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Abstract
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1. Introduction

In this paper we study terminal-state tracking optimal control problems for a linear
second order parabolic partial differential equation (PDE) defined over the time interval
[0, 7] C [0, o0) and on a bounded;? (or convex) spatial domaif® c R, d =1, 2 or 3.

Let a target functionW € L2(£2) and an initial conditionw € L2(£2) be given and let
f € L2((0, T) x £2) denote the distributed control. The optimal control problems we study
are to minimize the terminal-state tracking functional

T

T
T, f)= E/|u(T, X) — W(x)|2dx+g//|f(t,x)|2dxdt (1.1)
2 0

or

T
K@, f) :%/|u(T,x) — W(x)|2dx+ g//|f(t,x) - F(t,x)|2dxdt (1.2)
2 0

(wherey is a positive constant anfl is a given reference function) subject to the parabolic
PDE

up —div[AOVu]=f, #,x) €0, T) x 2, (1.3)
with the homogeneous boundary condition

u=0, (1,x)e(0,T)x a2, (1.4)
and the initial condition

u(0,x) =w(x), xes. (1.5)

In (1.3), A(X) is a symmetric matrix-valued;1($2) function that is uniformly positive
definite.

Similar optimal control problems have been studied in the literature from different as-
pects or in different settings. For instance, in [15] the existence and regularity of an optimal
solution was studied; in [2] the connection between optimal solutions and controllability
was examined, and in [22] eigen series solutions were studied wherein the comies
assumed to belong to a bounded set (0, T') x £2) (due to the boundedness constraint
the tracking functional of [22] did not contain the term involvigigy Both optimal control
problems and controllability problems are studied in this paper. Our main achievements
concerning optimal control problems include: the introduction offaim (1.2) that re-
sults in an optimal solution that approaches the target more effectively (evendr
and moderate parametey; the derivation and justification of explicit eigen series solution
formulae for optimal solutions; pointwise-in-time estimates for optimal solutions and the
approximately controllability properties for the optimal solutions. A distinctive feature of
this work is that the desired terminal-sta#é and the admissible stateare allowed to
have nonmatching boundary conditions, though the reference funktiteed be suitably
chosen in the formulation of cost functional (1.2) (the details about the choiEendlf be
revealed in Section 2).
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Terminal-state tracking problems are optimal control problems in their own right. They
are also closely related to approximate and exact controllability problems which were stud-
ied in, among others, [1-5,7-14,17-20]. As mentioned in the foregoing the boundary value
for the target stat® may be nonzero so that the parabolic problem (1.3)—(1.5) in general
is not exactly controllable when the solution for (1.3)—(1.5) is defined in the standard weak
sense (see [6]). Contributions of this paper on controllability consist of the proof of approx-
imate controllability when the target state has an inhomogeneous boundary value and the
derivation of explicit series solution formulae for the exact controllability problem when
the target state vanishes on the boundary.

In Section 2 we formulate the optimal control problems and controllability problems
in an appropriate mathematical framework. In Section 3 we review and establish certain
results concerning eigen functions expansions for both spatial and temporal—spatial func-
tions. In Section 4 we derive explicit eigen series solution formulae for the optimal control
problems. In Section 5 we derive pointwise-in-time estimates for the optimal solutions
and show that as the parameter> 0, the optimal solutions at the terminal tinfeap-
proach the target stat#. In Section 6 we justify eigen series solution formulae for the
exact controllability problem by assuming homogeneous boundary values for the target
state. In Section 7 we present some one-dimensional computational results that illustrate
the terminal-state tracking properties for the solutions expressed by the series formulae of
Section 4.

2. Formulation of optimal control and controllability problems

Throughout we freely make use of standard Sobolev space notatirs2) and
H}(£2). We denote the norm for Sobolev spaki&' (2) by || - [l». Note thatH(2) =
L2(2) so that|| - ||o is the L2(£2) norm. We will need the temporal—spatial function space

H?*Y(0,7) x 2) = {v e L?(0, T; H*(2)): v, € L?(0, T; L3(£2)) }.

A temporal—-spatial function(z, x) often will be simply written a® (7).
Functional (1.1) can be written as

T
T
T )= g lum = wig+ 2 [ @1)
0

Regarding functional (1.2) the idea for constructing the reference fungtiisrthat we
first choose a reference functi@an(z, x) satisfyingU (T, x) = W (i.e., U is a given path
that reachedV at timeT') and then set

F=U, —div[AX)VU] in[0,T]x £2.

However,W (and thusl) in general does not vanish on the boundary. The series method
to be studied in this paper will involve eigen series expressions for reference fungtions
andU. The validity of these expressions requifeto vanish on the boundary. To resolve
this difficulty we choose the reference functign= F) (which is dependent of) as fol-
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lows. We first choose a one-parameter set of funct{ghs”: y > 0} C H2(2) N H}(£2)
such that

W —w|,—0 asy—o. (2.2)

(If W e H?(2) N H}(£2), then we may simply choos# ") = W that is independent of.
In general W has an inhomogeneous boundary condition Bt) approximates¥ in the
L?(£2) sense.) Next, for each given> 0, we choose a function "’ (z, x) that satisfies

V) e 12(0,T; HA(2) N HE2)), Ve L?(0,T; LA)),
vy =wY  in 2:; (2.3)

in other words V") is an arbitrarily chosen smooth path that reaché®) at time7'. By
virtue of (2.2)—(2.3) we have

|[v(r)-w|,—~0 asy—0. (2.4)
We also assume

|[V¥(©)],<C whereC > 0is a constant independent of (2.5)

The choices of & ") that satisfies (2.3)—(2.5) are certainly nonvacuous, e.g., the steady-
state functionV ) (¢, ) = W) is a particular and convenient choice. Here we allow for
more general choices of such a path’(z, -) than the steady-state one. The reference
function F is now defined by

F=F" =v" —div[Ax)VV?] in(0,T) x 2. (2.6)

Functional (1.2) may be written

T
T
K, f)= 5 |u(m) = wg+ g/Hf(t) ~ F0)]gar
0

2

T
=— dt.
0

T
= = |lu(r) - W||§ + g/”f(t) — %V(”)(z) —div[A)VV Y (1)]
0

2
(2.7)
The solution to the constraint equations (1.3)—(1.5) is understood in the following weak
sense.

