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INTRODUCTION 

Given a right ideal M in a ring T, the idealizer of M in T is the largest 
subring of T which contains M as a two-sided ideal. The purpose of this 
paper is to demonstrate that for certain subrings R of such idealizers, the 
properties of R are relatively close to those of T. Specifically, we require that 

TM = T, that R is a subring of T containing M as a two-sided ideal, and that 
R/M is a semisimple ring. For all three standard global homological 
dimensions-right and left global dimension, and global weak dimension-we 
prove that 

dim(T) < dim(R) < 1 + dim(T). 

When M is a finite intersection of maximal right ideals of T, and when the 

dimension in question is either the right global dimension or the global weak 
dimension, we derive conditions showing when each of the two allowable 
possibilities for dim(R) can occur. We also investigate when semiheredity 
conditions and chain conditions can be inherited by R from T. In the final 
two sections we investigate similar questions in the context of nonsingular 
rings. In particular, we derive conditions under which R can be a splitting 

ring, which means that the singular submodule of any R-module must be a 
direct summand. As an application, the results of this paper are used to 
construct a right and left Ore domain which is a splitting ring with all three 
global dimensions equal to 2. 

N.B.-In this paper all rings have identities, and all modules and subrings 
are unital. Also, we use the term “semisimple” to refer to a ring or a module 
which is a direct sum of simple modules, rather than to a ring or a module 
whose Jacobson radical is zero. 
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1. SUBIDEALIZERS 

Given a right ideal M in a ring T, the idealizer of M in T is just the set 
5’ = {t E T ( tM < M}. In [9] and [7], ‘t . I is s h own that the properties of S 
are nearly identical with those of T provided M is a semimaximal right ideal 

of T, by which is meant that M must be a finite intersection of maximal right 
ideals of T. [Equivalently, T/M must be a semisimple module.] The close 
connections between T and S seem to derive mainly from the following three 
consequences of the semimaximality assumption: 

(A) There is no loss of generality in assuming that TM = T. 
Specifically, T contains another semimaximal right ideal M’ such that 
TM’ = T and the idealizers of M’ and M coincide [9, Proposition 1.71. 

(B) S/M is a semisimple ring, which follows from the observation 
that S/M is isomorphic to the endomorphism ring of T/M [9, Proposition 1.11. 

(C) T/S is a semisimple right S-module [9, Corollary IS]. 

The aim of the present paper is to show that conditions (A) and (B) 
together are sufficient to ensure that the properties of S and T are relatively 
close, even when lair is not necessarily semimaximal in T and S is not neces- 
sarily the whole idealizer of M. For ease of reference to the conditions which 
are required, we introduce the following definitions: 

1 

(1) A right ideal M in T is a generative right ideal provided TM = T. 
[Note that as a consequence M2 = MTM = M.] 

(2) A subidealizer of M (in T) is any subring of T which contains M 

as a two-sided ideal. 

(3) If  R is a subidealizer of M, then R is a tame subidealizer provided 
R/M is a semisimple ring. 

The discussion above provides one class of examples of these concepts: 
the idealizer of a semimaximal right ideal can always be expressed as a tame 
subidealizer of a generative semimaximal right ideal. As a second class of 
examples, we observe that a maximal right ideal M of a ring T must either be 
generative or else a two-sided ideal. I f  we have a field F contained in the 
center of T, then the sum F + M is always a tame subidealizer of M. 

PROPOSITION 1.1. Let M be a generative right ideal of T, and let R be any 
tame subidealizer of M. 

(a) TR and RM are both finitely generated and projective. 

(b) The natural map T OR T -+ T is an isomorphism. 

Proof. According to [9, Lemma 2.11, TR is finitely generated projective 
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and T OR T + T is an isomorphism. The methods used there to show that 

TR is finitely generated projective can also be used to show the same for RM. 

An immediate consequence of Proposition 1.1(b) is that for any modules 
A, and TB, the natural map A OR B + A & B is an isomorphism. From 

this, we infer that the following natural maps are also isomorphisms: 
A@,T+A, T@,B+B,A+A@,T,B+T@,B.Inviewofthe 
latter two isomorphisms, we obtain Hom,(A, C) = Hom,(A, C) for all Cr 
and Hom,(B, D) = Hom,(B, D) for all =D, as in [13, Corollary 1.31. We 

note for later use that because of the isomorphisms RT + T @a T and 
TR --+ T (5JR T, we obtain (T/R) 8s T = 0 and T OR (T/R) = 0. 

PROPOSITION 1.2. Let M be a generative right ideal of T, and let R be any 
subidealizer of M. 

(a) TornR(A, B) z Tor,r(A, B) for all A,, =B, and all n > 0. 

