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The Roper–Suffridge extension operator and its modifications are powerful tools to
construct biholomorphic mappings with special geometric properties. The first purpose of
this paper is to analyze common properties of different extension operators and to define
an extension operator for biholomorphic mappings on the open unit ball of an arbitrary
complex Banach space. The second purpose is to study extension operators for starlike,
spirallike and convex in one direction mappings. In particular, we show that the extension
of each spirallike mapping is A-spirallike for a variety of linear operators A. Our approach
is based on a connection of special classes of biholomorphic mappings defined on the open
unit ball of a complex Banach space with semigroups acting on this ball.
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1. Introduction

One of the main purposes of the classical geometric function theory is the study of various classes of univalent and
multivalent mappings. Convex, starlike and spirallike functions on the open unit disk � ∈ C have been the objects of
intensive study for over a century. A reader can be referred to the book of Goodman [8]. The study of different classes
of biholomorphic mappings in multidimensional settings began later. In fact, the first survey appeared in 1977 (see [21]).
Recent developments in this area are reflected in [7,11,4,19]. However, numerous well-known tools for the construction
of mappings with special geometric properties on the open unit disk � := {z ∈ C: |z| < 1} have no generalization for the
multidimensional case. For example, until recently only a few concrete examples of convex, starlike and spirallike mappings
in the open unit ball in Cn were known.

In 1995, Roper and Suffridge [20] introduced an extension operator, which provides a variety of required examples.
Given a univalent function f ∈ Hol(�,C) normalized by f (0) = f ′(0) − 1 = 0, they considered the mapping Φ[ f ] : Bn �→ Cn

defined as follows:

Φ[ f ](z1, x) = (
f (z1),

√
f ′(z1)x

)
, (1.1)

where x = (z2, . . . , zn). The Roper–Suffridge extension operator has remarkable properties. In particular:

• if f is a normalized convex function on �, then Φ[ f ] is a normalized convex mapping on Bn , see [20];
• if f is a normalized starlike function on �, then Φ[ f ] is a normalized starlike mapping on Bn , see [10];
• if f is a normalized μ-spirallike function on �, then Φ[ f ] is a normalized μI-spirallike mapping on Bn , see, for

example, [12,14];
• if f is a normalized Bloch function on �, then Φ[ f ] is a normalized Bloch mapping on Bn , see [10].
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Several authors have discussed this operator and its generalizations. In particular, the operator

Φα[ f ](z1, x) = (
f (z1),

(
f ′(z1)

)α
x
)
, (1.2)

where α ∈ [0, 1
2 ], was introduced in [12].

For a locally biholomorphic mapping f defined on the unit ball of Cn , Pfaltzgraff and Suffridge constructed in [17] an
extension operator as follows:

Φ̂n[ f ](z, x) = (
f (z),

(
J f (z)

) 1
n+1 x

)
, (1.3)

where z ∈ Cn , x ∈ C, ‖z‖2 + |x|2 < 1, and J f (z) is the complex Jacobian of the mapping f at the point z. It was shown
in [13] that this operator preserves starlikeness.

Another extension operator was introduced in [10] for locally biholomorphic functions f ∈ Hol(�,C) by

Φ̃β [ f ](z1, x) =
(

f (z1),

(
f (z1)

z1

)β

x

)
, (1.4)

where β ∈ [0,1]. These extension operators and their combinations (with multiplier ( f ′(z))α j (
f (z)

z )β j in j-th coordinate) in
the space Cn equipped with different concrete norms have been considered in numerous papers. Detailed references can be
found in [6].

Note that, as we updated, all extension operators were studied for functions f satisfying the standard normalization
f (0) = 0 and f ′(0) = 1 (or J f (0) = id, respectively).

The first purpose of this paper is to analyze common properties of different extension operators and to define an exten-
sion operator for biholomorphic mappings on the open unit ball of an arbitrary complex Banach space.

The second purpose is to study extension operators for mappings starlike or spirallike with respect to an arbitrary interior
or a boundary point (see definitions in Section 2). Although the case of spirallikeness with respect to an interior point can
often be reduced to a standard one ( f (0) = 0), extension operators for starlike and spirallike mappings with respect to a
boundary point have not been considered at all. The following effect is new even for the case of f (0) = 0: we show that
the extension of each spirallike function is A-spirallike for a variety of linear operators A.

Our approach is based on several simple but effective observations:
(1) All extension operators mentioned above have the form:

f (x) �→ (
f (x),Γ ( f , x)y

)
with a certain linear operator Γ depending on a mapping f and a point x. So, we have to understand which properties of Γ

enable us to use it to construct an extension operator. We will say that operators having such properties are appropriate.
(2) A biholomorphic mapping is A-spirallike if and only if its image is S-invariant, where S = {e−t A}t�0 is the semigroup

of linear transformations. Similar relations between biholomorphic mappings and special semigroups also exist for other
classes of biholomorphic mappings. Therefore, we must study extension operators for one-parameter continuous semigroups.

(3) Extension operators for a semigroup of biholomorphic self-mappings of the open unit ball and for a corresponding
class of biholomorphic mappings do not necessarily coincide.

2. Preliminary notions

In this section we present some notions of non-linear analysis and geometric function theory which will be useful
subsequently. A reader may be referred to as the book [19].

Let X be a complex Banach space with the norm ‖ · ‖. Denote by Hol(D, E) the set of all holomorphic mappings on a
domain D ⊂ X which map D into a set E ⊂ X and a set Hol(D) := Hol(D, D).

We start with the notion of a one-parameter continuous semigroup.

