5 we can have a C_m decomposition of $K_k[\overline{K}_{4m}]$. Finally by blowing up again by K_2 we get a $C_m[2]$ decomposition of $K_k[\overline{K}_{8m}]$.

(2) If k is even then $k - 1$ is odd and for $k > 2$ the proof goes similarly. We decompose $K_k[\overline{K}_{2}]$ into C_{k-1}. Each of the C_{k-1} can be blown up by m and by Theorem 1.6 for m odd and by Corollary 1.3 for m even we get a C_m decomposition of $K_k[\overline{K}_{2m}]$. Again by blowing up by K_2 and by Corollary 1.5 we can have a C_m decomposition of $K_k[\overline{K}_{4m}]$ and blowing up again by K_2 we get a $C_m[2]$ decomposition of $K_k[\overline{K}_{8m}]$. □

Finally from the previous two lemmas immediately follows

Theorem 4.3. If $m \geq 3$ is an integer, then $C_m[2]$ decomposes K_{8mk+1} for any integer $k \geq 3$.

5. Conclusion

5.1. Summary

Combining the results from Sections 2–4 we conclude

Theorem 5.1. If $m \geq 3$ is an integer, then $C_m[2]$ decomposes K_{8mk+1} for every integer $k > 0$.

Fig. 13. ρ-labeling of a union of a pair of $C_7[2]$ and of a pair of $C_{11}[2]$.

Proof. The claim follows for $m \equiv 0 \pmod{4}$ from Theorem 2.6 and for $m \equiv 1, 2, 3 \pmod{4}$ from Theorems 2.5, 3.4 and 4.3. □

5.2. Decomposition of $K_{2n} - I$

Analogously to the results mentioned in Section 1, one can ask about $C_m[2]$ decompositions of $K_{n} - I$. Clearly, if we want to decompose a complete graph $K_{n} - I$ into $C_m[2]$, the degree $n - 2$ of every vertex has to be a multiple of four. The necessary conditions are $2m \leq n$, $4 \mid (n - 2)$ and $2m \mid \frac{n(n-2)}{4}$. An easy observation shows that the necessary conditions are also sufficient.

Theorem 5.2. Let $m \geq 3$ be an integer. The graph $C_m[2]$ decomposes $K_{n} - I$ if and only if n is an integer such that $n \geq 2m$, $n \equiv 2 \pmod{4}$ and $2m \mid \frac{n(n-2)}{4}$.

Proof. The necessity was shown above. The sufficiency follows from Theorem 1.1. We take $p = \frac{n}{2} = \frac{4t+2}{2} = 2t + 1$ for some $t > 0$. Obviously p is odd and from $2m \mid \frac{n(n-2)}{4}$ follows $2m \mid p(p - 1)$. Now from Theorem 1.1 it follows that C_m decomposes K_p whenever p is odd and $2m \mid p(p - 1)$. By blowing up the graph K_p as well as each cycle C_m by K_2, we get a $C_m[2]$ decomposition of $K_p[K_2] \cong K_{2p} - I = K_{n} - I$ for all feasible values of n. □

5.3. Non-uniform cycle decomposition

Taking $p = 2m$ in Theorem 5.1 (or Theorem 5.2, respectively) and combining it with Lemma 1.8, decompositions of a complete graph K_n (or $K_{n} - I$, respectively) into certain collections of even cycles can be obtained.

Corollary 5.3. Let $m \geq 3$ be an integer. If $C_{p_1}, C_{p_2}, \ldots, C_{p_l}$ is a collection of even cycles such that $\sum_{i=1}^{l} p_i = 2m$, then the complete graph K_{8m+1} can be decomposed into a vertex-disjoint union of cycles $C_{p_1}, C_{p_2}, \ldots, C_{p_l}$.
Corollary 5.4. If $C_{p_1}, C_{p_2}, \ldots, C_{p_t}$ is a collection of even cycles such that $\sum_{i=1}^{t} p_i = p \leq 4n + 2$ and $p \mid n(4n + 2)$, then the graph $K_{4n+2} - I$ can be decomposed into a vertex-disjoint union of cycles $C_{p_1}, C_{p_2}, \ldots, C_{p_t}$.

While Corollary 5.4 is an easy application of Haggkvist lemma (Lemma 1.8) to blown up complete graphs $K_{2p} - I \simeq K_p[2]$, Corollary 5.3 extends the same technique also to certain complete graphs. In particular we observe that the complete graph K_{8m+1} can be decomposed into any collection of even cycles whose lengths sum up to p. This was not covered by any known method; see also [7]. Notice that without loss of generality we could omit the parameter k since we decompose the graph $C_{m}[2]$ into any smaller even cycles.
An interesting observation is that each of the $8m+1$ graphs $C_m[2]$ in K_{8m+1} can be decomposed into a different collection of even cycles, each in an even number of copies. Hence the following corollary. By $2C_{p_{i,j}}$ we denote a pair of edge-disjoint cycles of length $p_{i,j}$.

Corollary 5.5. Let $m \geq 3$ be an integer. For every $i = 1, 2, \ldots, 8m+1$ let t_i and $p_{i,j}$ be numbers such that $p_{i,j}$ is even and $\sum_{j=1}^{t_i} p_{i,j} = 2m$. Then $D = \{2C_{p_{i,j}} : i = 1, 2, \ldots, 8m+1, j = 1, 2, \ldots, t_i\}$ is a collection of cycles which form a decomposition of the complete graph K_{8m+1}.

Alspach conjectured, see [7], that for n odd every K_n can be decomposed into any collection of cycles as long as the cycle lengths do not exceed n and their lengths sum up to $n(n-1)/2$. **Corollary 5.5** brings a new set of results not known before. Unfortunately, only values $n \equiv 1 \pmod 8$ are addressed, since for $n \equiv 3, 5, 7 \pmod 8$ necessary conditions for $C_m[2]$ to decompose the complete graph are not satisfied.

5.4. Open problems

The problem presented in this article is a natural extension of recent results (see Theorem 1.1) by Alspach and Gavlas [1] and Šajna [12]. In Section 1.2 necessary conditions for $C_m[2]$ to decompose K_n were given as

$$6 \leq 2m \leq n, \quad n \equiv 1 \pmod 8, \quad \text{and} \quad m \mid \frac{n(n-1)}{8}.$$

We solved the problem for $n = 8km + 1$ completely.

The missing case (see 1.2) where $6 \leq 2m \leq n, n \equiv 1 \pmod 8$, and $m \mid \frac{n(n-1)}{8}$ while $m \mid \frac{n-1}{8}$ remains open. We believe that such a decomposition is possible, though we did not attempt to find any general construction. We mention only that the smallest case when $C_m[2]$ should decompose K_n is not possible.

Another possible extension of the presented problem is to look for $C_{m[r]}$ decompositions of K_n.

Acknowledgements

Research for this article was supported by the Ministry of Education of the Czech Republic grant No. MSM6198910027. The authors wish to express their thanks to the anonymous referees, whose comments helped in improving the quality of this paper.

References