Definition 2.1. Let f € L2((0, T); L2(£2)) andw € L2(£2) be given. is said to be a so-
lution of (1.3)—(1.5) ifu € L2((0, T); H}(2)), u; € L?((0, T); H~1(£2)), andu satisfies

(u,(t),d))—i—/[A(X)Vu(t)]~V¢>dx:<f(t),¢>) Vo € H3(2), a.er€(0,T),
2
u(@ =w ing, (2.8)

where(-,-) denotes the duality pairing betwe&1(2) and H}(£2).
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Remark. A weak solution in the sense of Definition 2.1 belongst(O, T']; L2(£2)),
see [6].

An admissible element for the optimal control problem is a pajrf) that satisfies the
initial boundary value problem (2.8). The precise definition is given as follow.

Definition 2.2. Let w € L2(£2) be given. A pair(u, f) is said to be aradmissible ele-
mentif u € L2((0, T); H}($2)), u; € L2((0, T); H~1(2)), f € L((0,T); L?(£2)), and
(u, f) satisfies Eq. (2.8). The set of all admissible elements is denoteiddo§0, T'), w)
or simply Vagq.

The optimal control problems we study can be concisely stated as:

(OP1) seek a paifit, f) € Vag Such that7 (i, f) = inf, r)ev,,J (u, f) where the func-
tional 7 is defined by (2.1);

and

(OP2) seek a paifii, f) € Vag such thatC(a, f) = inf(, ey, K, f) where the func-
tional KC is defined by (2.7).

The existence and uniqueness of optimal solutions for (OP1) and (OP2) follow from
classical optimal control theories (see, e.g., [15]):

Theorem 2.3. Assume thatw € L?(22) and W € L?(2). Then there exists a unique
solution (i, f) € Vag to (OP1) and to (OP2) If, in addition, w € Hol(fz), theni €
H%1((0,T) x 2).
The approximate and exact controllability problems are formulated as follows:

(AP-CON) seek a one-parameter §@t., fc): € > 0} C Vag such that

li T)— =

6[)“0”“6( )= W|,=0
and

(EX-CON) seek a paifu, f) € Vaqg such that
u()=W ing2.

Of course, exact controllability, whenever it holds, implies approximate controllability.
In particular, ifw andW belong toH(}(.Q), then the exact controllability holds.

Theorem 2.4. Assume thaw € Hol(_Q). Then(EX-CON) has a solution if and only if
W e Hi(R).
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Proof. If (EX-CON) has a solution(u, 1), then regularity for parabolic PDEs [6, Theo-
rem 5, p. 360; Theorem 4, p. 288] impliess H21(Q) andu € C([0, T']; H1(£2)) so that
W =u(T) € HX(£2). Sinceu =0 0n(0, T) x 352, we have that

IWll1200 = IEY;LHM(T) —u(r) < CtlnT"LHu(T) —u(t)|,=0,

1/2,00

where| - ||1/2,5 denotes the norm for the Sobolev spdt¥?(32). Thus,W € H}(£2).
Conversely, assume thét € Hol(.Q). Letu be a function satisfying

i e H*1((0,T) x £2), i=0 on(0,T)x 4L, iili—0=w € H}(£).

The existence of such@is guaranteed by the trace theorem [16, vol. Il, Theorem 2.3,
p. 18] or by the existence and regularity results (see [6]) for the parabolic problem

us—Au=0 1in(0,T) x £, u=0 1in(0,T) x 352, Uli=0 = w.
Likewise, there exists & satisfying

i€ H*Y((0,T)x 2), a=0 on(0,T)xd2,  il—r=W € H}().
We choose a functioft = 0(r) € C*°[0, T'] such that

0(t)y=1 Vte[0,T/3] and 6()=0 Vre[2T/3,T],
and sett =0(t)i + [1 — G(t)]ﬁ in (0, T) x £2. Clearly,

ue H*1((0,T) x ), u=0 on(0,T) x 32,

uli=0=w, ulp=r =W.
By defining f = u; — div[A(X)Vu] € L2((0, T) x £2) we see thatu, f) solves the exact
controllability problem (EX-CON). O

Remark. The exact controllability result of [2, Theorem 3.7] was stated imprecisely. The
proof of that theorem, in fact, required the target state to have the homogeneous boundary
condition.

3. Results concerning eigen function expansions

The main objective of this paper is to find explicit solution formulae, expressed in terms
of eigen-function expansions, for optimal control problems (OP1) and (OP2) and for con-
trollability problem (EX-CON). In this section we will review some properties for the eigen
pairs and eigen function expansions.

We recall the following lemma (see [6, Theorem 1, p. 335]).

Lemma 3.1. The setA of all eigen values for the elliptic operater div(A(x)V) may be
written A = {1;}72; C R where

O<Air<A2<A3<--- and A; —> 00 asi — oo.



290 L.S. Hou et al. / J. Math. Anal. Appl. 313 (2006) 284—-310

Furthermore, there exists a set of corresponding eigen functie}$°; C H2($2) N
H(£2) which forms an orthonormal basis df?(2) (with respect to theL.2(2) inner
produch.

In the sequel we lef(%;, ¢;)}7°,; denote a set of eigen pairs as stated in Lemma 3.1.

Lemma 3.2. The set{ei/ﬁ};‘il forms an orthonormal basis o?ol(Q) with respect to
the inner product

(u,v) — Blu,v] EfA(X)Vu -Vvdx Vu,ve H}(2). (3.1)
2

The set{e; /A;}72, forms an orthonormal basis afi2(£2) N Hol(.Q) with respect to the
inner product

(u,v) ~ Blu,v] = / div[AX)Vu]div[AX)Vv]dx Vu,ve H?(2) N H(2).
§2 (3.2)

Proof. The first statement of this lemma is proved in [6, Theorem 1, p. 335; step 3, p. 337].
The proof for the second statement is a verbatim repetition of [6, Theorem 1, p. 335; step 3,
p. 337] with the inner produdB[-,-] replaced byB[-,-] (defined in (3.2)). O

Based on Lemmas 3.1 and 3.2 we may establish the following characterizations of
H(2).
0

Lemma 3.3. Assumey € L?(£2) andy = 3%, yie; in L?(£2). Then the following state-
ments are equivalent

() ye H}();
(i) y=372,viei in H}($2);
(III) Z?il)‘ib)ilz < Q.