Definition 2.1. Let D be a domain in a complex Banach space X . A family S = {Ft}t�0 ⊂ Hol(D) of holomorphic self-
mappings of D is said to be a one-parameter continuous semigroup (in short, semigroup) on D if

Ft+s = Ft ◦ Fs, t, s � 0, (2.1)

and for all x ∈ D ,

lim
t→0+ Ft(x) = x. (2.2)

For example, if D is the unit ball of X and A ∈ L(X) is an accretive operator, then the family {e−t A}t�0 forms a semigroup
of proper contractions of D . Moreover, each uniformly continuous semigroup of bounded linear operators can be represented
by this form.
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Definition 2.2. A semigroup S = {Ft}t�0 on D is said to be generated if for each x ∈ D , there exists the strong limit

f (x) := lim
t→0+

1

t

(
x − Ft(x)

)
. (2.3)

In this case the mapping f : D �→ X is called the (infinitesimal) generator of the semigroup S .

It was established in [18] that a semigroup S of holomorphic self-mappings of D is differentiable with respect to the parameter
t � 0 (hence, generated by a holomorphic mapping) if and only if it is locally uniformly continuous on D.

The following notion connects semigroups on biholomorphically equivalent domains.

Definition 2.3. Let {Ft}t�0 and {Ψt}t�0 be semigroups on domains D and Ω of a complex Banach space, respectively. We
say that the semigroups are conjugate if there is a biholomorphic mapping h : D �→ Ω such that

h ◦ Ft = Ψt ◦ h.

The mapping h in this relation is called the intertwining map for the semigroups.

An important class of mappings which serve intertwining maps with semigroups of linear transformations is the class of
spirallike mappings.

Definition 2.4. (See [4,19], cf. [21,7,11].) Let h be a biholomorphic mapping defined on a domain D of a Banach space X . The
mapping h is said to be spirallike if there is a bounded linear operator A such that the function Reλ is bounded away from
zero on the spectrum of A and such that for each point w ∈ h(D) and each t � 0, the point e−t A w also belongs to h(D). In
this case h is called A-spirallike. If A can be chosen to be the identity mapping, that is, e−t w ∈ h(D) for all w ∈ h(D) and
all t � 0, then h is called starlike.

In other words, a biholomorphic mapping h ∈ Hol(D, X) is A-spirallike if and only if it intertwines some semigroup on D
with the semigroup {e−At}t�0.

Remark 1. For mappings defined on the direct product Z = X × Y of two Banach spaces X and Y , it is relevant to consider
a block-matrix A = ( A11 A12

A21 A22

)
with operators A11 ∈ L(X), A12 ∈ L(Y , X), A21 ∈ L(X, Y ) and A22 ∈ L(Y ) satisfying certain con-

ditions. In such situation, the notion of “
( A11 A12

A21 A22

)
-spirallikeness” should be understood in the same sense of Definition 2.4.

It follows by this definition that if h is an A-spirallike mapping then 0 ∈ h(D).

• If 0 ∈ h(D), then there is a unique point τ ∈ D such that h(τ ) = 0, and we say that h is spirallike (starlike) with respect
to an interior point.

• Otherwise, if 0 ∈ ∂h(D), we say that h is spirallike (starlike) with respect to a boundary point.

In the one-dimensional case, the class of spirallike functions with respect to a boundary point was introduced in [1]
(see also references therein). It turns out that for each function h of this class there is a point τ , |τ | = 1, such that
limr→1− h(rτ ) = 0. The same conclusion also holds in many multidimensional situations. In fact, the validity of such claim
depends on the validity of an analog of Lindelöf’s principle (see, for instance, [5]).

Another class of mappings closely connected with dynamical systems consists of mappings convex in one direction.
These mappings intertwine some semigroups on a given domain D with semigroups of shifts. More precisely:

Definition 2.5. Let h be a biholomorphic mapping defined on a domain D of a Banach space X , and let τ ∈ X , ‖τ‖ = 1. The
mapping h is called convex in the direction τ if for each point w ∈ h(D) and each t � 0, the point w + tτ also belongs
to h(D).

In the one-dimensional case, functions convex in one direction have been studied by many authors starting from the clas-
sical work of M.S. Robertson (see, for examples, [8]). Recently, the interest in these functions and their geometric properties
has received an impetus because of their connection with the semigroup theory (see [3] and references therein).

Note also that the semigroups {e−At}t�0 and {· + tτ }t�0 which appear in Definitions 2.4 and 2.5 are particular cases of
the general semigroup of affine mappings {e−At · +λ

∫ t e−Asτ ds}t�0, where A ∈ L(X), λ � 0 and τ ∈ X , ‖τ‖ = 1.
0
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3. Appropriate operator-valued mappings

Let X and Y be two complex Banach spaces endowed with the norms ‖ · ‖X and ‖ · ‖Y , respectively, and let D1 and D2
be the open unit balls in these spaces. On the space Z = X × Y we wish to define a norm depending on ‖ · ‖X and ‖ · ‖Y
only. Such a norm may be defined as follows. Let p : [0,1] �→ [0,1] be a continuous function which satisfies the conditions:

(a) p(0) = 1, p(1) = 0;
(b) p is a strongly decreasing function;
(c) p is convex up: p( s1+s2

2 ) � 1
2 (p(s1) + p(s2)) for all s1, s2 ∈ [0,1].

Then the set

D := {
(x, y) ∈ D1 × D2 ⊂ Z : ‖y‖Y < p

(‖x‖X
)}

is the open unit ball in Z with respect to some norm ‖ · ‖. Actually, this norm is the Minkowski functional of the set D.
Under our assumption, ‖(x, y)‖ is the unique solution λ � ‖x‖X of the equation ‖y‖Y = λp(

‖x‖X
λ

). Obviously, Z equipped
with this norm ‖ · ‖ is a complex Banach space.

In our study of extension operators we need the notion of appropriate operator-valued mappings. We define this in
several steps. First, we deal with self-mappings of D1.

