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Abstract

Terminal-state tracking optimal control problems for linear parabolic equations are studied
paper. The control objectives are to track a desired terminal state and the control is of the dis
type. Explicit solution formulae for the optimal control problems are derived in the form of e
series. Pointwise-in-timeL2 norm estimates for the optimal solutions are obtained and approxi
controllability results are established. Exact controllability is shown when the target state va
on the boundary of the spatial domain. One-dimensional computational results are presente
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1. Introduction

In this paper we study terminal-state tracking optimal control problems for a l
second order parabolic partial differential equation (PDE) defined over the time in
[0, T ] ⊂ [0,∞) and on a bounded,C2 (or convex) spatial domainΩ ⊂ R

d , d = 1, 2 or 3.
Let a target functionW ∈ L2(Ω) and an initial conditionw ∈ L2(Ω) be given and le
f ∈ L2((0, T )×Ω) denote the distributed control. The optimal control problems we s
are to minimize the terminal-state tracking functional

J (u,f ) = T

2

∫
Ω

∣∣u(T ,x) − W(x)
∣∣2 dx + γ

2

T∫
0

∫
Ω

∣∣f (t,x)
∣∣2 dxdt (1.1)

or

K(u,f ) = T

2

∫
Ω

∣∣u(T ,x) − W(x)
∣∣2 dx + γ

2

T∫
0

∫
Ω

∣∣f (t,x) − F(t,x)
∣∣2 dxdt (1.2)

(whereγ is a positive constant andF is a given reference function) subject to the parab
PDE

ut − div
[
A(x)∇u

] = f, (t,x) ∈ (0, T ) × Ω, (1.3)

with the homogeneous boundary condition

u = 0, (t,x) ∈ (0, T ) × ∂Ω, (1.4)

and the initial condition

u(0,x) = w(x), x ∈ Ω. (1.5)

In (1.3), A(x) is a symmetric matrix-valued,C1(Ω) function that is uniformly positive
definite.

Similar optimal control problems have been studied in the literature from differen
pects or in different settings. For instance, in [15] the existence and regularity of an o
solution was studied; in [2] the connection between optimal solutions and controlla
was examined, and in [22] eigen series solutions were studied wherein the controlf was
assumed to belong to a bounded set inL2((0, T ) × Ω) (due to the boundedness constra
the tracking functional of [22] did not contain the term involvingf ). Both optimal control
problems and controllability problems are studied in this paper. Our main achieve
concerning optimal control problems include: the introduction of anF in (1.2) that re-
sults in an optimal solution that approaches the target more effectively (even fort � T

and moderate parameterγ ); the derivation and justification of explicit eigen series solut
formulae for optimal solutions; pointwise-in-time estimates for optimal solutions an
approximately controllability properties for the optimal solutions. A distinctive featur
this work is that the desired terminal-stateW and the admissible stateu are allowed to
have nonmatching boundary conditions, though the reference functionF need be suitably
chosen in the formulation of cost functional (1.2) (the details about the choice ofF will be
revealed in Section 2).
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Terminal-state tracking problems are optimal control problems in their own right.
are also closely related to approximate and exact controllability problems which were
ied in, among others, [1–5,7–14,17–20]. As mentioned in the foregoing the boundary
for the target stateW may be nonzero so that the parabolic problem (1.3)–(1.5) in ge
is not exactly controllable when the solution for (1.3)–(1.5) is defined in the standard
sense (see [6]). Contributions of this paper on controllability consist of the proof of ap
imate controllability when the target state has an inhomogeneous boundary value a
derivation of explicit series solution formulae for the exact controllability problem w
the target state vanishes on the boundary.

In Section 2 we formulate the optimal control problems and controllability prob
in an appropriate mathematical framework. In Section 3 we review and establish c
results concerning eigen functions expansions for both spatial and temporal–spatia
tions. In Section 4 we derive explicit eigen series solution formulae for the optimal co
problems. In Section 5 we derive pointwise-in-time estimates for the optimal solu
and show that as the parameterγ → 0, the optimal solutions at the terminal timeT ap-
proach the target stateW . In Section 6 we justify eigen series solution formulae for
exact controllability problem by assuming homogeneous boundary values for the
state. In Section 7 we present some one-dimensional computational results that ill
the terminal-state tracking properties for the solutions expressed by the series form
Section 4.

2. Formulation of optimal control and controllability problems

Throughout we freely make use of standard Sobolev space notationsHm(Ω) and
H 1

0 (Ω). We denote the norm for Sobolev spaceHm(Ω) by ‖ · ‖m. Note thatH 0(Ω) =
L2(Ω) so that‖ · ‖0 is theL2(Ω) norm. We will need the temporal–spatial function sp

H 2,1((0, T ) × Ω
) = {

v ∈ L2(0, T ;H 2(Ω)
)
: vt ∈ L2(0, T ;L2(Ω)

)}
.

A temporal–spatial functionv(t,x) often will be simply written asv(t).
Functional (1.1) can be written as

J (u,f ) = T

2

∥∥u(T ) − W
∥∥2

0 + γ

2

T∫
0

∥∥f (t)
∥∥2

0 dt. (2.1)

Regarding functional (1.2) the idea for constructing the reference functionF is that we
first choose a reference functionU(t,x) satisfyingU(T ,x) = W (i.e., U is a given path
that reachesW at timeT ) and then set

F = Ut − div
[
A(x)∇U

]
in [0, T ] × Ω.

However,W (and thusU ) in general does not vanish on the boundary. The series me
to be studied in this paper will involve eigen series expressions for reference functiF

andU . The validity of these expressions requireU to vanish on the boundary. To resol
this difficulty we choose the reference functionF = F (γ ) (which is dependent ofγ ) as fol-
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lows. We first choose a one-parameter set of functions{W(γ ): γ > 0} ⊂ H 2(Ω) ∩ H 1
0 (Ω)

such that∥∥W(γ ) − W
∥∥

0 → 0 asγ → 0. (2.2)

(If W ∈ H 2(Ω)∩H 1
0 (Ω), then we may simply chooseW(γ ) = W that is independent ofγ .

In general,W has an inhomogeneous boundary condition andW(γ ) approximatesW in the
L2(Ω) sense.) Next, for each givenγ > 0, we choose a functionV (γ )(t,x) that satisfies

V (γ ) ∈ L2(0, T ;H 2(Ω) ∩ H 1
0 (Ω)

)
, V

(γ )
t ∈ L2(0, T ;L2(Ω)

)
,

V (γ )(T ) = W(γ ) in Ω; (2.3)

in other words,V (γ ) is an arbitrarily chosen smooth path that reachesW(γ ) at timeT . By
virtue of (2.2)–(2.3) we have∥∥V (γ )(T ) − W

∥∥
0 → 0 asγ → 0. (2.4)

We also assume∥∥V (γ )(0)
∥∥

0 � C whereC > 0 is a constant independent ofγ . (2.5)

The choices of aV (γ ) that satisfies (2.3)–(2.5) are certainly nonvacuous, e.g., the st
state functionV (γ )(t, ·) = W(γ ) is a particular and convenient choice. Here we allow
more general choices of such a pathV (γ )(t, ·) than the steady-state one. The refere
functionF is now defined by

F = F (γ ) ≡ V
(γ )
t − div

[
A(x)∇V (γ )

]
in (0, T ) × Ω. (2.6)

Functional (1.2) may be written

K(u,f ) = T

2

∥∥u(T ) − W
∥∥2

0 + γ

2

T∫
0

∥∥f (t) − F(t)
∥∥2

0 dt

= T

2

∥∥u(T ) − W
∥∥2

0 + γ

2

T∫
0

∥∥∥∥f (t) − d

dt
V (γ )(t) − div

[
A(x)∇V (γ )(t)

]∥∥∥∥2

0
dt.