(b) Ext”,(A, C) G Extn,(A, C) for all A, , C, , and aZZ n > 0. 

(c) Ext”,(B, D) s Extn,(B, 0) for all TB, =D, and al2 n > 0. 

Proof. Using the observations in the paragraph above together with the 
result that TR is projective, an easy induction establishes (a) and (b). 

Inasmuch as TR is flat and T OR T + T is an isomorphism, T is a left 
localization of R in the sense of [I 31, hence [13, Corollary 1.31 gives us (c). 

As noted in the preceding proof, a ring T is always a left localization of any 
subring R which is a subidealizer of a generative right ideal M. In view of the 
symmetry in the results of Proposition 1.2, it is natural to ask whether T must 
also be a right localization of R, i.e., is RT flat ? According to [7, Proposition 31, 

the answer is yes when M is semimaximal in T and R is the whole idealizer 
of M. On the other hand, [9, Example 7.61 shows that the answer is no in 
general, and the following proposition indicates that the full idealizers of 
semimaximal right ideals are the only tame subidealizers over which T is a 
right localization. 

PROPOSITION 1.3. Let M be a generative right ideal of T, and let R be any 
tame subidealizer of M. Then RT is$at if and only if M is semimaximal in T 

and R is the idealizer of M in T. 

Proof. Sufficiency is given by [7, Proposition 31. 
Conversely, assume that RT is flat, and suppose that R is distinct from the 

idealizer S of M. Observing that S/R is a nonzero right module over the 
semisimple ring RIM, we see that SIR has a direct summand A which is 
isomorphic to a nonzero right ideal J of R/M. Inasmuch as the map 

J+ J@R T+(R/M)@, T-+ T/M 
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coincides with the injection of J into TIM, we infer that J OR T # 0, from 
which it follows that A OR T # 0 and (S/R) 6& T # 0. Recalling that 
(T/R) OR T = 0, we see that the map (S/R) OR T -+ (T/R) OR T is not 
injective, which contradicts the flatness of R T. Therefore R = S. 

NowR/M=A,@...@A,, where each Ai is a simple right R-module. 
Inasmuch as 

T/MS (RIM) 01p T z (A, OR T) 0 **a 0 (A, OR T), 

we see that T/M will be semisimple in the event that any A, OR T which is 
nonzero is a simple right T-module. Choosing in such a case a maximal right 
ideal K of R such that Ai s R/K, we have A, OR T z T/KT, hence it 
suffices to show that KT is a maximal right ideal of T. If J is any proper 
right ideal of T which contains KT, then 1 4 J and so the maximality of K 
forces J n R = K. We now have an injective map R/K -+ T/J which, when 
tensored with the flat module s T, yields another injective map T/KT -+ T/J. 
Thus KT = J, hence KT is indeed a maximal right ideal of T. Therefore 
TIM is a semisimple right T-module, as required. 

2. HOMOLOGICAL DIMENSIONS 

This section is devoted to comparing the global and global weak dimen- 
sions of a ring with those of a tame subidealizer of a generative right ideal. 
Our procedure involves looking at projective and weak dimensions of modules 
over the two rings, for which we use the following notation: the projective 
dimension of a module A over a ring S is denoted pd,(A), while the weak 
dimension of A is denoted pod,(A). 

PROPOSITION 2.1. Let M be a generative r&ht ideal of T and let R be any 
tame subidealizer of M. If  A is any r&ht T-module, then pd,(A) = pd,(A) and 
wd,(A) = wd,(A). 

Proof. It is immediate from Proposition 1.2 that pd,(A) < pd,(A). On 
the other hand, it follows from the projectivity of TX that any projective 
resolution for A, is also a projective resolution for A, , whence pd,(A) < 
pd,(A). Thus pd,(A) = pd,(A), and similarly wd,(A) = wd,(A). 

THEOREM 2.2. Let M be a generative r$ht ideal of T and let R be any tame 
subidealizer of M. Then 

r.gl.dim.(T) < r.gl.dim.(R) < 1 + r.gl.dim.(T). 
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Proof. It is clear from Proposition 2.1 that r.gl.dim.(T) < r.gl.dim.(R). 
For the other inequality, we need only consider what happens when 
r.gl.dim.(T) = n < co. 

Case I. n = 0. Here M must be a direct summand of TT and thus also 
a direct summand of R, , whence (R/M)R is projective. Given any right 
ideal J of R, we note that J/JM is a projective right (R/M)-module, hence it 
must be projective as an R-module. Since JM is a right ideal of T, we obtain 

P~RUM) = PWM) = 0 f rom Proposition 2.1, from which it follows that J 
is projective. Therefore r.gl.di m.(R) < 1. 