Definition 3.1. Let K̂ be a subset of Hol(D1) consisting of biholomorphic mappings and closed with respect to composition,
and let Γ̂ : K̂ × D1 �→ L(Y ) be a mapping continuous on K̂ and holomorphic on D1. We say that Γ̂ is appropriate if it
satisfies the following properties:

(i) the identity mapping idX of the space X belongs to K̂, and Γ̂ (idX , x) = idY , the identity mapping of the space Y ;
(ii) Γ̂ satisfies the chain rule in the sense that Γ̂ ( f , g(x))Γ̂ (g, x) = Γ̂ ( f ◦ g, x) for all f , g ∈ K̂ and x ∈ D1;

(iii) for each f ∈ K̂ and x ∈ D1, the operator Γ̂ ( f , x) is invertible;
(iv) ‖Γ̂ ( f , x)‖L(Y ) � p(‖ f (x)‖X )

p(‖x‖X )
for all f ∈ K̂ and x ∈ D1.

In the following examples we set p(s) = (1 − sq)1/r , where q, r � 1. Thus, the unit ball in the space Z = X × Y is defined
by

D = {
(x, y): ‖x‖q

X + ‖y‖r
Y < 1

}
.

Example 1. Let X = Cn be the Euclidean n-dimensional complex space. We consider the scalar operator Γ̂ ( f , x) :=
( J f (x))α idY , α > 0. To verify whether this operator is appropriate, first we choose a branch of the power ( J f (x))α such
that condition (i) of Definition 3.1 holds. Furthermore, we denote by K̂ a set consisting of biholomorphic self-mappings
of D1. In particular, we can choose K̂ = K̂τ , the subset of Hol(D1) consisting of all biholomorphic self-mappings of D1 with
a fixed point τ ∈ D1.

Conditions (ii) and (iii) obviously are satisfied. In addition,

∥∥Γ̂ ( f , x)
∥∥

L(Y )
= ∣∣ J f (x)

∣∣α �
(

1 − ‖ f (x)‖2
X

1 − ‖x‖2
X

) (n+1)α
2

(see [13, Lemma 1.1]). Therefore, condition (iv) will follow by the inequality(
1 − ‖ f (x)‖2

X

1 − ‖x‖2
X

) (n+1)α
2

�
(1 − ‖ f (x)‖q

X )1/r

(1 − ‖x‖q
X )1/r

, (3.1)

which obviously holds for α = 2
r(n+1)

and q = 2. To proceed, we rewrite (3.1) as

(1 − ‖ f (x)‖2
X )

(n+1)α
2

(1 − ‖ f (x)‖q
X )1/r

�
(1 − ‖x‖2

X )
(n+1)α

2

(1 − ‖x‖q
X )1/r

.

Now, if all mappings in K̂ satisfy f (0) = 0, then ‖ f (x)‖X � ‖x‖X . Taking into account that the function (1−t2)
(n+1)α

2

(1−tq)1/r is in-

creasing in t ∈ (0,1) for q � 2 and α � 2
r(n+1)

, we conclude that in this situation inequality (3.1) (hence, condition (iv)) holds.

In the next example X = C, the complex plane, and D1 = �, the open unit disk in C.

Example 2. Consider the scalar operator Γ̂ ( f , x) = (
f (x)

x )β idY , β > 0. Namely, we set K̂ to be the set of all univalent

self-mappings of � with f (0) = 0. Similar to the above example, we choose a branch of the power (
f (x)

)β such that
x
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conditions (i)–(iii) of Definition 3.1 hold. Condition (iv) follows from the Schwarz Lemma: the inequality | f (x)| � |x| implies
that

∥∥Γ̂ ( f , x)
∥∥

L(Y )
=

∣∣∣∣ f (x)

x

∣∣∣∣β � 1 �
(

1 − | f (x)|q
1 − |x|q

)1/r

.

As above, it is easy to modify this example for functions of the set K̂τ for any τ ∈ �.

Remark 2. In the introduction we mentioned papers where combinations of extension operators (1.2) and (1.4) were stud-
ied. Obviously, such combinations are included in our scheme; namely, we can consider non-scalar operators based on
Examples 1 and 2 above.

In the next example, X is a complex Hilbert space with inner product 〈·,·〉 and induced norm ‖ · ‖X , and τ ∈ ∂D1 ⊂ X .
Also, we set p(s) = (1 − s2)1/r .

Example 3. Consider the scalar operator Γ̂ ( f , x) = (
1−〈 f (x),τ 〉

1−〈x,τ 〉 )2/r idY , defined on the set K̂τ of all biholomorphic self-
mappings of D1 with the boundary attractive fixed point τ ∈ ∂D1. As above, condition (i) follows by the selection of an
appropriate branch of the power, conditions (ii) and (iii) hold automatically. Furthermore, by a multidimensional analog of
the boundary Wolff–Schwarz Lemma (see, for example, [19])

1 − ‖x‖2
X

|1 − 〈x, τ 〉|2 �
1 − ‖ f (x)‖2

X

|1 − 〈 f (x), τ 〉|2 .

Therefore,

∥∥Γ̂ ( f , x)
∥∥

L(Y )
=

∣∣∣∣1 − 〈 f (x), τ 〉
1 − 〈x, τ 〉

∣∣∣∣2/r

�
(1 − ‖ f (x)‖2

X )1/r

(1 − ‖x‖2
X )1/r

,

i.e., condition (iv) is satisfied.

For each appropriate mapping Γ̂ , one corresponds the extension operator Φ̂ : K̂ �→ Hol(D) defined by

Φ̂[ f ](x, y) = Φ̂Γ̂ [ f ](x, y) = (
f (x), Γ̂ ( f , x)y

)
. (3.2)

In Section 4 below, we will study its modification as an extension operator for one-parameter semigroups.

Lemma 3.1. Let Γ̂ : K̂ × D1 �→ L(Y ) be appropriate. Let f , g ∈ K̂. Then:

(a) Φ̂[ f ] ∈ Hol(D);
(b) Φ̂[ f ◦ g] = Φ̂[ f ] ◦ Φ̂[g].

For the original Roper–Suffridge operator (1.1), assertion (a) of this lemma can be found in [2].