(2.7)

The solution to the constraint equations (1.3)–(1.5) is understood in the following
sense.

Definition 2.1. Let f ∈ L2((0, T );L2(Ω)) andw ∈ L2(Ω) be given.u is said to be a so
lution of (1.3)–(1.5) ifu ∈ L2((0, T );H 1

0 (Ω)), ut ∈ L2((0, T );H−1(Ω)), andu satisfies〈
ut (t), φ

〉 + ∫
Ω

[
A(x)∇u(t)

] · ∇φ dx = 〈
f (t),φ

〉 ∀φ ∈ H 1
0 (Ω), a.e.t ∈ (0, T ),

u(0) = w in Ω, (2.8)

where〈·,·〉 denotes the duality pairing betweenH−1(Ω) andH 1
0 (Ω).
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Remark. A weak solution in the sense of Definition 2.1 belongs toC([0, T ];L2(Ω)),
see [6].

An admissible element for the optimal control problem is a pair(u,f ) that satisfies the
initial boundary value problem (2.8). The precise definition is given as follow.

Definition 2.2. Let w ∈ L2(Ω) be given. A pair(u,f ) is said to be anadmissible ele-
ment if u ∈ L2((0, T );H 1

0 (Ω)), ut ∈ L2((0, T );H−1(Ω)), f ∈ L2((0, T );L2(Ω)), and
(u,f ) satisfies Eq. (2.8). The set of all admissible elements is denoted byVad((0, T ),w)

or simplyVad.

The optimal control problems we study can be concisely stated as:

(OP1) seek a pair(û, f̂ ) ∈ Vad such thatJ (û, f̂ ) = inf(u,f )∈VadJ (u,f ) where the func-
tionalJ is defined by (2.1);

and

(OP2) seek a pair(û, f̂ ) ∈ Vad such thatK(û, f̂ ) = inf(u,f )∈VadK(u,f ) where the func-
tionalK is defined by (2.7).

The existence and uniqueness of optimal solutions for (OP1) and (OP2) follow
classical optimal control theories (see, e.g., [15]):

Theorem 2.3. Assume thatw ∈ L2(Ω) and W ∈ L2(Ω). Then there exists a uniqu
solution (û, f̂ ) ∈ Vad to (OP1) and to (OP2). If, in addition, w ∈ H 1

0 (Ω), then û ∈
H 2,1((0, T ) × Ω).

The approximate and exact controllability problems are formulated as follows:

(AP-CON) seek a one-parameter set{(uε, fε): ε > 0} ⊂ Vad such that

lim
ε→0

∥∥uε(T ) − W
∥∥

0 = 0

and

(EX-CON) seek a pair(u,f ) ∈ Vad such that

u(T ) = W in Ω.

Of course, exact controllability, whenever it holds, implies approximate controllab
In particular, ifw andW belong toH 1

0 (Ω), then the exact controllability holds.

Theorem 2.4. Assume thatw ∈ H 1
0 (Ω). Then(EX-CON) has a solution if and only i

W ∈ H 1(Ω).
0
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Proof. If (EX-CON) has a solution(u,f ), then regularity for parabolic PDEs [6, The
rem 5, p. 360; Theorem 4, p. 288] impliesu ∈ H 2,1(Q) andu ∈ C([0, T ];H 1(Ω)) so that
W = u(T ) ∈ H 1(Ω). Sinceu = 0 on(0, T ) × ∂Ω , we have that

‖W‖1/2,∂Ω = lim
t→T −

∥∥u(T ) − u(t)
∥∥

1/2,∂Ω
� C lim

t→T −
∥∥u(T ) − u(t)

∥∥
1 = 0,

where‖ · ‖1/2,∂Ω denotes the norm for the Sobolev spaceH 1/2(∂Ω). Thus,W ∈ H 1
0 (Ω).

Conversely, assume thatW ∈ H 1
0 (Ω). Let ũ be a function satisfying

ũ ∈ H 2,1((0, T ) × Ω
)
, ũ = 0 on(0, T ) × ∂Ω, ũ|t=0 = w ∈ H 1

0 (Ω).

The existence of such ãu is guaranteed by the trace theorem [16, vol. II, Theorem
p. 18] or by the existence and regularity results (see [6]) for the parabolic problem

ut − �u = 0 in (0, T ) × Ω, u = 0 in (0, T ) × ∂Ω, u|t=0 = w.

Likewise, there exists ã̃u satisfying

˜̃u ∈ H 2,1((0, T ) × Ω
)
, ˜̃u = 0 on(0, T ) × ∂Ω, ˜̃u|t=T = W ∈ H 1

0 (Ω).

We choose a functionθ = θ(t) ∈ C∞[0, T ] such that

θ(t) = 1 ∀t ∈ [0, T /3] and θ(t) = 0 ∀t ∈ [2T/3, T ],
and setu = θ(t)ũ + [1− θ(t)] ˜̃u in (0, T ) × Ω . Clearly,

u ∈ H 2,1((0, T ) × Ω
)
, u = 0 on(0, T ) × ∂Ω,

u|t=0 = w, u|t=T = W.

By definingf ≡ ut − div[A(x)∇u] ∈ L2((0, T ) × Ω) we see that(u,f ) solves the exac
controllability problem (EX-CON). �
Remark. The exact controllability result of [2, Theorem 3.7] was stated imprecisely.
proof of that theorem, in fact, required the target state to have the homogeneous bo
condition.

3. Results concerning eigen function expansions

The main objective of this paper is to find explicit solution formulae, expressed in
of eigen-function expansions, for optimal control problems (OP1) and (OP2) and fo
trollability problem (EX-CON). In this section we will review some properties for the e
pairs and eigen function expansions.

We recall the following lemma (see [6, Theorem 1, p. 335]).

Lemma 3.1. The setΛ of all eigen values for the elliptic operator−div(A(x)∇) may be
writtenΛ = {λi}∞i=1 ⊂ R where

0< λ1 � λ2 � λ3 � · · · and λi → ∞ asi → ∞.
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Furthermore, there exists a set of corresponding eigen functions{ei}∞i=1 ⊂ H 2(Ω) ∩
H 1

0 (Ω) which forms an orthonormal basis ofL2(Ω) (with respect to theL2(Ω) inner
product).

In the sequel we let{(λi, ei)}∞i=1 denote a set of eigen pairs as stated in Lemma 3.1

Lemma 3.2. The set{ei/
√

λi}∞i=1 forms an orthonormal basis ofH 1
0 (Ω) with respect to

the inner product

(u, v) �→ B[u,v] ≡
∫
Ω

A(x)∇u · ∇v dx ∀u,v ∈ H 1
0 (Ω). (3.1)

The set{ei/λi}∞i=1 forms an orthonormal basis ofH 2(Ω) ∩ H 1
0 (Ω) with respect to the

inner product

(u, v) �→ B̃[u,v] ≡
∫
Ω

div
[
A(x)∇u

]
div

[
A(x)∇v

]
dx ∀u,v ∈ H 2(Ω) ∩ H 1

0 (Ω).

(3.2)

Proof. The first statement of this lemma is proved in [6, Theorem 1, p. 335; step 3, p.
The proof for the second statement is a verbatim repetition of [6, Theorem 1, p. 335;
p. 337] with the inner productB[·,·] replaced byB̃[·,·] (defined in (3.2)). �

Based on Lemmas 3.1 and 3.2 we may establish the following characterizatio
H 1

0 (Ω).