Proof. We first prove (i) implies (ii). But this follows from [6, Theorem 1, p. 335; steps 2
and 3, p. 337].

We next prove (ii) implies (jii). Assume = 2, yie; in H&(Q). By Lemma 3.2 we
may writey = 3% §ie;/v/A; in H}(2) and} 22, |5:12 = Bly, y] < co. Comparingy =
S Viei /A andy = % yie; in L2(£2) we obtainy; = «/A;y; sothatd 22, A, |yi|?> =
Y213l < 0.

Finally, we prove (jii) implies (i). Assume thaf 7>, A;|yi|? < co. We note that the
definition of the eigen pairs implies

B[ei,v]zx,»/eiudx Vv e H} ()
22
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sothatB[e;,e;]1=0if j #i andBle;, ¢;] = 1;. Thus,
n+p n+p n+p
B|:Z)’ieis ZYjej:| =Y nilyil?
i=n j=n i=n

so that{}"}_; vieitoo, C Hol(.Q) is a Cauchy sequence with respect to H&(Q) norm
induced by theB[-,-] inner product. Henc® 2, yie; = y in H2($2) for somey € H(£2).
Buty = Y%, yie; in L?(£2) and we conclude =y € H}(22). O

Similar arguments yield the following characterizationg##(£2) N Hol(SZ).

Lemma 3.4. Assumey € L%(2) andy = %2, yie; in L?(£2). Then the following state-
ments are equivalent

() ye H3(2)NHy(R2);
(i) y=312, viei in H2(2) N H}(2);
(i) 300 14i121yi1? < oo.

The main results of this section are the two theorems below concerning term-by-term
differentiations of eigen series for functionsir®1((0, T) x £2) N C ([0, T1; H}($2)). We
first quote a lemma (see [21, Lemma 1.1, p. 169] and [6, Theorem 2, p. 286]):

Lemma 3.5. Assume: € L2(0, T; L?(£2)) andu, € L2(0, T; L2(£2)). Then

T T
—/q‘)/(t)/u(t)vdxdt:fq&(t)/ut(t)vdxdt Vé € C(0,T), Vv € LA(R2).
0 2 0 2

Theorem 3.6. Assume that € H>1((0, T) x £2),u=00n (0, T) x 352 and

u(t)=> ui(t)e; inL3R2), ae.reO7).
i=1

Then

00 T T
Z/(|u§(;)|2+ |Ai|2|ui(t)|2)dt: ”“t”iZ(O,T;LZ(m) +/§[u,u]dt <00, (3.3)
i=17 0

o
Z|)\i||ui(o)|2dl < 00, (3.4)
i=1

()= uj(t)e; inL*(£), aete(0,T) (3.5)
i=1
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and

—div[A) Vu(1)] =Z,\,-ul»(t)e,- in L2(R2), a.e.t. (3.6)
i=1

Proof. We first note the continuous embeddifkf-1((0, T) x £2) — C([0, T1; HX(£2))
and the boundary conditiom = 0 on (0, T) x 392 imply thatu(s) € Hol(Q) for every
t € [0, T]. By Lemma 3.3 we have

u(t)=> ui(t)e; in Hy($2),vt€[0,T].
i=1

In particular, since:(0) € Hol(Q), Lemma 3.3 yields (3.4).
Using theL?($2) orthonormality of{¢;} we have

T T 0o T
1220120 = [ N3 = [ Sluof*ar> [lujof?ar i
0 o =1 0

so that eaclr; € L(0, T). Sinceu, € L?(0, T; L?(£2)), we may write
0
w ()= vie; InL*2), aet

i=1
and

T T 00 T
”ut”iz(O,T,LZ(Q)) =/”M[(I)”(Z)dt:/Z|vl(l)|2dt >/|U/(t)|2dt V] (37)
0 o =t 0

so that eacly; € L?(0, T). Using Lemma 3.5 we have that

T T
—/qb’(t)/u(t)ej dxdt:/gb(t)/u,(t)ej dxdt
0 2 0 2

Vo e CPO0,T), j=1,2,....

Substituting series expressions foandu;, into the last equation and using tié($2)
orthonormality of{e; } we obtain

T T
—/q&/(t)uj(t)dt:/¢(t)vj(t)dt V¢ € C(0,T), j=1,2,...,
0 0

so thatv; = u’] for j=1,2,.... This proves (3.5).
Sinceu(t) € H2(22) N H}(2) for almost every, Lemma 3.4 implies that

u(t) =Y ui(tye; in H*(2) N Hy(2), ae.
i=1
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so that

—div[A Vu(®)] =Y —div[A) V(e ] =Y Aui(t)e; i L3(£2), aet,
i=1 [

i.e., (3.6) holds.
From (3.6) we obtain
T
/B[u uldt = /||d|v AX)Vu(r) Hodt pr\ 12 |u; (;)| dt. (3.8)
0

Adding up (3.7) and (3.8) and applying the Monotone Convergence theorem we arrive
at(3.3). O

Theorem 3.7. Assume that the set of functiofag (r)}72, C HL(0, T) satisfies

00 T
Z/(]u;a)\er A 2ui (0)]) di < 0o (3.9)
i:lo

and
3 illui @ di < oo. (3.10)
i=1

Then the functiom formally defined by (1) = Y72 u; (1)e; satisfies

ue H*1((0,T) x 22), u=0 on(0,T) x 2,

[e.0]

()= uj(e; inL*R), aedt, (3.11)
i=1
and
o0
—div[AVu()] =) hiui(e; in L3(2), a.e.t. (3.12)
i=1
Proof. We note that
oo f
Z |u; (t)| dt\ sz"\ 12| ui (r)| dt < 00
i=lo | i= 10

so thatu(r) = > 1o, ui(t)e; in L?($2) for almost every € (0, T).
By assumption (3.9) we are justified to defifiee L2((0, T); L?(£2)) as the series func-
tion
o0 o
f=)_fiyei =Y [uj) +rui()]e; in L*(£2), a.et (0, 7).

i=1 i=1
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It is well known thatH(0, T') is continuously embedded int6[0, 7] so thatu; (0)
is well defined for each. Assumption (3.10) and Lemma 3.3 imply thdt_g € Hol(Q)
whereu|;,—o =Y ;21 u;i (0)e;.