Proof. Assertion (a) means that for each point (x, y) ∈ D the inequality∥∥Γ̂ ( f , x)y
∥∥

Y < p
(∥∥ f (x)

∥∥
X

)
holds. Indeed, since (x, y) ∈ D, we have ‖y‖Y < p(‖x‖X ). Therefore,∥∥Γ̂ ( f , x)y

∥∥
Y �

∥∥Γ̂ ( f , x)
∥∥

L(Y )
‖y‖Y � p(‖ f (x)‖X )

p(‖x‖X )
‖y‖Y < p

(‖ f (x)‖X
)
.

To prove assertion (b), we just calculate(
Φ̂[ f ] ◦ Φ̂[g])(x, y) = Φ̂[ f ](Φ̂[g](x, y)

) = Φ̂[ f ](g(x), Γ̂ (g, x)y
)

= (
f
(

g(x)
)
, Γ̂

(
f , g(x)

)
Γ̂ (g, x)y

) = (
( f ◦ g)(x), Γ̂ ( f ◦ g, x)y

)
= (

Φ̂[ f ◦ g])(x, y). �
Now we expand the notion of appropriate operators to biholomorphic mappings D1 �→ X .

Definition 3.2. Let a set K̂ ⊂ Hol(D1) and an appropriate mapping Γ̂ be given. Suppose that there are (a) a non-empty set
K = KD1 ⊂ Hol(D1, X) consisting of biholomorphic mappings and (b) a mapping Γ = ΓD1 : K ×D1 �→ L(Y ) continuous on K
and holomorphic on D1 such that
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(i) for all h1,h2 ∈ K with h1(D1) ⊂ h2(D1), we have h−1
2 ◦ h1 ∈ K̂;

(ii) Γ (h, g(x))Γ̂ (g, x) = Γ (h ◦ g, x) for all h ∈ K, g ∈ K̂ and x ∈ D1;
(iii) for each h ∈ K and x ∈ D1, the operator Γ (h, x) is invertible.

Then we say that Γ = ΓD1 is appropriate.

Remark 3. For appropriate mappings considered in Examples 1 and 2 and defined on the set of mappings normalized
by f (0) = 0, one can choose Γ to be defined by the same formula as Γ̂ , that is, respectively, Γ (h, x) = ( Jh(x))α idY or
Γ (h, x) = (

h(x)
x )β idY , where h(0) = 0. As previously mentioned, the operator Γ̂ from Example 1 can be defined on the

set K̂τ , τ ∈ D1. In this case, we can again use the same formula.
Concerning Example 3, it is possible to proceed as follows. We choose some mapping A : X �→ L(Y ) and a set of biholo-

morphic mappings K such that A(h(x)) is invertible for all h ∈ K and x ∈ D1. Then we set Γ (h, x) = (1 − 〈x, τ 〉)−2/r A(h(x)).
For instance, we can choose K to be a set of biholomorphic mappings h ∈ Hol(D1, X) with 〈h(x), τ 〉 �= 0 for all x ∈ D1 and
to define Γ (h, x) = (

〈h(x),τ 〉
1−〈x,τ 〉 )

2/r idY .

Similar to (3.2), we define the extension operator Φ : K �→ Hol(D, Z) by

Φ[h](x, y) = ΦΓ [h](x, y) = (
h(x),Γ (h, x)y

)
. (3.3)

This operator will be the main subject in Section 5. In particular, we will study its action on starlike and spirallike
mappings.

Lemma 3.2. Let Γ̂ : K̂ × D1 �→ L(Y ) and Γ : K × D1 �→ L(Y ) be appropriate. Let h ∈ K and g ∈ K̂. Then

Φ[h ◦ g] = Φ[h] ◦ Φ̂[g].
In addition, Φ[h] is biholomorphic, and for (z, w) ∈ Φ[h](D) we have(

Φ[h])−1
(z, w) = (

h−1(z),
(
Γ

(
h,h−1(z)

))−1
w

)
.

Proof. The first assertion follows by the calculation:(
Φ[h] ◦ Φ̂[g])(x, y) = Φ[h](Φ̂[g](x, y)

) = Φ[h](g(x), Γ̂ (g, x)y
)

= (
h
(

g(x)
)
,Γ

(
h, g(x)

)
Γ̂ (g, x)y

) = (
(h ◦ g)(x),Γ (h ◦ g, x)y

)
= (

Φ[h ◦ g])(x, y).

The last assertion is obvious. �
Now we are ready to turn to appropriate operators on domains biholomorphically equivalent to the unit ball D1.

Definition 3.3. Let Γ : K × D1 �→ L(Y ) be appropriate. Given a domain Ω ∈ X biholomorphically equivalent to the ball D1,
we define the set KΩ to consist of all biholomorphic mappings f ∈ Hol(Ω, X) for which there is a biholomorphic mapping h
of D1 onto Ω such that both h and f ◦ h belong to K. For f ∈ KΩ and x ∈ Ω we define the appropriate mapping ΓΩ by

ΓΩ( f , x) := Γ
(

f ◦ h,h−1(x)
)(

Γ
(
h,h−1(x)

))−1
.

The next assertion can be checked directly.

Lemma 3.3. The mapping ΓΩ is well defined in the sense that it is independent of the choice of a biholomorphic mapping h ∈ K of D1
onto Ω . Moreover, ΓΩ has the following properties:

(i) ΓΩ(idX , x) = idY for all x ∈ Ω;
(ii) ΓΩ( f , g(x))ΓΩ(g, x) = ΓΩ( f ◦ g, x) for all f ∈ KΩ , g ∈ KΩ ∩ Hol(Ω) and x ∈ Ω;

(iii) for each f ∈ KΩ and x ∈ Ω , the operator ΓΩ( f , x) is invertible. In particular, if h ∈ K is a biholomorphic mapping of D1 onto Ω ,
then h−1 ∈ KΩ and ΓΩ(h−1,h(x)) = (Γ (h, x))−1 .