Lemma 3.3. Assumey ∈ L2(Ω) andy = ∑∞
i=1 yiei in L2(Ω). Then the following state

ments are equivalent:

(i) y ∈ H 1
0 (Ω);

(ii) y = ∑∞
i=1 yiei in H 1

0 (Ω);
(iii)

∑∞
i=1 λi |yi |2 < ∞.

Proof. We first prove (i) implies (ii). But this follows from [6, Theorem 1, p. 335; step
and 3, p. 337].

We next prove (ii) implies (iii). Assumey = ∑∞
i=1 yiei in H 1

0 (Ω). By Lemma 3.2 we
may writey = ∑∞

i=1 ȳiei/
√

λi in H 1
0 (Ω) and

∑∞
i=1 |ȳi |2 = B[y, y] < ∞. Comparingy =∑∞

i=1 ȳiei/
√

λi andy = ∑∞
i=1 yiei in L2(Ω) we obtainȳi = √

λiyi so that
∑∞

i=1 λi |yi |2 =∑∞
i=1 |ȳi |2 < ∞.
Finally, we prove (iii) implies (i). Assume that

∑∞
i=1 λi |yi |2 < ∞. We note that the

definition of the eigen pairs implies

B[ei, v] = λi

∫
eiv dx ∀v ∈ H 1

0 (Ω)
Ω
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so thatB[ei, ej ] = 0 if j �= i andB[ei, ei] = λi . Thus,

B

[
n+p∑
i=n

yiei,

n+p∑
j=n

yj ej

]
=

n+p∑
i=n

λi |yi |2

so that{∑n
i=1 yiei}∞n=1 ⊂ H 1

0 (Ω) is a Cauchy sequence with respect to theH 1
0 (Ω) norm

induced by theB[·,·] inner product. Hence
∑∞

i=1 yiei = ȳ in H 1
0 (Ω) for someȳ ∈ H 1

0 (Ω).
But y = ∑∞

i=1 yiei in L2(Ω) and we concludey = ȳ ∈ H 1
0 (Ω). �

Similar arguments yield the following characterizations ofH 2(Ω) ∩ H 1
0 (Ω).

Lemma 3.4. Assumey ∈ L2(Ω) andy = ∑∞
i=1 yiei in L2(Ω). Then the following state

ments are equivalent:

(i) y ∈ H 2(Ω) ∩ H 1
0 (Ω);

(ii) y = ∑∞
i=1 yiei in H 2(Ω) ∩ H 1

0 (Ω);
(iii)

∑∞
i=1 |λi |2|yi |2 < ∞.

The main results of this section are the two theorems below concerning term-by
differentiations of eigen series for functions inH 2,1((0, T )×Ω)∩C([0, T ];H 1

0 (Ω)). We
first quote a lemma (see [21, Lemma 1.1, p. 169] and [6, Theorem 2, p. 286]):

Lemma 3.5. Assumeu ∈ L2(0, T ;L2(Ω)) andut ∈ L2(0, T ;L2(Ω)). Then

−
T∫

0

φ′(t)
∫
Ω

u(t)v dxdt =
T∫

0

φ(t)

∫
Ω

ut (t)v dxdt ∀φ ∈ C∞
0 (0, T ), ∀v ∈ L2(Ω).

Theorem 3.6. Assume thatu ∈ H 2,1((0, T ) × Ω), u = 0 on (0, T ) × ∂Ω and

u(t) =
∞∑
i=1

ui(t)ei in L2(Ω), a.e.t ∈ (0, T ).

Then

∞∑
i=1

T∫
0

(∣∣u′
i (t)

∣∣2 + |λi |2
∣∣ui(t)

∣∣2)dt = ‖ut‖2
L2(0,T ;L2(Ω))

+
T∫

0

B̃[u,u]dt < ∞, (3.3)

∞∑
i=1

|λi |
∣∣ui(0)

∣∣2 dt < ∞, (3.4)

ut (t) =
∞∑

u′
i (t)ei in L2(Ω), a.e.t ∈ (0, T ) (3.5)
i=1
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−div
[
A(x)∇u(t)

] =
∞∑
i=1

λiui(t)ei in L2(Ω), a.e.t. (3.6)

Proof. We first note the continuous embeddingH 2,1((0, T ) × Ω) ↪→ C([0, T ];H 1(Ω))

and the boundary conditionu = 0 on (0, T ) × ∂Ω imply that u(t) ∈ H 1
0 (Ω) for every

t ∈ [0, T ]. By Lemma 3.3 we have

u(t) =
∞∑
i=1

ui(t)ei in H 1
0 (Ω),∀t ∈ [0, T ].

In particular, sinceu(0) ∈ H 1
0 (Ω), Lemma 3.3 yields (3.4).

Using theL2(Ω) orthonormality of{ei} we have

‖u‖2
L2(0,T ;L2(Ω))

=
T∫

0

∥∥u(t)
∥∥2

0 dt =
T∫

0

∞∑
i=1

∣∣ui(t)
∣∣2 dt �

T∫
0

∣∣uj (t)
∣∣2 dt ∀j

so that eachuj ∈ L2(0, T ). Sinceut ∈ L2(0, T ;L2(Ω)), we may write

ut (t) =
∞∑
i=1

vi(t)ei in L2(Ω), a.e.t

and

‖ut‖2
L2(0,T ;L2(Ω))

=
T∫

0

∥∥ut (t)
∥∥2

0 dt =
T∫

0

∞∑
i=1

∣∣vi(t)
∣∣2 dt �

T∫
0

∣∣vj (t)
∣∣2 dt ∀j (3.7)

so that eachvj ∈ L2(0, T ). Using Lemma 3.5 we have that

−
T∫

0

φ′(t)
∫
Ω

u(t)ej dxdt =
T∫

0

φ(t)

∫
Ω

ut (t)ej dxdt

∀φ ∈ C∞
0 (0, T ), j = 1,2, . . . .

Substituting series expressions foru andut into the last equation and using theL2(Ω)

orthonormality of{ei} we obtain

−
T∫

0

φ′(t)uj (t) dt =
T∫

0

φ(t)vj (t) dt ∀φ ∈ C∞
0 (0, T ), j = 1,2, . . . ,

so thatvj = u′
j for j = 1,2, . . . . This proves (3.5).

Sinceu(t) ∈ H 2(Ω) ∩ H 1
0 (Ω) for almost everyt , Lemma 3.4 implies that

u(t) =
∞∑

ui(t)ei in H 2(Ω) ∩ H 1
0 (Ω), a.e.t
i=1
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arrive

-

so that

−div
[
A(x)∇u(t)

] =
∞∑
i=1

−div
[
A(x)∇ui(t)ei

] =
∞∑
i=1

λiui(t)ei in L2(Ω), a.e.t,

i.e., (3.6) holds.
From (3.6) we obtain

T∫
0

B̃[u,u]dt =
T∫

0

∥∥div
[
A(x)∇u(t)

]∥∥2
0 dt =

T∫
0

∞∑
i=1

|λi |2
∣∣ui(t)

∣∣2 dt. (3.8)

Adding up (3.7) and (3.8) and applying the Monotone Convergence theorem we
at (3.3). �
Theorem 3.7. Assume that the set of functions{ui(t)}∞i=1 ⊂ H 1(0, T ) satisfies

∞∑
i=1

T∫
0

(∣∣u′
i (t)

∣∣2 + |λi |2
∣∣ui(t)

∣∣2)dt < ∞ (3.9)

and
∞∑
i=1

|λi |
∣∣ui(0)

∣∣2 dt < ∞. (3.10)

Then the functionu formally defined byu(t) = ∑∞
i=1 ui(t)ei satisfies

u ∈ H 2,1((0, T ) × Ω
)
, u = 0 on (0, T ) × ∂Ω,

ut (t) =
∞∑
i=1

u′
i (t)ei in L2(Ω), a.e.t, (3.11)

and

−div
[
A(x)∇u(t)

] =
∞∑
i=1

λiui(t)ei in L2(Ω), a.e.t. (3.12)

Proof. We note that

∞∑
i=1

T∫
0

∣∣ui(t)
∣∣2 dt � 1

|λ1|2
∞∑
i=1

T∫
0

|λi |2
∣∣ui(t)

∣∣2 dt < ∞

so thatu(t) = ∑∞
i=1 ui(t)ei in L2(Ω) for almost everyt ∈ (0, T ).