Case II. n > 0. Given any right ideal J of R, we obtain pdR(JM) = 
pd,(JM) < n - 1 from Proposition 2.1. In particular, pd(M,) < n - 1, 
whence pd[(R/M),] < n. Inasmuch as J/JM is a projective right (R/M)- 
module, it follows that pd,(J/JM) < n, and thus pd,(J) < n. Therefore 
r.gl.dim.(R) < n + 1. 

THEOREM 2.3. Let M be a generative right ideal of T and let R be any tame 
subidealizer of M. Then 

GWD(T) < GWD(R) < 1 + GWD(T). 

Proof. Just as in Theorem 2.2, we obtain GWD(T) < GWD(R) in all 
cases, and GWD(R) < 1 + GWD( T) whenever GWD( T) > 0. The only 
case remaining is to prove the latter inequality when GWD( T) = 0, and 
here too we may proceed as in Theorem 2.2 once we show that (R/M), 

is flat. Inasmuch as T is a regular ring, we see that for any x E M, XT is a 
direct summand of TT . Then XT is also a direct summand of R, , hence 
R/XT is projective. As a right R-module, R/M is the direct limit of the 
modules {R/XT / x E M}, from which we conclude that (R/M), is flat. 

According to Theorems 2.2 and 2.3, there are exactly two possibilities for 
r.gl.dim.(R) and for GWD(R), and one asks under what conditions each 
possibility may occur. In case R is the whole idealizer of a semimaximal right 
ideal of T, these dimensions almost always coincide with those of T, as 
proved in [lo, Theorem 2.81 and [7, Theorems 5 and 63. In the present 
situation, if M is assumed to be semimaximal in T, we derive conditions 
which say precisely when each possibility occurs. In preparation for this, we 
first prove the following two lemmas, which will also be needed later. 

LEMMA 2.4. Let M be a generative right ideal of T and let R be any tame 
subidealizer of M. 

(a) TornR(R/M, T) = 0 for all n > 0. 

(b) Tor,R(RIM, T/R) = 0 for all n > 0. 

481/33/3-z 
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(c) If A is any right R-module, then Tor,R(A/AM, T) = 0 and 
TornR(A/AM, T/R) = 0 for all n > 0. 

Proof. (a) In light of the isomorphism M OR T---f n/r, we obtain 
ToriR(R/M, T) = 0. For 71 > 1, it follows from Proposition 1.2 that 

TornR(R/M, T) z Tori-,(M, T) z Tor,T_,(M, T) = 0. 

(b) The map (R/M) OR R -+ (R/M) OR T is clearly injective, hence 
in view of (a) we obtain TorrR(R/M, T/R) = 0. For n > 1, it is immediate 
from (a) and the flatness of RR that TornR(R/M, T/R) = 0. 

(c) Since A/AM is a projective right (R/M)-module, these results are 
immediate consequences of (a) and (b). 

LEMMA 2.5. Let M be a generative right ideal of T and let R be any tame 
subidealizer of M. If H is a right ideal of R which contains M, then R n HT = H, 
pd,(R/H) = pd,( T/HT), and wd,(R/H) = wd,(T/HT). 

Proof. In view of Lemma 2.4, we have TorlR(R/H, T/R) = 0, whence 
the map R/H -+ (R/H) OR T must be injective. Thus R n HT = H. 

Inasmuch as R/Mis semisimple, we have a split exact sequence 0 --f H/M-+ 
RIM -+ R/H -+ 0. Tensoring with T/R, we obtain another split exact 
sequence 

0 -+ (H/M) OR (T/R) -+ T/R -+ T/(R + HT) -+ 0, 

from which we infer that T/(R + HT) is isomorphic to a direct summand 
of (T/R), . Since TR is projective, we thus obtain pd,[T/(R + HT)] < 1, 
and consequently wd,[T/(R + HT)] < 1 also. 

Since R n HT = H, we obtain an exact sequence 

0 + R/H - T/HT + T/(R + HT) + 0. 

If (T/HT), is projective, then (T/HT), is projective by Proposition 2.1, 
from which we infer that R/H must be projective. On the other hand, if 
R/H is projective it follows immediately that (T/HT)r is projective. Thus 
we see that pd,(R/H) = 0 if and only if pdr( TIHT) = 0. 

Assuming now that pd,(R/H) and pd,(T/HT) are both positive, we see 
from Proposition 2.1 that pdR( T/HT) = pdr( T/HT) > 0 also. In view of the 
above exact sequence, we obtain pd,(R/H) = pd,(T/HT), and therefore 

PddR/H) = $4-(TIHT). 
Similarly, wd,(R/H) = wdr( T/HT). 