Proof. Let h1, h2 be biholomorphic mappings of D1 onto Ω such that h1,h2, f ◦ h1, f ◦ h2 ∈ K. We have to show that

Γ
(

f ◦ h1,h−1(x)
)(

Γ
(
h1,h−1(x)

))−1 = Γ
(

f ◦ h2,h−1(x)
)(

Γ
(
h2,h−1(x)

))−1

1 1 2 2
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for all x ∈ Ω . Denote w = h−1
1 (x) and let φ := h−1

2 ◦ h1 be an automorphism of D1 which belongs to K by Definition 3.2.
Then the equality above can be rewritten as

Γ ( f ◦ h1, w)
(
Γ (h1, w)

)−1 = Γ
(

f ◦ h2, φ(w)
)(

Γ
(
h2, φ(w)

))−1
.

This relation holds by Definition 3.2 since h2 ◦ φ = h1.
Properties (i) and (iii) hold by Definition 3.3. To check property (ii), let consider the expression

ΓΩ

(
f , g(x)

)
ΓΩ(g, x)Γ

(
h,h−1(x)

) = Γ
(

f ◦ h,h−1(g(x)
))(

Γ
(
h,h−1(g(x)

)))−1
Γ

(
g ◦ h,h−1(x)

)
= Γ

(
f ◦ h,ψ(w)

)(
Γ

(
h,ψ(w)

))−1
Γ (h ◦ ψ, w),

where we denote ψ = h−1 ◦ g ◦ h and w = h−1(x). Since (g ◦ h)(D1) ⊂ h(D1), we conclude by Definition 3.2 (i) that ψ ∈ K̂.
Now, using condition (ii) of Definition 3.2, we obtain

ΓΩ

(
f , g(x)

)
ΓΩ(g, x)Γ

(
h,h−1(x)

) = Γ
(

f ◦ h,ψ(w)
)
Γ̂ (ψ, w) = Γ ( f ◦ h ◦ ψ, w) = Γ

(
f ◦ g ◦ h,h−1(x)

)
,

so (ii) follows. �
In what follows, all operator-valued mappings Γ̂ , Γ and ΓΩ are assumed to be appropriate.

4. Extension operators for semigroups

In this section we study extension operators for one-parameter continuous semigroups. It turns out that for a given
appropriate mapping, each semigroup on the unit ball of X admits a family of extensions.

Theorem 4.1. Let Γ̂ : K̂ ×D1 �→ L(Y ) be appropriate, i.e., conditions (i)–(iv) of Definition 3.1 are satisfied. Let S = {Ft}t�0 ⊂ Hol(D1)

be a semigroup on the ball D1 such that S ⊂ K̂. Let Σ = {Gt}t�0 be a semigroup on the ball D2 such that each its element Gs, s � 0,
satisfies ‖Gs(y)‖Y � ‖y‖Y for all y ∈ D2 and commutes with operators Γ̂ (Ft , x) for all t � 0 and x ∈ D1:

Γ̂ (Ft, x) ◦ Gs = Gs ◦ Γ̂ (Ft, x). (4.1)

Then the family S̃ = { F̃t}t�0 defined by

F̃t(x, y) = (
Ft(x), Γ̂ (Ft, x)Gt(y)

)
, (4.2)

forms a semigroup on D.

Remark 4. In the case when Σ is a uniformly continuous semigroup of proper contractions (hence, Gt = e−Bt for some
accretive operator B , see [19]), the commutativity condition (4.1) can be replaced by the following one: all operators Γ̂ (Ft , x),
t � 0, x ∈ D1 , commute with B. In particular, the last condition always holds if Γ̂ (Ft , x) is a scalar operator for each t � 0 and
x ∈ D1.

Proof. Since Gt is a contraction, it follows by Lemma 3.1 (a) that F̃t is a self-mapping of D for each t � 0. The continuity
of Γ̂ and condition (i) of Definition 3.1 imply that

lim
t→0+ F̃t(x, y) = lim

t→0+
(

Ft(x), Γ̂ (Ft, x)Gt(y)
) = (

x, Γ̂ (idX , x)G0(y)
) = (x, y).

Similarly to the proof of Lemma 3.1 (b), we have for all t, s > 0:

( F̃t ◦ F̃ s)(x, y) = F̃t
(

F̃ s(x, y)
) = F̃t

(
Fs(x), Γ̂ (Fs, x)Gs(y)

)
= (

Ft
(

Fs(x)
)
, Γ̂

(
Ft, Fs(x)

) ◦ Gt ◦ Γ̂ (Fs, x) ◦ Gs(y)
)

= (
Ft

(
Fs(x)

)
, Γ̂

(
Ft, Fs(x)

)
Γ̂ (Fs, x) ◦ Gt ◦ Gs(y)

)
= (

(Ft ◦ Fs)(x), Γ̂ (Ft ◦ Fs, x)Gt+s(y)
) = F̃t+s(x, y).

This calculation completes the proof. �
Corollary 4.1. Let an appropriate mapping Γ̂ and semigroups S ⊂ K̂ and Σ ⊂ Hol(D2) be as above. Denote by M ⊂ D1 the stationary
point set of S. Then the stationary point set M̃ of the extended semigroup S̃ satisfies the following inclusion:{

(x,0) ∈ D: x ∈ M
} ⊂ M̃ ⊂ {

(x, y) ∈ D: x ∈ M
}
.
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To find the semigroup generator, we require the Frechét differentiability of Γ̂ in f ∈ K̂, namely,

• at each point f ∈ K̂ the Frechét derivative (denoted by ∂Γ̂ ( f , x)) exists as a linear operator defined on span(K̂).

Just differentiating (4.2) at t = 0+ , we obtain the following assertion.

Corollary 4.2. Let an appropriate mapping Γ̂ and semigroups S ⊂ K̂ and Σ ⊂ Hol(D2) be as above, and let condition (•) be satisfied.
If S is generated by a mapping f ∈ Hol(D1, X), and Σ is generated by a mapping g ∈ Hol(D2, Y ), then the extended semigroup S̃
defined by (4.2) is generated as well. Its generator f̃ is defined by

f̃ (x, y) = (
f (x), ∂Γ̂ (idX , x)[ f ]y + g(y)

)
.