By assumption (3.9) we are justified to definef ∈ L2((0, T );L2(Ω)) as the series func
tion

f =
∞∑

fi(t)ei ≡
∞∑[

u′
i (t) + λiui(t)

]
ei in L2(Ω), a.e.t ∈ (0, T ).
i=1 i=1
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as a
.)
It is well known thatH 1(0, T ) is continuously embedded intoC[0, T ] so thatui(0)

is well defined for eachi. Assumption (3.10) and Lemma 3.3 imply thatu|t=0 ∈ H 1
0 (Ω)

whereu|t=0 = ∑∞
i=1 ui(0)ei .

Let ũ be the solution for the parabolic problem

ũt − div
[
A(x)∇ũ

] = f in (0, T ) × Ω, ũ = 0 on(0, T ) × ∂Ω,

ũ|t=0 = u|t=0 (3.13)

in the sense of Definition 2.1. Regularity for parabolic PDEs impliesũ ∈ H 2,1((0, T )×Ω).
We writeũ = ∑∞

i=1 ũi (t)ei in L2(Ω) for almost everyt ∈ (0, T ). Employing Theorem 3.6
we have

ũt (t) =
∞∑
i=1

ũ′
i (t)ei in L2(Ω), a.e.t (3.14)

and

−div
[
A(x)∇ũ(t)

] =
∞∑
i=1

λiũi(t)ei in L2(Ω), a.e.t. (3.15)

Thus, we may write (3.13) in the series form{∑∞
i=1

[
ũ′

i (t) + λiũi(t)
]
ei = ∑∞

i=1 fi(t)ei in L2(Ω), a.e.t,∑∞
i=1 ũi (0) = ∑∞

i=1 ui(0)ei in L2(Ω)

so that for eachi,

ũi (t) + λiũi(t) = fi(t) in (0, T ), ũi(0) = ui(0). (3.16)

From the definition offi we see that eachui satisfies the same equations asũi . The unique-
ness of the solution for the initial value problem (3.16) impliesui ≡ ũi in (0, T ) for eachi
so thatu(t) = ũ(t) in L2(Ω) for everyt . Hence,u = ũ ∈ H 2,1((0, T ) × Ω) andu = ũ = 0
on (0, T ) × ∂Ω). Also, Eqs. (3.14) and (3.15) yield (3.11) and (3.12).�

4. Solutions of the optimal control problems

We express all functions involved asL2(Ω)-convergent series of{ei}:

u(t,x) =
∞∑
i=1

ui(t)ei(x), f (t,x) =
∞∑
i=1

fi(t)ei(x), w(x) =
∞∑
i=1

wiei(x),

W(x) =
∞∑
i=1

Wiei(x), V (γ )(t,x) =
∞∑
i=1

V
(γ )

i (t)ei(x).

We work out below an explicit formula for the optimal solution of (OP1) expressed
series of eigen functions{ei}. (For the existence of optimal solutions, see Theorem 2.3
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Theorem 4.1. Assumew ∈ H 1
0 (Ω) and W ∈ L2(Ω). Let (û, f̂ ) ∈ H 2,1((0, T ) × Ω) ×

L2((0, T ) × Ω) be the solution of(OP1). Then

û(t,x) =
∞∑
i=1

ûi (t)ei(x), (4.1)

where

ûi (t) = wi

(
e−λi t − T e−λiT (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

)
+ Wi

T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )
. (4.2)

Proof. Let (u,f ) be an arbitrary admissible element, thenu ∈ H 2,1((0, T ) × Ω) ∩
C([0, T ];H 1

0 (Ω)). We may writeu = ∑∞
i=1 ui(t)ei andf = ∑∞

i=1 fi(t)ei in L2(Ω) for
almost everyt . Moreover, Theorem 3.6 implies

ut =
∞∑
i=1

u′
i (t)ei in L2(Ω), a.e.t

and

−div
[
A(x)∇u

] =
∞∑
i=1

λiui(t)ei in L2(Ω), a.e.t.

Thus we may rewrite the constraint equations (2.8) as
∫
Ω

(∑∞
j=1

[
u′

j (t) + λjuj (t)
]
ej

)
ei dx = ∫

Ω

(∑∞
j=1 fj (t)ej

)
ei dx, i = 1,2, . . . ,∫

Ω

(∑∞
j=1 uj (0)ej

)
ei = ∫

Ω

(∑∞
j=1 wjej

)
ei dx, i = 1,2, . . . ,

so that for eachi,

u′
i (t) + λiui(t) = fi(t) in (0, T ), ui(0) = wi. (4.3)

The functionalJ also can be written in the series form

J (u,f ) = T

2

∞∑
i=1

∣∣ui(T ) − Wi

∣∣2 + γ

2

∞∑
i=1

T∫
0

∣∣fi(t)
∣∣2 dt. (4.4)

The optimal control problem (OP1) is recast into:

(ÕP1) minimize functional (4.4) subject to the constraints (4.3) for alli = 1,2, . . . .

Since the constraint equations are fully uncoupled for eachi, the optimal control prob
lem ( ˜OP1) is equivalent to:

(ÕP1i ) for eachi = 1,2, . . . , minimizeJi (ui, fi) subject to the constraints (4.3),
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where the functionalJi (ui, fi) is defined by

Ji (ui, fi) = T

2

∣∣ui(T ) − Wi

∣∣2 + γ

2

T∫
0

∣∣fi(t)
∣∣2 dt.

The pair(û, f̂ ) = (
∑∞

i=1 ûi (t)ei(x),
∑∞

i=1 f̂i (t)ei(x)) is the solution for (OP1) if and onl
if (ûi , f̂i ) is the solution for(ÕP1i ) for everyi.

To solve the constrained minimization problem (˜OP1i ) we introduce a Lagrange mult
plier ξi and form the Lagrangian

Li (ui, fi, ξi) = T

2

∣∣ui(T ) − Wi

∣∣2 − ui(T )ξi(T ) + wiξi(0)

+
T∫

0

(
γ

2

∣∣fi(t)
∣∣2 + ui(t)ξ

′
i (t) − λiui(t)ξi(t) + fi(t)ξi(t)

)
dt.

By taking variations of the Lagrangian with respect toξi , ui andfi , respectively, we obtain
an optimality system which consists of (4.3),

ξ ′
i (t) − λiξi(t) = 0 in (0, T ), ξi(T ) = T

(
ui(T ) − Wi

)
(4.5)

and

ξi(t) = −γfi(t) . (4.6)

We proceed to solve for(ûi , f̂i) from the optimality system formed by (4.3), (4.5) and (4.
By eliminatingξi from (4.5)–(4.6) we have

f ′
i (t) − λifi(t) = 0 in (0, T ), fi(T ) = −T

γ

(
ui(T ) − Wi

)
. (4.7)

Combining (4.7) and (4.3) we arrive at a second order ordinary differential equation
initial and terminal conditions:

u′′
i (t) − λ2

i ui(t) = 0 in (0, T ),

ui(0) = wi,

u′
i (T ) + λiui(T ) = −T

γ

(
ui(T ) − Wi

)
.