THEOREM 2.6. Assume that M is a generative semimaximal right ideal of T, 
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and let R be any tame subidealizer of M. Let S denote the idealizer of M in T, 
andsetH=(xERj(S/R)x =O>.IfR # T,then 

r.gl.dim.(R) = sup(r.gl.dim.( T), 1 + pd,(T/HT)}. 

Pmof. I f  r.gl.dim.(T) is infinite, then we are done by Theorem 2.2, 
hence we may assume that r.gl.dim.(T) = n < co. We note that since H is 
a two-sided ideal of R which contains M, R/H is a semisimple ring. 

Case I. n = 0. In view of the assumption that R # T, we see that 
M < R. Since TM = T, it follows that the map R OR (R/M) --f T OR (R/M) 

is not injective, from which we conclude that ,(R/M) is not flat. Thus 
GWD(R) > 0, and so r.gl.dim. (R) > 0. According to Theorem 2.2, we 
thus obtain r.gl.dim.(R) = 1. 

Case II. n > 0, pd,(T/HT) < n - 1. We have pd[(R/H),] < n - 1 
by Lemma 2.5, and S/R is a projective right (R/H)-module, whence 

pd[(S/R),] < n - 1. Thuspd(S,) < n - 1, and sopd[(T/S),] < n. 
Consider any right ideal J of R. Due to the semimaximality of M, T/S is a 

semisimple right S-module, from which we infer that JT/JS is isomorphic to 
a direct summand of a direct sum of copies of T/S. Thus pd,(JT/JS) < n. 
Since ]S/ J is a projective right (R/H)-module, we also have pd,(JS/J) < 
n - 1, hence pd,(]T/J) < n. According to Proposition 2.1, we have 
pd,(JT) < n - 1, from which we conclude that pd&) < n - 1. Therefore 

r.gl.dim.(R) < n, which in light of Theorem 2.2 yields r.gl.dim.(R) = n. 

Case III. n = 1, pd,(T/HT) = 1. Inasmuch as r.gl.dim.(R) < 2 by 
Theorem 2.2, it suffices to prove that r.gl.dim.(R) > 1. 

According to Lemma 2.5, (R/H), is not projective, from which it follows 
that (R/H), must have a simple submodule W which is not projective. If  

it happens that Hom,(W, T) # 0, then we obtain an exact sequence 
0 --t W---f T + V--f 0. In this situation it is clear that pd,( V) > 1, hence 
r.gl.dim.(R) > 1. Thus we may assume, without loss of generality, that 

Hom,(W, T) = 0. 
Letting P/R denote the sum of all submodules of (S/R)R which are 

isomorphic to W, we see that P/R is a fully invariant submodule of (S/R)s , 
whence P is an (R, R)-submodule of &i’s . Noting that S/R is a faithful right 
(R/H)-module, we infer that P # R. 

We now claim that PR cannot be projective. If  it is, then there exist elements 

{pi 1 i E I} in P and maps (fili E 1> from P, into R, such that for each 
x E P, fix = 0 for all but finitely many i E I, and xi pi(fix) = X. In view of 
the assumption that Hom,( W, T) = 0, it follows that Hom,[(P/R),, Ts] = 0, 
from which we infer that for each i the map fi is just left multiplication by 
the element ui = fil. Inasmuch as the elements ui all belong to the ideal 
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N={nERInPCR}, we conclude from the equation Cip,(fil) = 1 that 
R_CPN. 

Observing that MC N, and recalling that M = M2, we see that 
M OR (R/N) = 0, from which it follows that ToriR(R/M, R/N) = 0. 
Inasmuch as P C S, P/R is a projective right (R/M)-module, hence we obtain 
TorIR(P/R, R/N) = 0. It follows from this that R n PN = N, whence 
N = R and then P = R, which is false. 

Therefore PR cannot be projective. Since TR is projective, we thus obtain 
r.gl.dim.(R) > 1. 

Case IV. n > 1, pd,( T/HT) = n. According to Lemma 2.5, 

Inasmuch as S/R is a faithful right (R/H)-module, it follows that (R/H), is 
isomorphic to a direct summand of some direct sum of copies of (S/R)R , 
from which we obtainpd[(S/R),] > n. S ince n > 1, it follows thatpd(S,) > n 
also, whence pd[(T/S),] > n + 1. In light of Theorem 2.2, we thus obtain 
r.gl.dim.(R) = n + 1. 

THEOREM 2.7. Assume that M is a generative semimaximal right ideal of T, 
and let R be any tame subidealizer of M. Let S denote the idealizer of M in T, 
and set H = {x E R 1 (S/R)x = O}. If R # T, then 

GWD(R) = sup{GWD(T), 1 + wd,(T/HT)}. 

Proof. If GWD(T) is infinite, then we are done by Theorem 2.3, hence 
we may assume that GWD(T) = n < 03. 