We proceed with the extension of conjugate semigroups.

Theorem 4.2. Let {Ft}t�0 ⊂ K̂ and {Ψt}t�0 ⊂ KΩ be conjugate semigroups acting on the unit ball D1 and a domain Ω ⊂ X, respec-
tively. Let h ∈ Hol(D1,Ω) ∩ K be their intertwining map. Then the mapping h̃ = Φ[h] defined by (3.3) is the intertwining map for the
semigroup S̃ = { F̃t}t�0 defined by (4.2) and the semigroup {Ψ̃t}t�0 acting on Φ[h](D) and defined by

Ψ̃t(z, w) = (
Ψt(z),ΓΩ(Ψt , z)G̃t(z, w)

)
, (4.3)

where

G̃t(z, w) = Γ
(
h,h−1(z)

)
Gt

(
ΓΩ

(
h−1, z

)
w

)
.

Note that if all mappings Gt , t � 0, commute with Γ (h, x) (for example, in the case described in Remark 4), then
G̃t(z, w) = Gt(w).

Proof. It has already be proven in Theorem 4.1 that the family S̃ = { F̃t}t�0 forms a semigroup on D. Therefore, the family
{Φ[h] ◦ F̃t ◦ (Φ[h])−1}t�0 forms a semigroup on Φ[h](D) which is conjugate to S̃ with the intertwining mapping Φ[h]. Let
us find its exact form. By Lemmas 3.2 and 3.3,(

Φ[h])−1
(z, w) = (

h−1(z),
(
Γ

(
h,h−1(z)

))−1
w

) = (
h−1(z),ΓΩ

(
h−1, z

)
w

)
.

Now, we substitute

F̃t ◦ (
Φ[h])−1

(z, w) = F̃t
(
h−1(z),ΓΩ

(
h−1, z

)
w

)
= (

Ft
(
h−1(z)

)
, Γ̂

(
Ft,h−1(z)

)
Gt

(
ΓΩ

(
h−1, z

)
w

))
.

By Definition 3.2, Γ̂ (Ft ,h−1(z)) = (Γ (h, Ft ◦ h−1(z)))−1Γ (h ◦ Ft ,h−1(z)). In addition, since h is the intertwining map for
{Ft}t�0 and {Ψt}t�0, we conclude that Ft ◦ h−1 = h−1 ◦ Ψt . Therefore,(

Φ[h] ◦ F̃t ◦ (
Φ[h])−1)

(z, w) = Φ[h](h−1(Ψt(z)
)
,
(
Γ

(
h,h−1 ◦ Ψt(z)

))−1
Γ

(
Ψt ◦ h,h−1(z)

)
Gt

(
ΓΩ

(
h−1, z

)
w

))
= (

Ψt(z),Γ
(
Ψt ◦ h,h−1(z)

)
Gt

(
ΓΩ

(
h−1, z

)
w

))
.

Finally, by Definition 3.3

Γ
(
Ψt ◦ h,h−1(z)

) = ΓΩ(Ψt, z)Γ
(
h,h−1(z)

)
.

Thus, (
Φ[h] ◦ F̃t ◦ (

Φ[h])−1)
(z, w) = (

Ψt(z),ΓΩ(Ψt , z)Γ
(
h,h−1(z)

)
Gt

(
ΓΩ

(
h−1, z

)
w

))
,

and the assertion follows. �
5. Starlikeness, spirallikeness and convexity in one direction

The main results of this section are Theorems 5.1 and 5.2 below. In these theorems, given a biholomorphic mapping h,
we examine geometric properties of its extension Φ[h] defined by formula (3.3): Φ[h](x, y) = (h(x),Γ (h, x)y).

Theorem 5.1. Let h ∈ Hol(D1, X) be an A-spirallike mapping. Suppose that e−At ◦ h ∈ K for all t � 0 and there is C ∈ L(Y ) such that

Γ
(
e−At ◦ h, x

) = e−CtΓ (h, x) for all t � 0 and x ∈ D1. (5.1)

Then the mapping Φ[h] is
( A 0

0 B+C

)
-spirallike for any accretive operator B ∈ L(Y ) which commutes with C and with Γ (h, x) for all

x ∈ D1 and such that the function Reλ is bounded away from zero on the spectrum of B + C.
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Fig. 1. The ‘spiral’ segment and the manifold inside Φ[h](D).

By definition, for each point of the image of a spirallike mapping there is a spiral curve which is contained in the image.
Our theorem asserts that the image of the extension of a spirallike mapping contains not only a one-dimensional spiral
curve but at least some manifold (of real codimension (2n − 1) when X = Cn). We illustrate this effect in Examples 4 and 5
below.

Theorem 5.2. Let a biholomorphic mapping h ∈ Hol(D1, X) be convex in the direction τ , where τ ∈ ∂D1 . Suppose that h + tτ ∈ K for
all t � 0 and there is C ∈ L(Y ) such that

Γ (h + tτ , x) = e−CtΓ (h, x) for all t � 0 and x ∈ D1. (5.2)

Then for each point (z, w) ∈ Φ[h](D), the set Φ[h](D) contains the curve{(
z + tτ , e−(B+C)t w

)
, t � 0

}
,

for any accretive operator B ∈ L(Y ) which commutes with C and with Γ (h, x) for all x ∈ D1 and such that the function Reλ is non-
negative on the spectrum of B + C. In particular, if Γ (h + tτ , x) = Γ (h, x) for all t � 0 and x ∈ D1 , then the mapping Φ[h] is convex
in the direction (τ ,0).

Example 4. Let X = Cn with an arbitrary norm. Similar to the examples in Section 3, we define the unit ball in the space
Z = X × Y = Cn × Y by

D = {
(x, y): ‖x‖2

X + ‖y‖r
Y < 1

}
, r � 1.