(4.8)

The general solution to this differential equation is

ui(t) = C1e
−λi t + C2e

λi t .

The initial and terminal conditions yield:{
C1 + C2 = wi,
T
γ
e−λiT C1 + (

2λie
λiT + T

γ
eλiT

)
C2 = T

γ
Wi.

Solving forC1 andC2 and then plugging them into the general solution we find the form
for the solutionûi to (4.8) and that formula is precisely (4.2). Hence, the solution to (O
is expressed by (4.1)–(4.2).�

Similarly, we may derive an explicit formula for the optimal solution of (OP2).
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Theorem 4.2. Assume thatw ∈ H 1
0 (Ω), W ∈ L2(Ω), W(γ ) ∈ H 2(Ω) ∩ H 1

0 (Ω), V (γ ) sat-

isfies (2.3) andF is defined by(2.6). Let (û, f̂ ) ∈ H 2,1((0, T ) × Ω) × L2((0, T ) × Ω) be
the solution of(OP2). Then

û(t,x) =
∞∑
i=1

ûi (t)ei(x), (4.9)

where

ûi (t) = V
(γ )

i (t) + [
wi − V

(γ )

i (0)
](

e−λi t − T e−λiT (eλi t − e−λi t )

2λiγ eλiT + T eλiT − T e−λiT

)
+ [

Wi − V
(γ )

i (T )
] T (eλi t − e−λi t )

2λiγ eλiT + T eλiT − T e−λiT
. (4.10)

Proof. As in the proof of Theorem 4.1 we may write the constraint equations as

u′
i (t) + λiui(t) = fi(t) in (0, T ), ui(0) = wi (4.11)

for i = 1,2, . . . .

To simplify the notation we drop the superscript(·)(γ ) and writeV in place ofV (γ ).
SinceV ∈ H 2,1((0, T ) × Ω), we are justified by Theorem 3.6 to express (2.6) in the se
form

∞∑
i=1

Fi(t)ei = F(t,x) = Vt − div
[
A(x)∇V

] =
∞∑
i=1

[
V ′

i (t) + λiVi(t)

]
ei

in L2(Ω), a.e.t, (4.12)

so that

Fi(t) = V ′
i (t) + λiVi(t) a.e.t.

The functionalK also can be written in the series form

K(u,f ) = T

2

∞∑
i=1

∣∣ui(T ) − Wi

∣∣2 + γ

2

∞∑
i=1

T∫
0

∣∣fi(t) − Fi(t)
∣∣2 dt

= T

2

∞∑
i=1

∣∣ui(T ) − Wi

∣∣2 + γ

2

∞∑
i=1

T∫
0

∣∣fi(t) − V ′
i (t) − λiVi(t)

∣∣2 dt. (4.13)

The optimal control problem (OP2) is recast into:

(ÕP2) minimize functional (4.13) subject to the constraints (4.11) for alli = 1,2, . . . .

Since the constraint equations are fully uncoupled for eachi, the optimal control prob
lem (ÕP2) is equivalent to:

(ÕP2i ) for eachi = 1,2, . . . , minimizeKi (ui, fi) subject to the constraints (4.11),
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where the functionalKi (ui, fi) is defined by

Ki (ui, fi) = T

2

∣∣ui(T ) − Wi

∣∣2 + γ

2

T∫
0

∣∣fi(t) − V ′
i (t) − λiVi(t)

∣∣2 dt.

The pair(û, f̂ ) = (
∑∞

i=1 ûi (t)ei(x),
∑∞

i=1 f̂i (t)ei(x)) is the solution for (OP2) if and onl
if (ûi , f̂i ) is the solution for(ÕP2i ) for everyi.

To solve the constrained minimization problem (̃OP2i ) we introduce a Lagrange mult
plier ξi and form the Lagrangian

Li (ui, fi, ξi)

= T

2

∣∣ui(T ) − Wi

∣∣2 − ui(T )ξi(T ) + wiξi(0)

+
T∫

0

(
γ

2

∣∣fi(t) − V ′
i (t) − λiVi(t)

∣∣2 + ui(t)ξ
′
i (t) − λiui(t)ξi(t) + fi(t)ξi(t)

)
dt.

By taking variations of the Lagrangian with respect toξi , ui andfi , respectively, we obtain
an optimality system which consists of (4.11),

ξ ′
i (t) − λiξi(t) = 0 in (0, T ), ξi(T ) = T

(
ui(T ) − Wi

)
(4.14)

and

ξi(t) = −γ
[
fi(t) − V ′

i (t) − λiVi(t)
]

in (0, T ). (4.15)

We proceed to solve for(ûi , f̂i ) from the optimality system formed by (4.11), (4.1
and (4.15). By eliminatingξi from (4.14)–(4.15) we have{

f ′
i (t) − λifi(t) = V ′′

i (t) − λ2
i Vi(t) in (0, T ),

fi(T ) = V ′
i (T ) + λiVi(T ) − T

γ

(
ui(T ) − Wi

)
.

(4.16)

Combining (4.16) and (4.11) we arrive at a second order ordinary differential equatio
initial and terminal conditions:

u′′
i (t) − λ2

i ui(t) = V ′′
i (t) − λ2

i Vi(t) in (0, T ),

ui(0) = wi,

u′
i (T ) + λiui(T ) = V ′

i (T ) + λiVi(T ) − T
γ

(
ui(T ) − Wi

)
.

(4.17)

Evidently, Vi(t) is a particular solution of this differential equation so that the gen
solution is

ui(t) = Vi(t) + C1e
−λi t + C2e

λi t .

The initial and terminal conditions yield:{
C1 + C2 = wi − Vi(0),
T e−λiT C1 + (

2λie
λiT + T eλiT

)
C2 = T

[
Wi − Vi(T )

]
.

γ γ γ
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Solving for C1 and C2 and then plugging them into the general solution we find
mula (4.10) for the solution̂ui to (4.17). Hence, the solution to (OP2) is expres
by (4.9). �
Remark. In order for series expressions (4.12) to be valid,V (t,x) = ∑∞

i=1 Vi(t)ei(x) must
satisfy

∑∞
i=1 |λi |2|Vi(t)|2 < ∞ for almost everyt . But then by Lemma 3.4,V (t) = V (t, ·)

must belong toH 2(Ω) ∩ H 1
0 (Ω). This is precisely the reason for choosingW(γ ) ∈

H 2(Ω) ∩ H 1
0 (Ω) that approximatesW so as to defineV andF .

Remark. As in the proof of Theorem 6.1 we may verify that the optimal solutionû given
by (4.1)–(4.2) or (4.9)–(4.10) indeed belongs toH 2,1((0, T ) × Ω) and satisfieŝu = 0 on
(0, T ) × ∂Ω .

5. Dynamics of the optimal control solutions

In this section we will derive pointwise-in-time estimates for‖û(t) − W‖0 (in the case
of (OP1)) or‖û(t) − V (γ )(t)‖0 (in the case of (OP2)) wherêu is the optimal solution fo
(OP1) or (OP2). The derivation will be based on the explicit solution formulae that
expressed as series of eigen functions{ei}. We recall that{ei} is orthonormal inL2(Ω) so
that for any functionφ(x) = ∑∞

i=1 φiei(x) in L2(Ω) we have‖φ‖2
0 = ∑∞

i=1 |φi |2.

Lemma 5.1. Letλ > 0 be given. Then2λt � eλt − e−λt � eλT − e−λT for all t ∈ [0, T ].
Proof. The right inequality follows from the fact that the functiong(t) ≡ eλt − e−λt is
increasing on[0, T ] (asg′(t) � 0). The left inequality can be proved by the power se
expression for exponential functions:

eλt − e−λt =
∞∑

m=0

λmtm

m! −
∞∑

m=0

(−1)mλmtm

m! = 2
∞∑

m=1

λ2m−1t2m−1

(2m − 1)! � 2λt.