Let &z be the solution for the parabolic problem

i —div[AX)Vi]=f in(0,T) x £, i=0 on(0,T)x 3£,
Uli=0=1ul=0 (3.13)

in the sense of Definition 2.1. Regularity for parabolic PDEs imgliesH%1((0, T) x £2).
We writes = Y 724 ii; (t)e; in L?(£2) for almost every € (0, T'). Employing Theorem 3.6
we have

i ()= ij(e; inL*), aet (3.14)
i=1
and
—div[A Vi)=Y hidij(e;  in LA(2), a.e.. (3.15)

i=1

Thus, we may write (3.13) in the series form

Yl + i )]e =302, fier  in L3($2), a.eu,

S0 i@i(0) =32 ui(0)e; in L2(2)
so that for each,

ui(t) + rui (1) = fi®) in(0,7), u;(0) =u;(0). (3.16)

From the definition off; we see that eaal satisfies the same equationsiasThe unique-
ness of the solution for the initial value problem (3.16) impligs= i; in (0, T') for eachi
so thatu(r) = ii(¢) in L2(£2) for everyt. Henceu =it € H1((0, T) x 2) andu =i =0
on (0, T) x 3£2). Also, Egs. (3.14) and (3.15) yield (3.11) and (3.12)1

4. Solutions of the optimal control problems

We express all functions involved &2 (£2)-convergent series dé; }:

w(t, )=y ui(e;(¥),  fE,0 =) fie(),  wO) =) wie;X),

i=1 i=1 i=1
o0 o0

WX =Y Wieix),  VOux=> V" 0)ex).
i=1 i=1

We work out below an explicit formula for the optimal solution of (OP1) expressed as a
series of eigen functionig; }. (For the existence of optimal solutions, see Theorem 2.3.)
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Theorem 4.1. Assumew € H3(2) and W € L(2). Let (@, f) € H>X((0,T) x 2) x
L?((0, T) x £2) be the solution ofOP1) Then

e¢]

A, x) =Y hi(t)ei(x), (4.1)

i=1
where

Te—)\,'T(e)»,'I _e—)x,’t)
- z)w.yeAiT + T(eMT — eMT)>
W T(e)\,'t _ e*)»,'l)

"2hiyerT 4 T(eMT —e=hiT)’

;i (t) = w; (6_)”'1‘

+ (4.2)

Proof. Let (u, f) be an arbitrary admissible element, there H%1((0, T) x £22) N
C([0,TY; Hol(.Q)). We may writeu =) 2, u;(t)e; and f =Y _124 fi(t)e; in L2(£2) for
almost every. Moreover, Theorem 3.6 implies

o0
ur=Yy uj(te; L), aet
i=1
and
o0
—div[A)Vu] =) Aui(t)e; in L3(£2), ae.r.
i=1
Thus we may rewrite the constraint equations (2.8) as

Je (Z?il[u;(t)ﬂjuj(r)]e,)ei ax= [, (Zf‘;l fj(t)ej)ei dx, i=12, ...,
Ja (Zﬁlb’j(OVJ')ez' =Jo (Z?’;l wjej)ei ax, i=12, ...,

so that for each,

u;(t) + Aiui(t) = fi(®) in(0,T), u; (0) = w;. 4.3)
The functional7 also can be written in the series form
T 2 Ve ; 2
J(u, f)=5;|uim—wi| +§;0/|fi(t)| dt. (4.4)

The optimal control problem (OP1) is recast into:
(OP1) minimize functional (4.4) subject to the constraints (4.3) for &llL, 2, ...

Since the constraint equations are fully uncoupled for éattte optimal control prob-
lem (OP1) is equivalent to:

(6!5],-) foreachi =1, 2, ..., minimize J; (u;, f;) subject to the constraints (4.3),
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where the functionalj; (u;, f;) is defined by
T T
2 2
Ji (i fi) = =i (1) = Wil + gﬂﬁm\ dr.
0

The pair(u, f) =2 uimei(X), Y ioq f,-(t)e,- (X)) is the solution for (OP1) if and only
if (&;, f;) is the solution foOP1;) for everyi. i

To solve the constrained minimization proble®RJ;) we introduce a Lagrange multi-
plier & and form the Lagrangian

T
Li(ui, fi &)= E|”i(T) - Wi|2 —ui(T)&(T) + w;&; (0)

T

+/<g|ﬁ(t)|2+”i(t)§i/(f) — Aiui ()& (1) + fi(ﬂ&(ﬂ) dt.
0

By taking variations of the Lagrangian with respectitas; and f;, respectively, we obtain
an optimality system which consists of (4.3),

£/(1) = 1i& (@) =0 in(0,7), §(T) =T (ui(T) — W;) (4.5)
and
§i()=—vfi(). (4.6)
We proceed to solve faii;, f;) from the optimality system formed by (4.3), (4.5) and (4.6).
By eliminatingé&; from (4.5)—(4.6) we have
FO=4fi0=0 NOD). [ =~ (u(T) = W,). @“.7)

Combining (4.7) and (4.3) we arrive at a second order ordinary differential equation with
initial and terminal conditions:

! (t) — \2u;(1)=0 in(0,T),
u; (0) = w;, (4.8)
[ w(T) + hiwi (T) = =L (ui (T) = W;).
The general solution to this differential equation is
ui(t) = C1e ' + Caehi'.
The initial and terminal conditions yield:
C1+ Ca=wj,
{ %e‘AiTCl + (2)\,‘6MT + %e)"‘T)Cz = %W,'.
Solving forC; andC2 and then plugging them into the general solution we find the formula

for the solutioni; to (4.8) and that formula is precisely (4.2). Hence, the solution to (OP1)
is expressed by (4.1)—(4.2).0

Similarly, we may derive an explicit formula for the optimal solution of (OP2).
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Theorem 4.2. Assume that € H}(£2), W € L?(2), W) e H3(2) N H} (), V) sat-
isfies (2.3) andF is defined by(2.6). Let (i1, f) € H%1((0, T) x £2) x L%((0, T) x £2) be
the solution of(OP2) Then

(%) =y hi(t)ei(x), (4.9)

i=1
where

AT (it —Ait
) ) Te it (et e i)
H=V"@)+ - V.70
u ( ) ( ) [ ( )]( 2; ,-)/e)‘iT Te)LiT Te_)‘fr)

T(e)»,'l _ e—)u,‘l)

. 4.10
2yeriT + Tehil — Te MT (@10

+ [Wi _ Vi(Y)(T)]

Proof. As in the proof of Theorem 4.1 we may write the constraint equations as
wi(t) + A (1) = fi(r) in (0, T), ui(0) =w; (4.11)

fori=1,2,....