Consider the appropriate mapping Γ (h, x) = ( Jh(x))
2

r(n+1) idY (cf. Example 1 and Remark 3 above) and the corresponding
extension operator

Φ[h](x, y) = (
h(x),

(
Jh(x)

) 2
r(n+1) y

)
.

(1) Let A be a diagonal matrix, A = diag(μ1, . . . ,μn) with Reμ j > 0. Take any A-spirallike mapping h on the unit
ball D1 ⊂ X with respect to either an interior or a boundary point. Since Je−Ath(x) = e− tr A·t Jh(x), where tr A = μ1 +
· · · + μn is the trace of the matrix A, we get that the operator C in formula (5.1) is given by C = 2 tr A

r(n+1)
idY . According to

Theorem 5.1, the extended mapping Φ[h] is
( A 0

0 B+ 2 tr A
r(n+1)

idY

)
-spirallike for any accretive operator B ∈ L(Y ). To understand this

effect, consider the simplest case Y = C. In this situation all linear operators are just multiplication by scalars. We have that
for any point (z0, w0) ∈ Φ[h](D), the image Φ[h](D) contains the set{

(z, w): z = e−At z0, w = e−(λ+ tr A
r )t w0, t � 0, Re λ > 0

}
,

or, equivalently,{
(z, w): z = e−At z0, |w| < e− t Re(tr A)

r |w0|, t � 0
}
.

Schematically, this set is presented in Fig. 1.
(2) Let now τ ∈ ∂D1. Take a mapping h convex in the direction τ . Since Jh+tτ (x) = Jh(x), we conclude that the operator C

in formula (5.2) is zero. According to Theorem 5.2, for each point (z0, w0) ∈ Φ[h](D), the image Φ[h](D) contains the set{(
z0 + tτ , e−Bt w0

)
, t � 0, B ∈ L(Y ) is attractive

}
.
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Fig. 2. The cylindric set inside Φ[h](D).

Once again, we restrict our consideration to the case Y = C. Then for any point (z0, w0) ∈ Φ[h](D), the image Φ[h](D)

contains the set{
(z, w): z = z0 + tτ , |w| � |w0|, t � 0

}
(see Fig. 2).

Example 5. Let X be a complex Hilbert space. As above, we define the unit ball in the space Z = X × Y by

D = {
(x, y): ‖x‖2

X + ‖y‖r
Y < 1

}
, r � 1.

Let A ∈ L(X) be a bounded linear operator such that the function Reλ is bounded away from zero on the spectrum of A.
Suppose that a vector τ ∈ X , ‖τ‖X = 1, is an eigenvector of the adjoint operator A∗ , and λ̄ is the corresponding eigenvalue.

Consider the appropriate mapping Γ (h, x) = (
〈h(x),τ 〉
1−〈x,τ 〉 )

2/r idY (cf. Example 3 and Remark 3 above) and the corresponding
extension operator

Φ[h](x, y) =
(

h(x),

( 〈h(x), τ 〉
1 − 〈x, τ 〉

)2/r

y

)
.

Take an A-spirallike mapping h ∈ Hol(D1, X) with respect to a boundary point with limr→1− h(rτ ) = 0 and such that
〈h(x), τ 〉 �= 0 for all x ∈ D1. Clearly,〈

e−Ath(x), τ
〉 = 〈

h(x), e−A∗tτ
〉 = e−λt 〈h(x), τ

〉
.

Therefore, equality (5.1) holds for the operator C = 2λ
r idY . So, Theorem 5.1 asserts that the extended mapping Φ[h] is( A 0

0 B+ 2λ
r idY

)
-spirallike for any accretive operator B ∈ L(Y ).

In the particular case when X and Y are one-dimensional, we conclude that for any λ, Reλ > 0, the extension of each

λ-spirallike function with respect to a boundary point is
( λ 0

0 μ+ 2λ
r

)
-spirallike for any number μ with non-negative real part.

We see that if r < 2 then the extended mapping may be not λ-spirallike.

As previously mentioned in Section 2, the images of spirallike mappings and mappings convex in one direction are
invariant under action of a linear semigroup of proper contractions and a semigroup of shifts, respectively. More generally,
we can consider a semigroup of affine mappings. Thus, both Theorems 5.1 and 5.2 can be considered as consequences of
the following general assertion, where we denote by Σ = Σ(A, λ, τ ) = {Ψt}t�0 the semigroup of affine mappings defined
by

Ψt(z) = e−At z + λ

t∫
0

e−Asτ ds,

where A ∈ L(X), λ � 0 and τ ∈ X , ‖τ‖X = 1.

Theorem 5.3. Let Σ = Σ(A, λ, τ ) be a semigroup of affine mappings. Let h ∈ Hol(D1, X) be biholomorphic, and h(D1) be
Σ-invariant. Suppose that Ψt ◦ h ∈ K for all t � 0 and there is an operator C ∈ L(Y ) such that

Γ (Ψt ◦ h, x) = e−CtΓ (h, x) (5.3)

for all t � 0 and x ∈ D1 . Let {Gs}s�0 ⊂ Hol(D2) be a semigroup such that each its element Gs, s � 0, satisfies ‖Gs(y)‖Y � ‖y‖Y for
all y ∈ D2 and commutes with Γ (h, x) for all x ∈ D1 .
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Then for each point (z, w) ∈ Φ[h](D), the image Φ[h](D) contains the curve{(
Ψt(z), e−Ct Gt(w)

)
, t � 0

}
.

Proof. Since h(D1) is Σ-invariant, the family S = {Ft}t�0 with Ft(x) = h−1 ◦ Ψt ◦ h(x) forms a semigroup on D1. By our
assumption and condition (i) of Definition 3.2 we conclude that S ⊂ K̂. Obviously, h is the intertwining map for the semi-
groups S and Σ (acting on the domain Ω = h(D1)).