This completes the proof.�
Theorem 5.2. Assumew ∈ H 1

0 (Ω) and W ∈ L2(Ω). Let (û, f̂ ) ∈ H 2,1((0, T ) × Ω) ×
L2((0, T ) × Ω) be the solution of(OP1). Then∥∥û(t) − W

∥∥2
0 � 6e−2λ1t‖w‖2

0 + 3‖W‖2
0 ∀t ∈ [0, T ] (5.1)

and for every integern � 1,∥∥û(T ) − W
∥∥2

0 �
2γ 2‖w‖2

0

T 4
+ 8γ 2

T 2
sup

1�i�n

|λi |2
(1− e−2λiT )2

n∑
i=1

|Wi |2

+ 2
∞∑

i=n+1

|Wi |2. (5.2)

Furthermore, the optimal solution̂u as a function of the parameterγ satisfies the approx
imate controllability propertylimγ→0 ‖û(T ) − W‖0 = 0.
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ting
Proof. Let t ∈ [0, T ] be given. Using solution formulae (4.1)–(4.2) and adding/subtrac
terms we have:

∥∥û(t) − W
∥∥2

0 =
∞∑
i=1

∣∣ui(t) − Wi

∣∣2
=

∞∑
i=1

∣∣∣∣wi

(
e−λi t − T e−λiT (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

)

+ Wi

T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )
− Wi

∣∣∣∣2

=
∞∑
i=1

{
wi(e

−λi t − e−λiT ) + 2λiγ eλiT + T (eλiT − e−λiT ) − T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

× e−λiT wi − 2λiγ eλiT + T (eλiT − e−λiT ) − T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )
Wi

}2

.

(5.3)

Applying the inequality|∑3
i=1 ai |2 � 3

∑3
i=1 |ai |2 to (5.3) and using the relation

0� 2λiγ eλiT + T (eλiT − e−λiT ) − T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )
� 1 (see Lemma 5.1)

we obtain∥∥û(t) − W
∥∥2

0 � 3‖w‖2
0 sup

1�i<∞

∣∣e−λi t − e−λiT
∣∣2 + 3e−2λ1T ‖w‖2

0 + 3‖W‖2
0

so that (5.1) holds.
Using formulae (4.1)–(4.2) witht = T we have, for each integern � 1,∥∥û(T ) − W

∥∥2
0

=
∞∑
i=1

∣∣ui(T ) − Wi

∣∣2
=

∞∑
i=1

{
2λiγ

2λiγ eλiT + T (eλiT − e−λiT )
wi − 2λiγ eλiT

2λiγ eλiT + T (eλiT − e−λiT )
Wi

}2

� 2
∞∑
i=1

∣∣∣∣ 2λiγ

2λiγ eλiT + T (eλiT − e−λiT )

∣∣∣∣2|wi |2

+ 2
∞∑∣∣∣∣ 2λiγ

2λiγ + T (1− e−2λiT )

∣∣∣∣2|Wi |2

i=1
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).
� 8γ 2

T 2
sup

1�i<∞
|λi |2

(eλiT − e−λiT )2

∞∑
i=1

|wi |2 + 8γ 2

T 2
sup

1�i�n

|λi |2
(1− e−2λiT )2

n∑
i=1

|Wi |2

+ 2
∞∑

i=n+1

|Wi |2. (5.4)

Using Lemma 5.1 we have

|λi |2
(eλiT − e−λiT )2

� |λi |2
(2λiT )2

= 1

4T 2
∀i. (5.5)

Combining (5.4) and (5.5) we arrive at (5.2).
It remains to prove limγ→0 ‖û(T ) − W‖0 = 0. Let ε > 0 be given. There exists ann

such that
∞∑

i=n+1

|Wi |2 <
ε2

6
.

Holding thisn fixed, we may choose aγ0 such that

8|γ0|2
T 2

sup
1�i�n

|λi |2
(1− e−2λiT )2

n∑
i=1

|Wi |2 <
ε2

3
and

2|γ0|2‖w‖2
0

T 4
<

ε2

3
.

Thus, we obtain from (5.2) that‖û(T ) − W‖0 < ε for eachγ ∈ [0, γ0]. �
We may similarly derive a pointwise-in-timeL2(Ω) estimate for the solution of (OP2

Theorem 5.3. Assume thatw ∈ H 1
0 (Ω), W ∈ L2(Ω), W(γ ) ∈ H 2(Ω) ∩ H 1

0 (Ω), V (γ ) sat-

isfies(2.3)andF is defined by(2.6). Let (û, f̂ ) ∈ H 2,1((0, T ) × Ω) × L2((0, T ) × Ω) be
the solution of(OP2). Then∥∥û(t) − V (γ )(t)

∥∥2
0 � 3e−2λ1t

∥∥w − V (γ )(0)
∥∥2

0 + 3e−2λ1T
∥∥w − V (γ )(0)

∥∥2
0

+ 3
∥∥W − V (γ )(T )

∥∥2
0 ∀t ∈ [0, T ], (5.6)

and ∥∥û(T ) − V (γ )(T )
∥∥2

0 � 2γ 2

T 4

∥∥w − V (γ )(0)
∥∥2

0 + 2
∥∥W − V (γ )(T )

∥∥2
0. (5.7)

If, in addition, hypotheses(2.2), (2.4)and (2.5) hold, then the optimal solution̂u as a
function of the parameterγ satisfieslimγ→0 ‖û(T ) − W‖0 = 0.

Proof. Using solution formulae (4.9)–(4.10) and writingV in place ofV (γ ) (for notation
brevity) we obtain:∥∥û(t) − V (t)

∥∥2
0

=
∞∑∣∣ui(t) − Vi(t)

∣∣2

i=1
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lds
=
∞∑
i=1

{[
wi − Vi(0)

]
e−λi t + [Wi − Vi(T )]T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

+ [Vi(0) − wi]T e−λiT

2λiγ eλiT + T (eλiT − e−λiT )

(
eλi t − e−λi t

)}2

=
∞∑
i=1

{[
wi − Vi(0)

](
e−λi t − e−λiT

) + [Wi − Vi(T )]T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

+ 2λiγ eλiT + T (eλiT − e−λiT ) − T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

[
wi − Vi(0)

]
e−λiT

}2

(5.8)

so that∥∥û(t) − V (t)
∥∥2

0 � 3
∞∑
i=1

[
wi − Vi(0)

]2∣∣e−λi t − e−λiT
∣∣2 + 3

∞∑
i=1

∣∣Wi − Vi(T )
∣∣2

+ 3
∞∑
i=1

∣∣∣∣2λiγ eλiT + T (eλiT − e−λiT ) − T (eλi t − e−λi t )

2λiγ eλiT + T (eλiT − e−λiT )

∣∣∣∣2
× [

wi − Vi(0)
]2

e−2λiT

� 3e−2λ1t
∥∥w − V (0)

∥∥2
0 + 3

∥∥W − V (T )
∥∥2

0 + 3e−2λ1T
∥∥w − V (0)

∥∥2
0

∀t ∈ [0, T ],
i.e., (5.6) holds.

Settingt = T in (5.8) and using (5.5) we have∥∥û(T ) − V (T )
∥∥2

0

� 2
∞∑
i=1

∣∣∣∣ 2λiγ

2λiγ eλiT + T (eλiT − e−λiT )

∣∣∣∣2[wi − Vi(0)
]2 + 2

∞∑
i=1

∣∣Wi − Vi(T )
∣∣2

� 8γ 2
∥∥w − V (0)

∥∥2
0 sup

1�i<∞
|λi |2

T 2(eλiT − e−λiT )2
+ 2

∥∥W − V (T )
∥∥2

0

� 2γ 2

T 4

∥∥w − V (0)
∥∥2

0 + 2
∥∥W − V (T )

∥∥2
0.