Case I. n = 0. Analogous to Theorem 2.6. 

Case II. n > 0, zudT(T/HT) < n - 1. Analogous to Theorem 2.6. 

Case III. n = 1, wd,( T/HT) = 1. 

Inasmuch as GWD(R) < 2 by Theorem 2.3, it suffices to prove that 
GWD(R) > 1. 

According to Lemma 2.5, (R/H), is not flat. Inasmuch as S/R is a faithful 
right (R/H)-module, we see that (R/H), must be isomorphic to a direct 
summand of some direct sum of copies of (S/R)R , from which it follows that 
(S/R)R is not flat. Therefore ToriR(S/R, R/K) # 0 for some left ideal K of R, 
and we claim that this K may be chosen so that SK = K. 

Observing that M = M2 and (S/R)M = 0, we see that (S/R) @R M = 0, 
whence TorlR(S/R, R/M) = 0. Inasmuch as R/(K + M) is isomorphic to a 
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direct summand of ,(R/M), we thus obtain Tor,RIS/R, R/(K + M)] = 0. 
In light of the exact sequence 

O-+M/(KnM) +R/K+R/(K+M)+o, 

it follows that TorrRIS/R, M&K n M)] # 0. Since RM is flat by Proposi- 
tion 1.1, we have TorzR(S/R, R/M) = 0 also, from which we infer that 
TorrRIS/R, R/(K n M)] # 0. Thus, replacing K by K n M, we may first 
of all assume that K C M. Now SK C M, so that SK is a left ideal of R. 
Inasmuch as SK/K is a projective left (R/M)-module, we use the fact that 
TorrR(S/R, R/M) = 0 to see that TorlR(S/R, SK/K) = 0. Together with 
the condition TorlR(S/R, R/K) # 0, this forces TorlR(S/R, R/SK) # 0. 
We now replace K by SK, so that we have a left ideal K of S such that K C R 
and TorrR(S/R, R/K) # 0. 

We now claim that S, is not flat. If it is flat, then the natural map 
S OR K -F SK is an isomorphism. Since the map R OR K ---f S @JR K -+ SK 
is also an isomorphism, it follows that R @JR K -+ S OR K is an isomorphism. 
However, this shows that (S/R) @R K = 0 and so TorlR(S/R, R/K) = 0, 
which is false. Therefore S, is not flat. Since TR is projective, we thus obtain 
GWD(R) > 1. 

Case IV. n > 1, zud&T/HT) = n. Analogous to Theorem 2.6. 

We note that the module T/HT used in Theorems 2.6 and 2.7 is somewhat 
easier to find if R/M happens to be a simple ring. In this case SIR is either 0 or 
a faithful right (R/M)-module, from which it follows that T/HT is either 0 
or just T/M. In particular, when M is a maximal right ideal of T, then S/M 
(which is isomorphic to the endomorphism ring of T/M) must be a division 
ring, hence RIM must be a division ring also. 

We next take up a question intermediate to the questions of when the 
global or global weak dimensions of R can be at most 1, namely, when R can 
be right or left semihereditary. Part of our procedure is based on S. U. 
Chase’s characterization of semiheredity [3, Theorem 4.11: A ring R is left 
semihereditary if and only if every torsionless right R-module is flat. [We 
recall that a torsionless R-module is simply one which can be embedded in a 
direct product of copies of R.] 

THEOREM 2.8. Assume that M is a generative semimaximal right ideal of T, 
and let R be any tame subidealizer of M. Let S denote the idealizer of M in T, 
and set H = {x E R 1 (S/R)x = O}. 

(a) R is left semihereditary if and only if T is left semihereditary and 
(T/HT), is flat. 

(b) R is right semihereditary if and on$ if T is right semihereditary and 
(T/HT), is projective. 
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Proof. (a) If R is left semihereditary, then GWD(R) < 1, hence 
Theorem 2.7 shows that wd,(T/HT) = 0. Given any torsionless right 
T-module A, it follows from the projectivity of TR that A, is torsionless too. 
Then A, must be flat, hence so is (A OR T)T s A,. Therefore T is left 
semihereditary. 

Conversely, assume that T is left semihereditary and that (T/HT), is flat. 
We are done if R = T, hence we may assume that R # T, so that we obtain 
GWD(R) = 1 from Theorem 2.7. Now any torsionless right R-module A 
can clearly be embedded in a torsionless right T-module B, which must be 
flat because T is left semihereditary. Inasmuch as TR is projective and 
GWD(R) = 1, we conclude that B, is flat and so is A. Therefore R is left 
semihereditary. 