To simplify the notation we drop the superscript?”’ and write V in place of V),
SinceV € H>1((0,T) x £2), we are justified by Theorem 3.6 to express (2.6) in the series
form

> Fitye; = F(t.x) =V, — div[A()VV] = Z[V/(t) + A V,-(t)]e,-
i=1 i=1
in L2(R2), a.et, (4.12)

so that
Fi(t)=V/(@t)+1Vi(t) a.e..
The functionall also can be written in the series form

o]

T (0.¢]
K. f) =2 Y |ui(T) = Wi| gZ/M(t)—Fi(t)lzdt

i=1 i=1p

T o0 2 )/ o0
=5;|u,-(T)—W,~} +§§

The optimal control problem (OP2) is recast into:

T
fO =V =nVi[Pdr.  (4.13)

—

0

(652) minimize functional (4.13) subject to the constraints (4.11) far=all, 2, ....

Since the constraint equations are fully uncoupled for éattte optimal control prob-
lem (OP2) is equivalent to:

(6!52) foreachi =1,2,..., minimize ; (u;, f;) subject to the constraints (4.11),
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where the functionak’; (u;, f;) is defined by
T T
Kitui, f) = i (T) W,-\2+§/\fi(r> — V() - Vi ar.
0

The pair(u, f) =2 ui(1)ei (%), Zfilﬁ-(t)ei (X)) is the solution for (OP2) if and only
if (@7, ;) is the solution forOP2) for everyi.

To solve the constrained minimization proble®R2) we introduce a Lagrange multi-
plier & and form the Lagrangian

Li(ui, fi, &)
T
= 5 |ui(1) = Wi* = i (D& (T) + it (0)
T

+ /<g|fi(t) - Vi —)»iVi(t)|2+Mi(t)${(t) — Aiu (1)&; (1) + fi(t)Ei(t)> dt.
0

By taking variations of the Lagrangian with respectta:; and f;, respectively, we obtain
an optimality system which consists of (4.11),

M) —2&M=0 in@©,T), &) =Tui(T)—-W) (4.14)
and
&) =—y[fit)—V/(®) =1 Vi()] in(O,T). (4.15)

We proceed to solve fofii;, f;) from the optimality system formed by (4.11), (4.14)
and (4.15). By eliminating; from (4.14)—(4.15) we have

{ fl(@6) =i fi(t) = V/'(t) = 32Vi(t) in(0,T),

fi(T)=V/(T)+ x; Vi(T) — %(ui(T) —W). (4.16)

Combining (4.16) and (4.11) we arrive at a second order ordinary differential equation with
initial and terminal conditions:

u]/ (1) = 2Zui (1) = V(1) = 22Vi(0) in (0, T),
u;i (0) = wj, (4.17)
W (T) + diui (T) = V)(T) + 1 Vi(T) = L(u; (T) = Wy).

Evidently, V;(¢) is a particular solution of this differential equation so that the general
solution is

ui(t) = Vi (t) + Cre ' 4 Cpeti',
The initial and terminal conditions yield:

C1+C2=wi - ‘/l(o)a
Te T CyLt (20T + TeMiT)Co= T[Wi = Vi(D)].
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Solving for C1 and C2 and then plugging them into the general solution we find for-
mula (4.10) for the solutioni; to (4.17). Hence, the solution to (OP2) is expressed
by (4.9). O

Remark. In order for series expressions (4.12) to be vallid;, X) = > 72, V;(1)e; (X) must
satisfy} %, |4;12| Vi (1)|?2 < oo for almost every. But then by Lemma 3.4/ (1) = V (¢, -)
must belong toH2(2) N H0 (£2). This is precisely the reason for choosiig")
H%(2)N H (£2) that approximate® so as to defin& and F.

Remark. As in the proof of Theorem 6.1 we may verify that the optimal solufiagiven
by (4.1)—(4.2) or (4.9)—(4.10) indeed belongsHé1((0, T) x £2) and satisfies = 0 on
(0, T) x 052.

5. Dynamics of the optimal control solutions

In this section we will derive pointwise-in-time estimates ffaz) — W ||o (in the case
of (OP1)) or|ji(t) — V&) (1)]|o (in the case of (OP2)) whetgis the optimal solution for
(OP1) or (OP2). The derivation will be based on the explicit solution formulae that were
expressed as series of eigen functién$. We recall thate; } is orthonormal inL?($2) so
that for any functionp (x) = 372, ¢e; () in L2(£2) we have|¢l|3 =352, ;|2

Lemmab5.1. Letx > 0 be given. The@ir < e — e <t — e forall 1 € [0, T1.

Proof. The right inequality follows from the fact that the functi@iir) = ¢* — e~ is
increasing ori0, T'] (asg’(¢r) > 0). The left inequality can be proved by the power series
expression for exponential functions:

00 oo X 1 2m—1.2m—-1
y Yy Ampm B Z (=21)mpmgm 3 A ¢

e —e = = R —
ot m! — m! — (2m — 1)!