This proves (5.7).
The relation limγ→0 ‖û(T ) − W‖0 = 0 follows easily from the triangle inequality∥∥û(T ) − W

∥∥
0 �

∥∥û(T ) − V (T )
∥∥

0 + ∥∥V (T ) − W
∥∥

0,

estimate (5.7) and assumption (2.2).�
The particular choice ofV (γ )(t) ≡ W(γ ) satisfies (2.3)–(2.5). Thus Theorem 5.3 yie

the following result.
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Corollary 5.4. Assume thatw ∈ H 1
0 (Ω), W ∈ L2(Ω), W(γ ) ∈ H 2(Ω) ∩ H 1

0 (Ω) satisfy-
ing (2.2), V (γ )(t, ·) ≡ W(γ ) andF is defined by

F = F (γ ) ≡ −div
[
A(x)∇W(γ )

]
in (0, T ) × Ω.

Let(û, f̂ ) = (
∑∞

i=1 ûi (t)ei(x),
∑∞

i=1 f̂i (t)ei(x)) ∈ H 2,1((0, T )×Ω)×L2((0, T )×Ω) be
the solution of(OP2)given by

ûi (t) = W
(γ )

i + [
wi − W

(γ )

i

](
e−λi t − T e−λiT (eλi t − e−λi t )

2λiγ eλiT + T eλiT − T e−λiT

)
+ [

Wi − W
(γ )

i

] T (eλi t − e−λi t )

2λiγ eλiT + T eλiT − T e−λiT
. (5.9)

Then∥∥û(t) − W(γ )
∥∥2

0 � 3e−2λ1t
∥∥w − W(γ )

∥∥2
0 + 3e−2λ1T

∥∥w − W(γ )
∥∥2

0 + 3
∥∥W − W(γ )

∥∥2
0

∀t ∈ [0, T ],
and ∥∥û(T ) − W(γ )

∥∥2
0 � 2γ 2

T 4

∥∥w − W(γ )
∥∥2

0 + 2
∥∥W − W(γ )

∥∥2
0.

Moreover, the optimal solution̂u as a function ofγ satisfieslimγ→0 ‖û(T ) − W‖0 = 0.

WhenW ∈ H 2(Ω) ∩ H 1
0 (Ω) we may simply chooseW(γ ) = W andV (γ ) ≡ W . Then

Corollary 5.4 reduces to the following.

Corollary 5.5. Assume thatw ∈ H 1
0 (Ω), W ∈ H 2(Ω) ∩ H 1

0 (Ω), V (γ ) ≡ W and F is
defined by

F ≡ −div
[
A(x)∇W

]
in (0, T ) × Ω.

Let(û, f̂ ) = (
∑∞

i=1 ûi (t)ei(x),
∑∞

i=1 f̂i (t)ei(x)) ∈ H 2,1((0, T )×Ω)×L2((0, T )×Ω) be
the solution of(OP2)given by

ûi (t) = Wi + [wi − Wi]
(

e−λi t − T e−λiT (eλi t − e−λi t )

2λiγ eλiT + T eλiT − T e−λiT

)
. (5.10)

Then∥∥û(t) − W
∥∥2

0 � 2e−2λ1t‖w − W‖2
0 + 2e−2λ1T ‖w − W‖2

0 ∀t ∈ [0, T ]
and ∥∥û(T ) − W

∥∥2
0 � 2γ 2

T 4
‖w − W‖2

0.

Moreover, the optimal solution̂u as a function ofγ satisfieslimγ→0 ‖û(T ) − W‖0 = 0.
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6. Solutions to the exact controllability problem

Recall that the exact controllability problem (EX-CON) is solvable ifw ∈ H 1
0 (Ω) and

W ∈ H 1
0 (Ω). Formally settingγ = 0 in (4.2) and (4.10) we expect to obtain soluti

formulae for the exact controllability problem (EX-CON). But these formulae needs
fication as infinite series functions are involved. We first examine the solution obtain
settingγ = 0 in (4.2).

Theorem 6.1. Assume thatw ∈ H 1
0 (Ω) andW ∈ H 1

0 (Ω). Then the functions

u(t,x) =
∞∑
i=1

ui(t)ei(x) and f (t,x) =
∞∑
i=1

fi(t)ei(x),

where

ui(t) = wie
−λi t − wi

e−λiT (eλi t − e−λi t )

eλiT − e−λiT
+ Wi

eλi t − e−λi t

eλiT − e−λiT
(6.1)

and

fi(t) = −2λiwi

e−λiT eλi t

eλiT − e−λiT
+ 2λiWi

eλi t

eλiT − e−λiT
, (6.2)

form a solution pair to the exact controllability problem(EX-CON).

Proof. Sinceui(0) = wi andui(T ) = Wi , we have thatu(0) = w andu(T ) = W . To show
that the pair(u,f ) is a solution to (EX-CON) we need to show thatut −div[A(x)∇u] = f

in (0, T × Ω) andu = 0 on(0, T ) × ∂Ω and we will do so by employing Theorem 3.7.
We proceed to verify the assumptions of Theorem 3.7.
Lemma 3.3 and the assumptionsw,W ∈ H 1

0 (Ω) imply

∞∑
i=1

|λi ||wi |2 < ∞ and
∞∑
i=1

|λi ||Wi |2 < ∞. (6.3)

Sinceui(0) = wi , we obviously have
∑∞

i=1 λi |ui(0)|2 = ∑∞
i=1 λi |wi |2 < ∞.

Let CT = 1 − e−2λ1T ∈ (0,1). Then we have 2λiT � 2λ1T = − ln(1 − CT ) so that
e2λiT � 1/(1− CT ), or equivalently,

eλiT − e−λiT � CT eλiT ∀i.

From (6.1) and the last inequality we have

T∫
0

|λi |2
∣∣ui(t)

∣∣2 dt

� 3|λi |2|wi |2
T∫

0

e−2λi t dt + 3|λi |2|wi |2
(CT )2e4λiT

T∫
0

e2λi t dt + 3|λi |2|Wi |2
(CT )2e2λiT

T∫
0

e2λi t dt

� 3|λi |2|wi |2 1 + 3|λi |2|wi |2
2 4λiT

· e2λiT

+ 3|λi |2|Wi |2
2 2λiT

· e2λiT
2λi (CT ) e 2λi (CT ) e 2λi
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nclude

N).
� |λi ||wi |2
(

3

2
+ 3

2(CT )2e2λ1T

)
+ |λi ||Wi |2 3

2(CT )2
. (6.4)

Combining (6.4) and (6.3) we arrive at
∑∞

i=1

∫ T

0 |λi |2|ui(t)|2 dt < ∞.

Differentiation of (6.1) yields

u′
i (t) = −λiwie

−λi t − λiwi

e−λiT (eλi t + e−λi t )

eλiT − e−λiT
+ λiWi

eλi t + e−λi t

eλiT − e−λiT
.

Note thateλi t + e−λi t � 2eλi t so that estimations similar to those of (6.4) lead us to

T∫
0

∣∣u′
i (t)

∣∣2 dt � |λi ||wi |2
(

3

2
+ 6

(CT )2e2λiT

)
+ |λi ||Wi |2 6

(CT )2
< ∞.