(b) First assume that T is right semihereditary and that (T/HT), 

is projective. Given any finitely generated right ideal J of R, it follows as in 
Case II of Theorem 2.6 that pdR( JT/ J) < 1. Inasmuch as JT is a finitely 
generated right ideal of T and thus is projective, we obtain pd,( JT) = 0 
from Proposition 2.1, hence J must be projective. Therefore R is right 
semihereditary. 

Conversely, if R is right semihereditary then it follows as in (a) that 
wd,(T/HT) = 0, hence by Lemma 2.5 (R/H), is flat. 

Inasmuch as S/R is faithful right (R/H)-module, it follows that (R/H), 
may be embedded in a direct sum of n copies of (S/R)R , for some positive 
integer n, whence (R/H), s A/R” f or some finitely generated submodule 
A of (9)s . Since ( Tn)R is projective and R is right semihereditary, it follows 
that A must be projective. In view of the exact sequence 0 -+ R” + A + 
R/H + 0, we now see that (R/H), is finitely presented. Since it is already 
flat it must therefore be projective, whence (T/HT), is projective. 

If J is any finitely generated right ideal of T, then since TR is finitely 
generated we see that JR is finitely generated. Since TR is projective and R is 
right semihereditary, it follows that JR is projective, and then Proposition 2.1 
says that JT is projective. Therefore T is right semihereditary. 

To conclude this section, we investigate the relationship between the left 
global dimensions of T and R, where R is a tame subidealizer of some 
generative right ideal M of T. We begin with a lemma about the projective 
dimensions of left T-modules, which is based on the following observation: 
Inasmuch as s&Z is projective by Proposition 1 .I, we have pd[,(R/M)] < 1, 
from which it follows that pd,(A/MA) < 1 for all left R-modules A. 

LEMMA 2.9. Let M be a generative right ideal of T, and let R be any tame 
subidealizer of M. If  A is any left T-module, then 

&(A) G $4@) d 1 + z%-(4 
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Proof. It is immediate from Proposition 1.2 that &(A) < pd,(A). 
Observing that M(T/R) = 0, we see from the remarks above that 
pd[,(T/R)] < 1, whence p&T) < 1. Thus pd,(P) < 1 for all projective 
left T-modules P, from which a straightforward induction establishes that 

P4(4 G 1 + P4(4 

THEOREM 2.10. Let M be a generative right ideal of T, and let R be any 
tame subidealizer of M. Then 

l.gl.dim.(T) < l.gl.dim.(R) < 1 + l.gl.dim.(T). 

Proof. It is clear from Lemma 2.9 that l.gl.dim.(T) < l.gl.dim.(R).To 
prove the other inequality we may assume that l.gl.dim.(T) = n < co. 

Case I. n = 0. In this case M = eT for some idempotent e E T, and 
the idealizer of M is just eT + T(1 - e), from which we see that 
R = eT + R(l - e). It is clear from this equation that R(l - e) is a two- 
sided ideal of R. Observing that R = eTe + R(l - e), we infer that 
R/R(l - e) E eTe, which is a semisimple ring. Since R(l - e)M = 0, we 
see that RM is semisimple. 

To show that I.gl.dim.(R) < 1, it suffices to prove that any essential left 
ideal J of R is projective. Inasmuch as M C soc(,R) C J by [6, Corollary 1.31, 
we have M(R/J) = 0 and thus pd,(R/J) < 1. Therefore J is projective. 

Case II. n > 0. If J is any left ideal of R, then TJ is a left ideal of T, 

hence we obtainpd,( TJ) < n from Lemma 2.9. Observing that M(TJ/J) = 0, 
we see that pd,( TJ/J) < 1, from which it follows that pd&/) < n. Therefore 
l.gl.dim.(R) < n + 1. 

In view of the previous results in this section, one would expect at this 
point a theorem showing when each of the two possibilities allowed by 
Theorem 2.10 can occur, at least in the case when M is semimaximal. At a 
minimum, when T is not semisimple and M is a generative semimaximal 
right ideal of T, the idealizer of M ought to have the same left global 
dimension as T. Unfortunately this is false, as the following example shows. 

We first choose any left hereditary, left noetherian simple ring P which is 
not artinian. (For example, either of the rings F(y)[x] or F[y][x] discussed in 
Part III of [9] will do, as will the principal ideal domains constructed in 
[4, Theorems 1.4 and 2.31.) Since P is simple but not a division ring, any 
maximal right ideal N of P is generative. We now let F denote the center of P 
(which is a field) and set T = (p” ,“), M = (,” :). Inasmuch as N is a generative 
maximal right ideal of P, M must be a generative maximal right ideal of T. 
We finally let R be the idealizer of M in T, and note that R = (,” y), where I 
is the idealizer of N in P. 
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Setting K = (,” i), we note that K is a two-sided ideal of T, that T/K s P, 
and that .(T/K) is projective. Since the left ideals A = (E i) and B = (i ,“) 
are both left (T/K)-modules, it follows from the left hereditary assumption on 
P that any submodule of rA or TB must be projective. Observing that all 
proper submodules of .K are contained in A, we also have that all submodules 
of TK are projective. Since =T = K @ B, we thus conclude that T is left 
hereditary. On the other hand, T cannot be semisimple because it contains 
nonzero nilpotent ideals, for example A. Therefore l.gl.dim.(T) = 1. 