This completes the proof.O

> 2\t

Theorem 5.2. Assumew € H}(2) and W € L%(2). Let (i, f) € H>X((0,T) x £2) x
L?((0, T) x £2) be the solution o{OP1) Then

W2 < 6e 24 |w|Z+3IWI5 Vielo,T] (5.1)
and for every integer > 1,

R 2 2y IIwIIO %12 2
lac = Wlo < T4 +_1<:'J<pn (1—e 24 T)ZZWV'
o0
+2 ) (w2 (5.2)
i=n+1

Furthermore, the optimal solutiof as a function of the parameter satisfies the approx-
imate controllability propertyim,, .o [|i(T) — W|o=0.
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Proof. Letr € [0, T] be given. Using solution formulae (4.1)—(4.2) and adding/subtracting
terms we have:

la@) = w(5=>"|uie) — Wi [?

i=1

”, e_)w-t 3 Te—)»,‘T(e)»,'t _ e—)»it)
! 20yl + T (eMT — =)

2

00
=2
i=1

w T(EAI-[ _ e—k;t)
i 2)~i7/€)‘iT + T(e)»,*T _ e—)»iT)

_Wi

0 . : . . .
) . 20 e)\,T +T e)»,T _ e*K,T - T e}n,t _ e*k,l‘
:Z{wi(e)”t —eik’T)—i- iy ( ) ( )

i=1 20 yeriT 4 T (eMT — e=HiT)

T Z)ul‘ye)\iT 4 T(ekiT _ e—kiT) _ T(e)”'[ _ E_)‘ft) W 2
1 w — : .
2)\i)/€)‘iT + T(e)\,'T _ ef)\iT) i
(5.3)

Applying the inequalityl Y2 | 4,12 <3Y"2_, |a;|? to (5.3) and using the relation

2)» )/6)\ T + T(e)» T _ 7)»'7") T(e)vt e*)»,'l)
2%;yeriT + T(eriT —e=4iT)

0< <1 (seelLemmab.l)

we obtain

”u(t)—W”o wld sup |e " — e HT 74 3e721T ||y||3 4 3| W13

1<i<oo

so that (5.1) holds.
Using formulae (4.1)—(4.2) with= T we have, for each integar> 1,

la) - w;

> 2
= |ui (1) — W]
i=1

_Z 2xiy _ 2y et | 2
_i:l 2hiyehiT + T (Ml —eHiT) i C 2yerT 4 T (el —enT) Wi

2\iy 2|w'|2
Z)Li)/e)‘fr + T(e)‘iT _ ef)"'T) !
2
W. 2
,y+T(1—e—2'\ T) Wil
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2 2 0 2 2 n
s %éﬂ&ﬁgmﬂ%r 8TL212:J£,, (1—5\%'%%2;'%'2
o0
+2 ) (wilA (5.4)
i=n+1
Using Lemma 5.1 we have
|3 [? LE 1 (5.5)

(ekiT _ e—AiT)Z = (ZkiT)z 472
Combining (5.4) and (5.5) we arrive at (5.2).

It remains to prove lim_.o li(T) — W|lo = 0. Let ¢ > 0 be given. There exists an
such that

00 2
PR
i=n+1
Holding thisr fixed, we may choose @ such that
2

8|y0l |Ai|? oo €2 2lyolPlwl3 €
sup _ [Wil*<— and —— < —.
T2 1<i<n (1_ e—ZALT)2 ; ! 3 T4 3

Thus, we obtain from (5.2) théiii(T) — W|lo < € for eachy €[0,yp]. O
We may similarly derive a pointwise-in-timg?(£2) estimate for the solution of (OP2).

Theorem 5.3. Assume that € H}(£2), W € L?(2), W) € H3(2) N Hi(£2), V) sat-
isfies(2.3)and F is defined by(2.6). Let (it, f) € H%1((0, T) x £2) x L%((0, T) x £2) be
the solution of(OP2) Then

i) = v )5 <3 |w = v O g + 3¢ |w - v O3
+3|w—vOm)|2 vieloTl, (5.6)

and

X 2y2
Ty — v < % |w— VOO +2|w - v D)2 (5.7)

If, in addition, hypotheseg.2), (2.4)and (2.5) hold, then the optimal solution as a
function of the parametey satisfiedim,, _.o [li2(T) — W]o=0.

Proof. Using solution formulae (4.9)—(4.10) and writingin place of V) (for notation
brevity) we obtain:

law) - vol?

= Jui )~ Vi)
=1



302 L.S. Hou et al. / J. Math. Anal. Appl. 313 (2006) 284—-310

[W; — V;(T)IT (et — el
2hjyerT + T (eMT —e=HiT)

.P“qg

I
N

{[wi = o+

Vi —wilTe ™™ sy i)
Z)W.ye)u,‘T + T(e)»l‘T _ e*)tiT)

v St Ty Wi = ViDIT (4! = e7Hih)
{[wz V,(O)](e e ) + 2)»1']/6}“"7‘ 4 T(e)»iT _ e—)niT)

&

1
1N

2}\.i}/€AiT + T(e)\;T _ e—)\;T) _ T(ekit _ e—)\,’t)
ZA,iye)LiT + T(E)”‘T _ e—)»l'T)

2
[wi — Vi(O)]e”}
(5.8)
so that
la) - vo)3 < Z i = ViOPle™ i — e T2 435 (Wi - Vi) 2
i=1

2)\.,]/€)L T + T(EA T —e -\ T) T(e)»,-t _ e—k,-t) 2
2)iyeliT + T (ehiT —e=iT)

X [wi - Vi(O)]Ze_z’\"T
<3 2 |lw — V() |5+ 3| W = V(D) |3+ 3¢ 24T |w — V(0|2
vVt e[0,T],
i.e., (5.6) holds.
Settingr = T in (5.8) and using (5.5) we have

la) - vl

2)\,')/ 2

wi — Vi(O)]Z-I-ZZ’Wi — Vi)
i=1

_e—)ul'T) [

|42

Tz(e)‘t _ e—A,-T)Z

8y2||w—V(O)||O sup +2|w—vn)?

2
<2 -vo i+ 2w - v

This proves (5.7).
The relation lim,_, o [|i2(T) — Wlo = O follows easily from the triangle inequality

Ja(T) = Wl < ) = V(D) g+ [V(T) -

estimate (5.7) and assumption (2.2)1

Wl

The particular choice o¥ ) (r) = W) satisfies (2.3)—(2.5). Thus Theorem 5.3 yields
the following result.
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Corollary 5.4. Assume that € H}(2), W € L2(2), W) e H2(2) N H}(£2) satisfy-
ing (2.2), V¥ (t,) = W) and F is defined by
F=FY =—div[AVW?] in(0,T)x £2.