Thus we have verified all assumptions of Theorem 3.7. Using that theorem we co
thatu ∈ H 2,1((0, T ) × Ω), u = 0 on(0, T ) × ∂Ω , and

ut (t) − div
[
A(x)∇u(t)

] =
∞∑
i=1

u′
i (t)ei +

∞∑
i=1

λiui(t)ei

=
∞∑
i=1

(
−2λiwi

e−λiT eλi t

eλiT − e−λiT
+ 2λiWi

eλi t

eλiT − e−λiT

)
ei in L2(Ω), a.e.t.

By a comparison of the last relation with (6.2) we deducef (t) = ut (t) − div[A(x)∇u(t)]
in L2(Ω) for almost everyt so thatf = ut − div[A(x)∇u] ∈ L2(0, T ;L2(Ω)).

Hence, the pair(u,f ) is indeed a solution to (EX-CON).�
If W ∈ H 2(Ω) ∩ H 1

0 (Ω), then by choosingV (γ ) ≡ W and settingγ = 0 in for-
mula (4.10) we obtain another solution for the exact controllability problem (EX-CO
The proof of the following theorem is similar to that of Theorem 6.1 and is omitted.

Theorem 6.2. Assume thatw ∈ H 1
0 (Ω) andW ∈ H 2(Ω) ∩ H 1

0 (Ω). Then the functions

u(t,x) =
∞∑
i=1

ui(t)ei(x) and f (t,x) =
∞∑
i=1

fi(t)ei(x),

where

ui(t) = wi

(
e−λi t − e−λiT (eλi t − e−λi t )

eλiT − e−λiT

)
+ Wi

(
1− e−λi t + e−λiT (eλi t − e−λi t )

eλiT − e−λiT

)
and

fi(t) = −2λiwi

e−λiT eλi t

eλiT − e−λiT
+ λiWi

(
1+ 2e−λiT eλi t

eλiT − e−λiT

)
,

form a solution pair to the exact controllability problem(EX-CON).
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h case

e case
7. One-dimensional numerical simulations

In one space dimension the eigen pairs{ei} are well known so that optimal solution
for (OP1) and (OP2) can be computed from series solution formulae (4.1)–(4.2) or
(4.10), respectively.

The one-dimensional constraint equations are defined on the spatial intervalΩ = (0,1):

ut − uxx = f in (0, T ) × (0,1), u(t,0) = u(t,1) = 0 and u(0, x) = w(x).

The eigen pairs{(λi, ei)}∞i=1 are determined from

−e′′(x) = λe(x) 0� x � 1, e(0) = e(1) = 0.

It is well known that

λi = (iπ)2 and ei(x) = √
2 sin(iπx), i = 1,2, . . . .

Given a target functionW(x), the solution to optimal control problem (OP1) is explici
given by (4.1)–(4.2). To find the solution to (OP2) we first need to constructW(γ ) and
V (γ ) satisfying (2.2)–(2.5); we then use solution formulae (4.9)–(4.10). Note thatwi , Wi

andV
(γ )

i (t) in (4.2) and (4.10) are calculated by

wi =
1∫

0

w(x)ei(x) dx, Wi =
1∫

0

W(x)ei(x) dx and

V
(γ )

i (t) =
1∫

0

V (γ )(t, x)ei(x) dx.

We consider two sets of data (the initial conditionw, the target functionW and the
terminal timeT ):

Data I. T = 2, w(x) =
5∑

i=1

i ei(x)/
√

2, W(x) = T

5∑
i=1

i ei(x)/
√

2.

Data II. T = 1, w(x) =
1000∑
i=1

i ei(x)/
√

2,

W(x) = 1=
∞∑
i=1

Wiei(x) in L2(Ω) whereWi =
1∫

0

ei = √
2

1− (−1)i

iπ
.

For each data set we solve (OP1) by series solution formulae (4.1)–(4.2). In eac
we vary the parameterγ and plot the optimal solution̂u at the terminal timeT (the “∗”
curve) versus the target functionW (the “−” curve). See Figs. 1 and 3.

For each data set we solve (OP2) by series solution formulae (4.9)–(4.10). In th
of Data I, we choose
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Fig. 1. Optimal solution̂u(T ) and targetW for (OP1) with Data I (T = 2). ∗: optimal solutionû(T ), −: target
functionW .

Fig. 2. Optimal solutionû(t) and targetW for (OP2) with Data I (T = 2). ∗: optimal solutionû(t), −: target
functionW .

W(γ )(x) = W(x) = T

5∑
i=1

i ei(x)/
√

2 and

V (γ )(t, x) = W(x) = T

5∑
i ei(x)/

√
2

i=1
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n the

d-
Fig. 3. Optimal solution̂u(T ) and targetW for (OP1) with Data II (T = 1). ∗: optimal solutionû(t), −: target
functionW .

which evidently satisfy assumptions (2.2)–(2.5); in addition, formula (4.10) takes o
simpler form (5.10), i.e.,̂u = ∑5

i=1 ûi (t)
√

2 sin(iπx) where

ûi = 2i√
2

− i√
2

(
e−i2π2t − e−2i2π2

(ei2π2t − e−i2π2t )

i2π2γ e2i2π2 + e2i2π2 − e−2i2π2

)
.

In the case of Data II, we choose

W(γ )(x) =
√

2

π

Nγ∑
i=1

1− (−1)i

i
ei(x) and

V (γ )(t, x) = W(γ )(x) =
√

2

π

Nγ∑
i=1

1− (−1)i

i
ei(x),

whereNγ → ∞ asγ → 0 (e.g.,Nγ is the integer part of the decimal number[1000+
ln(1/γ )]). It can be verified thatW(γ ) andV (γ ) satisfy assumptions (2.2)–(2.5); in a

dition, formula (4.10) takes on the simpler form (5.9), i.e.,û = ∑Nγ

i=1 ûi (t)
√

2 sin(iπx)

where

ûi =
√

2

iπ
[1− (−1)i] +

(
i√
2

−
√

2

iπ

[
1− (−1)i

])

×
(

e−i2π2t − e−i2π2
(ei2π2t − e−i2π2t )

2i2π2γ ei2π2 + ei2π2 − e−i2π2

)
, i = 1,2, . . . ,1000
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Fig. 4. Optimal solution̂u(t) and targetW for (OP2) with Data II (T = 1). ∗: optimal solutionû(t), −: target
functionW .

and

ûi =
√

2

iπ

[
1− (−1)i

](
1− e−i2π2t + e−i2π2

(ei2π2t − e−i2π2t )

2i2π2γ ei2π2 + ei2π2 − e−i2π2

)
,

i = 1001,1002, . . . ,Nγ .

As in the case of (OP1), for each data set we vary the parameterγ and plot the optima
solution û for (OP2) at the terminal timeT (the “∗” curve) versus the target functionW
(the “−” curve). See the first row of plots in Figs. 2 and 4. Note that unlike in the
of (OP1), the optimal solution̂u(T ) for (OP2) matchesW very well even forγ = 1. This
phenomena is expected from Corollaries 5.4 and 5.5.

Moreover, in the case of (OP2), we again from Corollaries 5.4 and 5.5 anticipate o
solutionû(t) to yield good matching toW even for moderateγ andt � T . Whenγ = 1,
we plot some snapshots of the optimal solutionû (the “∗” curve) versus the target functio
W (the “−” curve). See the second row of plots in Figs. 2 and 4.

For Data I the admissible state and the target state have matching boundary
tions (both have homogeneous boundary conditions). For Data II the admissible
and the target function have nonmatching boundary conditions. For both data se
for sufficiently smallγ , the optimal solutions expressed by the series formulae d
good job of tracking the target functions in the interior at the terminal timeT , as pre-
dicted by Theorems 5.2 and 5.3. The optimal solutions of (OP2) furnish good m
ings to the target state even for moderateγ and t � T , as predicted by Corollaries 5
and 5.5.
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