According to Theorem 2.10, l.gl.dim.(R) < 2. We claim that 

I.gl.dim.(R) = 2, 

which we prove by showing that R contains a left ideal which is not projective, 
namely A. To see this, it clearly suffices to prove that ,P is not projective. 

If on the contrary ,P is projective, then there exists a nonzero homo- 
morphism f : ,P -+ ,I. In view of the remarks after Proposition 1.1, we have 
(P/I) @I P = 0, hence (P/I) @,fP = 0 and so fP = P(fP). Thus fP is 
a nonzero left ideal of P which is contained in I, hence the two-sided ideal 
W = (x E I [ Px _C I} is nonzero. 

Now soc(P,) = 0 because P is simple but not artinian, hence we see that 
N must be an essential right ideal of P. The simplicity of P also implies that 
the right singular ideal of P is zero, from which we infer that WN # 0. 
Thus WN is a nonzero two-sided ideal of P, hence we obtain WN = P 
and then I = P, which is impossible. Therefore ,P is in fact not projective, 
and we have shown that I.gl.dim.(R) = 2. 

Thus we see that the left global dimension of the idealizer of a generative 
maximal right ideal of T can be larger than I.gl.dim.( T). We can also use this 
example to show that the idealizer of a generative maximal right ideal of a 
left noetherian ring need not be left noetherian, as follows. 

With K, A, and B as above, we use the left noetherian assumption on P 
to see that ,A and *B are noetherian. Inasmuch as A @B is a maximal 
left ideal of T, it follows that T must be left noetherian. However, R is left 
semihereditary by Theorem 2.8 but not left hereditary, hence R cannot be 
left noetherian. 

3. CHAIN CONDITIONS 

In this section we investigate when a subidealizer of T can inherit chain 
conditions from T. We first look at right-hand chain conditions, where the 
situation is relatively straightforward. 

THEOREM 3.1. Assume that iVl is a generative semimaximal right ideal of T, 
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and let R be any tame subidealizer of M. Also, let S denote the idealism of M in T. 

(a) R is right noetherian if and only if T is right noetherian and (S/R)R 
is finitely generated. 

(b) R is right artinian if and only ;f  T is right artinian and (,!Y~/R)~ is 
finitely generated. 

Proof. (a) If R is right noetherian, then the finitely generated right 
R-module TR must be noetherian, whence T is a right noetherian ring. Since 
(S/R)R is a submodule of (T/R), , it is clear that (S/R)R is finitely generated. 

Conversely, assuming that T is right noetherian and that (S/R)R is 
finitely generated, we see from [9, Theorem 2.21 that S is right noetherian. 
Clearly S, is finitely generated. Given any right ideal J of R, we observe that 
]S and JM are right ideals of S, from which we infer that jS and JM are 
finitely generated as right R-modules. Now JS/JM is a finitely generated 
right (R/M)-module and so is noetherian, hence J/ JM is finitely generated. 
Therefore J must be finitely generated, whence R is right noetherian. 

(b) If R is right artinian, then the finitely generated right R-module TR 

must be artinian, hence T is a right artinian ring. Since R is also right 
noetherian, it follows from (a) that (S/R)R is finitely generated. 

Conversely, assuming that T is right artinian and that (S/R)R is finitely 
generated, we see from [9, Theorem 2.21 that S is right artinian. Inasmuch as 
T is also right noetherian, it follows from (a) that R is right noetherian. Now 
(R/M), is already artinian, and MS has composition series, hence it suffices 
to show that any composition factor C of MS has finite length as an R-module. 

Case I. CM = 0. Here C is a right module over R/M and so is semi- 
simple. Since R is right noetherian, C, is finitely generated and thus is 
a finite direct sum of simple R-modules. 

Case II. CM # 0. Here the set A = {x E C 1 xM = 0} is a proper 
S-submodule of C, whence A = 0. Then given any nonzero x E C, we see 
that xM is a nonzero S-submodule of C, hence xM = C and thus xR = C. 
Therefore C, is simple. 

As we saw in the example at the end of Section 2, the left noetherian 
condition need not carry over from T to the idealizer of a generative semi- 
maximal right ideal. It turns out, however, that the left artinian condition 
does carry over. This is due to the fact that in an artinian ring, the idealizer of 
a semimaximal right ideal can also be expressed as the idealizer of a semi- 
maximal left ideal, as we now show. 