By Theorem 4.2, the image of the mapping Φ[h] contains together with each point (z, w) ∈ Φ[h](D) the whole semigroup
trajectory {Ψ̃t(z, w), t � 0}, where Ψ̃t is defined by (4.3). It follows by (5.3) that

ΓΩ(Ψt, z) = Γ
(
Ψt ◦ h,h−1(z)

)(
Γ

(
h,h−1(z)

))−1

= e−CtΓ
(
h,h−1(z)

)(
Γ

(
h,h−1(z)

))−1 = e−Ct .

In addition, G̃t(z, w) = Gt(w). Therefore,

Ψ̃t(z, w) = (
Ψt(z), e−Ct Gt(w)

)
,

and the assertion is proved. �
Proof of Theorem 5.1. Let h ∈ Hol(D1, X) be an A-spirallike mapping which satisfies (5.1). Let B ∈ L(Y ) be an accretive oper-
ator which commutes with C . Then the semigroup {e−Bs}s�0 consists of proper contractions with respect to the norm ‖ · ‖Y .
Since

Γ̂ (Ft, x) = (
Γ

(
h, Ft(x)

))−1
Γ (h ◦ Ft, x)

= (
Γ

(
h, Ft(x)

))−1
Γ

(
e−At ◦ h, x

)
= (

Γ
(
h, Ft(x)

))−1
e−CtΓ (h, x),

we conclude that if B commutes with C and with Γ (h, x) for all x ∈ D1, then B commutes with all operators Γ̂ (Ft , x), t � 0,
x ∈ D1. Thus, we can apply Theorem 5.3 with Ψt = e−At and Gs = e−Bs (see Remark 4). According to this theorem, for each
point (z, w) ∈ Φ[h](D) the image Φ[h](D) contains the curve{(

e−At z, e−Ct Gt(w)
)
, t � 0

} = {(
e−At z, e−(B+C)t w

)
, t � 0

}
.

So, by Definition 2.4 (see also Remark 1), the mapping Φ[h] is
( A 0

0 B+C

)
-spirallike. The proof is complete. �

Proof of Theorem 5.2. Let h ∈ Hol(D1, X) be a mapping convex in the direction τ which satisfies (5.2). Let B ∈ L(Y ) be an
accretive operator which commutes with C . Then the semigroup {e−Bs}s�0 consists of proper contractions with respect to
the norm ‖ · ‖Y . As in the proof of Theorem 5.1, we conclude that if B commutes with C and with Γ (h, x) for all x ∈ D1,
then B commutes with all operators Γ̂ (Ft , x), t � 0, x ∈ D1. Once again, we can apply Theorem 5.3 with Ψt(z) = z + tτ and
Gs(w) = e−Bs w . This theorem implies that for each point (z, w) ∈ Φ[h](D1) the image Φ[h](D1) contains the curve{(

z + tτ , e−Ct Gt(w)
)
, t � 0

} = {(
z + tτ , e−(B+C)t w

)
, t � 0

}
.

The proof is complete. �
6. Concluding remarks

6.1. Bloch type mappings

Proposition 6.1. Let Γ be an appropriate operator. Suppose that a mapping h ∈ K satisfies the following conditions:

(i) supx∈D1
‖h′(x)‖L(X)(1 − ‖x‖2

X ) < ∞;
(ii) supx∈D1

‖Γ (h, x)‖L(Y )(1 − ‖x‖2
X ) < ∞;

(iii) supx∈D1
‖ ∂

∂x Γ (h, x)‖L(X,L(Y ))p(‖x‖X )(1 − ‖x‖2
X ) < ∞.

Then sup(x,y)∈D‖Φ[h]′(x, y)‖L(Z)(1 − ‖(x, y)‖2) < ∞.

Proof. Differentiating Φ[h] we get

Φ[h]′(x, y)
[
(z, w)

] =
(

h′(x)z,
∂

Γ (h, x)[z]y + Γ (h, x)w

)
.

∂x
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The direct estimation leads us to∥∥Φ[h]′(x, y)
∥∥

L(Z)
= sup

(z,w)∈D

∥∥Φ[h]′(x, y)
[
(z, w)

]∥∥
� sup

(z,w)∈D

(∥∥h′(x)z
∥∥

X +
∥∥∥∥ ∂

∂x
Γ (h, x)[z]

∥∥∥∥
L(Y )

p
(‖x‖X

) + ∥∥Γ (h, x)
∥∥

L(Y )
‖w‖Y

)

�
∥∥h′(x)

∥∥
L(X)

+
∥∥∥∥ ∂

∂x
Γ (h, x)

∥∥∥∥
L(X,L(Y ))

p
(‖x‖X

) + ∥∥Γ (h, x)
∥∥

L(Y )
.

Therefore,

sup
(x,y)∈D

∥∥Φ[h]′(x, y)
∥∥

L(Z)

(
1 − ∥∥(x, y)

∥∥2) �
∥∥h′(x)

∥∥
L(X)

(
1 − ‖x‖2

X

) + ∥∥Γ (h, x)
∥∥

L(Y )

(
1 − ‖x‖2

X

)
+

∥∥∥∥ ∂

∂x
Γ (h, x)

∥∥∥∥
L(X,L(Y ))

p
(‖x‖X

)(
1 − ‖x‖2

X

)
,

and the assertion follows. �
6.2. Open questions

(a) It seems to be possible to repeat a similar construction for non-linear operators Γ . At the same time, we know of
no concrete example of an extension operator of the form (3.3) with non-linear Γ . The question could be to find such
examples.

(b) As a rule, the convexity property is more delicate. For instance, quoting [11], we note that it seems to be difficult to
perturb either the extension operator or the domain without losing the convexity-preserving property. The original Roper–
Suffridge operator (1.1) preserves the convexity of the image of the p-ball only if p = 2, i.e., of the Euclidean ball. On the
other hand, if f is convex, then the extended mapping defined by formula (1.2) is convex if and only if β = 1

2 (see, [9]). So,
it is natural to examine which conditions on Γ allow the extension operator (3.3) to preserve the convexity.

(c) Our scheme does not cover the extension operators introduced by Muir [15,16]. We ask: how to expand it to include
his operators.
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