Let(i, f) = (352, di(0)ei(x), Y22, fi(t)e; (X)) € H>((0,T) x £2) x L?((0, T) x £2) be
the solution of(OP2)given by

. . Te—)»,‘T(e)x[l‘ _ e—)»,‘t)
Ml(t) — Wi()/) + [wi _ Wl()/)] <€ Ait )

2njyeriT + Telil — TeMT

T(ekit _ e—A[t)

)
+[Wl _Wiy ]ZA’iyeAiT_FTeAiT_Te—)L,‘T. (59)
Then
la) — W |2 < 3e P |w — W2 4 32T |w — W |2 43| W — WD) 2
vVt €[0, T],
and

2
i)~ w1 < 2 fu - WO+ 2w = wo

Moreover, the optimal solutiofa as a function of satisfiedim,, .o [|li2(T) — W|o=0.

WhenW e H2(2) N H}($2) we may simply choos® ") = W and V) = W. Then
Corollary 5.4 reduces to the following.

Corollary 55. Assume thaw € H}(22), W € H3(£2) N H}(2), V) =W and F is
defined by

F=—dv[AX) VW] in (0, 7T) x £2.

Let(i, f) = (352, di(0)ei(x), Y22, fi(te;(x)) € HZX((0,T) x £2) x L?((0, T) x 2) be
the solution of(OP2)given by

R L Te_A.iT(e)\.it _ e—)u,’t)
i) =Ww; +[w; — Wi](e At _ TS TE T Te—’\'T) (5.10)
i —_— 1

Then

|a@) — W||§ <2e” M — W3+ 2e" T — W3 V1 €0, T]
and

2
R 2 2y
lar) — w5 < Tallw = WG

Moreover, the optimal solutiofa as a function of satisfiedim,, _.q [|i2(T) — W|o=0.
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6. Solutionsto the exact controllability problem

Recall that the exact controllability problem (EX-CON) is solvable i€ H&(Q) and
W e H&(Q). Formally settingy = 0 in (4.2) and (4.10) we expect to obtain solution
formulae for the exact controllability problem (EX-CON). But these formulae needs justi-
fication as infinite series functions are involved. We first examine the solution obtained by
settingy =0in (4.2).

Theorem 6.1. Assume that € H}($2) and W € HZ(£2). Then the functions

w(t, )=y ui®e() and f(,%) = fi(t)e;(x),

i=1 i=1
where
“NT (it —Ait Mt —Ait
i () = wie ™ —w; ek,(Te_ e—f,r ) + Wi ﬁ (6.1)
and
1T ghit ohit
fi(t)=—2)uiwim +2Xiwim, (62)

form a solution pair to the exact controllability problefaX-CON).

Proof. Sinceu; (0) = w; andu; (T) = W;, we have that (0) = w andu(T) = W. To show
that the paif(u, f) is a solution to (EX-CON) we need to show that- div[A(X)Vu] = f
in (0, T x ) andu=00n(0, T) x 352 and we will do so by employing Theorem 3.7.
We proceed to verify the assumptions of Theorem 3.7.
Lemma 3.3 and the assumptionsW € H&(Q) imply

o o0
> nillwi® <oo and Y [xi||Wif? < oo. (6.3)
i—1 i=1

Sinceu; (0) = w;, we obviously have 72, A, |u; (0)|% = 352, A |w;|? < oo.
Let C7 = 1— e=?1T € (0,1). Then we have 2T > 2,7 = —In(1 — Cr) so that
e?iT > 1/(1— Cr), or equivalently,

il — =Ml > CTe)"'T Vi.

From (6.1) and the last inequality we have
T
2 2
/IMI |ui ()| dt
0 T T T
—o 3 [2|wi |2 , 3 2| Wi 2 :
2 2 2t i v 2\t l l 2\t
< 34 7 w;l /6‘ dl‘+m/€ dl‘+m/€ dt
0 0 0

<30 Pl P+ BhilPwil? el 3| Wif2 et
SEEITE o0 T (Cp)2eT 20 (Cp)2eiT 2y
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3 3
<|x,-||wi|2(—+7)+|xi||w,-|2 (6.4)

2 2(Cr)2e?T 2(Cr)?

Combining (6.4) and (6.3) we arrive B2, [ 14 2|u; (1)2dt < co.
Differentiation of (6.1) yields

e—)u,'T(e)uil +e—)»,'l) e)nl'[_'_e—)ul‘l
il _ o—mT LMLy “nT

u;(t) = —\jw;e it _ Aiw;

Note thate*’ 4 ¢! < 2¢*i' so that estimations similar to those of (6.4) lead us to

T

2 3
/|u§(t)| dt§|)ui||wi|2(— >+|?»i||Wi|2
0

2 " CrzeT (CrE =%

Thus we have verified all assumptions of Theorem 3.7. Using that theorem we conclude
thatu € H21((0,T) x 22),u=00n(0,T) x 352, and

u, (1) — dV[AR)Vu(®)] = uf (e + Y Aiui(t)e;
i=1 i=1

S AT it Ait
e 1 e 1 1
= (—2)»,' i~ + 2A W,
l e 1 —_— e 1

i=

L 2

By a comparison of the last relation with (6.2) we dedy@e) = u,(t) — div[A(X)Vu(?)]
in L2(£2) for almost every so thatf = u; — div[A(X)Vu] € L%(0, T; L(£2)).
Hence, the paifu, f) is indeed a solution to (EX-CON).O

If W e H?(2) N H}(52), then by choosing’ ") = W and settingy = 0 in for-
mula (4.10) we obtain another solution for the exact controllability problem (EX-CON).

The proof of the following theorem is similar to that of Theorem 6.1 and is omitted.

Theorem 6.2. Assume that € H}($2) and W € H2(2) N H}(£2). Then the functions

w(t, )= uiei) and [, =Y fi(eiX),
i=1 i=1

where

AT (L hit 7)\,'1) =N T (At _ 7)»,'[)
) — . [ it _ € (e 4 (it € (e e
ui(t) = w; <e O —— +Will—e" + T — giT

and
_A.iTeA,it Ze_AiTe)Lit
fi(t) = —Zkiwim + AW <1+ m),

form a solution pair to the exact controllability proble(@X-CON).
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7. One-dimensional numerical simulations

In one space dimension the eigen pdi§ are well known so that optimal solutions
for (OP1) and (OP2) can be computed from series solution formulae (4.1)—(4.2) or (4.9)—
(4.10), respectively.

The one-dimensional constraint equations are defined on the spatial intesva0, 1):

ur—uyx=f in(0,T)x (0,1, u@,0=u(,1)=0 and u(0, x)=w(x).
The eigen pairg(1;, e;)}72, are determined from

—"(x)=xe(x) 0<x<1, e(0)=e(1)=0
Itis well known that

ri=(im)? and e¢j(x)=+2sininx), i=12....

Given a target functioV (x), the solution to optimal control problem (OP1) is explicitly
given by (4.1)—(4.2). To find the solution to (OP2) we first need to constitét and
V) satisfying (2.2)—(2.5); we then use solution formulae (4.9)—(4.10). Noteutha¥;

and Vl.(V)(t) in (4.2) and (4.10) are calculated by

1

w; =/w(x)e,~(x)dx, W; :/W(x)ei(x)dx and
0
1

Vi(y)(t):/V(V)(t,x)ei(X)dx'
0

We consider two sets of data (the initial conditian the target functiorw and the
terminal timeT):

5 5
Datal. T =2, wx) =Y iei(x)/V2, W) =T iei(x)/V2

i=1 i=1

1000
Datall. T =1, wx) =Y iei(x)/V2

i=1

—(= l)’

i

Wr)=1= ZWe,(x) in L2(2) whereW; = /e, N el

i=1

For each data set we solve (OP1) by series solution formulae (4.1)—(4.2). In each case
we vary the parameter and plot the optimal solutio at the terminal timel" (the “«”
curve) versus the target functiov (the “—" curve). See Figs. 1 and 3.

For each data set we solve (OP2) by series solution formulae (4.9)—(4.10). In the case
of Data |, we choose
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& b o o 3 3 3 B 8
5 b 2 o 3 ] 8 5

v = 0.001 ~v = 0.0001 v = 0.00001

Fig. 1. Optimal solutioni(7) and targetW for (OP1) with Data | {" = 2). *: optimal solutioni(7), —: target
function W.

y=01,t=T vy=001,t=T
v=1,t=T/200 y=1,t=T/20 y=1,t=T/2

Fig. 2. Optimal solutioni(¢) and targetW for (OP2) with Data | { = 2). *: optimal solutionii(¢), —: target
functionW.

5
W) =Wx) =T ie(x)/v2 and
i=1

5
V@) =W =T ieix)/v2

i=1
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=1 v=0.1 v =10.01

v =0.001 v = 0.0001 v = 0.00001
Fig. 3. Optimal solutioni(7) and targetw for (OP1) with Data Il " = 1). x: optimal solutioni(¢), —: target

functionw.

which evidently satisfy assumptions (2.2)—(2.5); in addition, formula (4.10) takes on the
simpler form (5.10), i.e.q = Zi5=1 i (H)v/2 sin(iwx) where

2t_

. . 922 2 _ 2.2
A 2i i 2.2, e 2i°mw (el T e im t)
. = —_— — —_— e — .
AR 1272, ¢2%5% | g2%n% _ g 2%

In the case of Data Il, we choose

ﬁ%l—(—l)i

W (x) = 2= " ¢i(x) and
T izl 1
N, ;
V(V)(t,x) _ W(y)(x) _ Q Z ﬁei (x),
T i—1 1

whereN, — oo asy — 0 (e.g.,N, is the integer part of the decimal numdé&000+
In(1/y)]). It can be verified thaW ) and V) satisfy assumptions (2.2)—(2.5); in ad-
dition, formula (4.10) takes on the simpler form (5.9), i+ Zfi’lﬁ,-(t)«/i sin(imx)
where

.2 i i V2 i
iy = —[1— (=D'1+ (ﬁ - —[1-D ])

22 2.2

o o =i (ol %t _ p—itm?t
x [e 77— ( - ) , =12 ...,1000
21'27.[2)/612:12 + el2n? _ p—iZn?
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y=1t=T y=01,t=T vy=001,t=T

y=1,t=T/20 v=1,t=T/10 y=1,t=T/2

Fig. 4. Optimal solutioni(r) and targetW for (OP2) with Data Il = 1). x: optimal solutioni(¢), —: target
function W.

and

R \/E ) 2 2 e*iznz eiznzt _ e*iznzz
”i:-_[l_(_l)l] I—e" 4~ g 2 | 2,2 ?2 2 )
i 2[27'[2)/6’ T | i ME _ p—itw

i =10011002...,N,.

As in the case of (OP1), for each data set we vary the paramesed plot the optimal
solutionz for (OP2) at the terminal tim& (the “x” curve) versus the target functio

(the “=" curve). See the first row of plots in Figs. 2 and 4. Note that unlike in the case
of (OP1), the optimal solutioi(T") for (OP2) matchedV very well even fory = 1. This
phenomena is expected from Corollaries 5.4 and 5.5.

Moreover, in the case of (OP2), we again from Corollaries 5.4 and 5.5 anticipate optimal
solutioni(¢) to yield good matching téV even for moderatg andr <« 7. Wheny =1,
we plot some snapshots of the optimal solutiofthe “x” curve) versus the target function
W (the “—" curve). See the second row of plots in Figs. 2 and 4.

For Data | the admissible state and the target state have matching boundary condi-
tions (both have homogeneous boundary conditions). For Data Il the admissible state
and the target function have nonmatching boundary conditions. For both data sets and
for sufficiently smally, the optimal solutions expressed by the series formulae did a
good job of tracking the target functions in the interior at the terminal times pre-
dicted by Theorems 5.2 and 5.3. The optimal solutions of (OP2) furnish good match-
ings to the target state even for moderatend: <« T, as predicted by Corollaries 5.4
and 5.5.
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