LEMMA 3.2. Let J be the Jacobson radical of T, and assume that T/J is 
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semisimple. Assume that M is a semimaximal right ideal of T, and let S denote 
the idealizer of M in T. Then T contains a generative semimaximal left ideal K 
such that S is also the idealizer of K in T. 

Proof. Inasmuch as M is semimaximal in T, we have J C M, and then 
[9, Lemma 3.11 shows that S/J is the idealizer of M/J in T/J. I f  we can 
express S/J as the idealizer of some generative semimaximal left ideal K/J 
of T/J, then K will be a generative semimaximal left ideal of T and [9, 
Lemma 3.11 will show that S is the idealizer of K in T. Thus we may confine 
our attention to T/J, i.e., we may assume that T is semisimple. 

Now M = eT for some idempotent e E T. Clearly S = eT + T(1 - e), 
hence S is also the idealizer of the left ideal T(l - e). Inasmuch as T is a 
semisimple ring, T(l - e) is a semimaximal left ideal of T, hence [9, Proposi- 
tion I.71 says that T( 1 - e) may be enlarged to a generative semimaximal left 

ideal K of T such that S is also the idealizer of K. 

THEOREM 3.3. Assume that M is a generative semimaximal right ideal of T, 
and let R be any tame subidealizer of M. Let S denote the idealizer of M in T, 
and set H = {s E S 1 sM = O}. Then R is left artinian if and only if T is left 
artinian and R[S/(R + H)] is Jinitely generated. 

Proof. Assume first that T is left artinian and that R[S/(R + H)] is 
finitely generated. In light of Lemma 3.2, it follows immediately from 
Theorem 3.1 that S is left artinian, whence ,M must have a composition 

series. Inasmuch as R(R/M) is already artinian, it thus suffices to show that 
any composition factor C of ,M has finite length as an R-module. 

Case I. MC = 0. Here C is a left module over R/M, hence it suffices 
to show that &is finitely generated. In view of the hypothesis on ,[S/(R+H)], 
it is clear that R(S/H) is finitely generated. Observing that C is a simple left 
(S/H)-module, we conclude from this that &’ must be finitely generated. 

Case II. MC # 0. Just as in Case II of Theorem 3.1(b), & is simple. 
Conversely, assuming that R is left artinian, we see that .M is an artinian 

module, whence sM must be artinian. Inasmuch as M is semimaximal in T, 
S/M is a semisimple ring, from which we now infer that S is left artinian. 
Observing that M is a faithful left module over the left artinian ring S/H, 
we infer that s(S/H) can be embedded in some finite direct sum of copies 
of sM. Since R is left noetherian, we conclude from this that s(S/H) must be 
finitely generated, whence R[S/(R + H)] is finitely generated. 

If  P denotes the prime radical of T, then P is contained in the Jacobson 
radical of T and hence in M. Thus RP is artinian and so rP is artinian, hence 
it suffices to show that T/P is left artinian. Inasmuch as M/P is a generative 
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semimaximal right ideal of T/P and R/P is a tame subidealizer of M/P, we 
may thus assume that P = 0, i.e., we may assume that T is semiprime. 

Inasmuch as R is left artinian, its Jacobson radical J is nilpotent, and the 
ring R/J is semisimple. Now JM is a nilpotent right ideal of T and thus 
JM = 0, from which we see that RM is semisimple. Since R is left artinian, we 
obtain a decomposition IIM = A, @ ... @ A, , where each Ai is a simple 
left R-module. Recalling that TR is flat and that TM = T, we infer that 
T= TA,@...@TA,, hence T will be a semisimple ring (and thus left 
artinian) if we show that each TA, is a simple left T-module. Given any 
nonzero x E TA, , we use the relations TM = T and MT = M to see that 
Mx is a nonzero R-submodule of Ai , from which it follows that Mx = Ai 
and then TX = TA, . Therefore r( TA,) is indeed simple. 

4. NONSINGULAR RINGS 

This section has two objectives, the first of which is to establish the basic 
relationships between singular and nonsingular modules over a nonsingular 
ring T and over a subidealizer R of an essential right ideal of T. Secondly, 
we investigate a situation under which the inheritance of properties from T 
by R is left-right symmetric: Specifically, we show that under certain con- 
ditions R can be realized as a subidealizer of a left ideal in a ring which is 
Morita-equivalent to T. 

Our notation for singular submodules coincides with that used in [6]: 
9’(P) denotes the collection of essential right ideals of a ring P, Z(A) or 
Z,(A) denotes the singular submodule of a P-module A, and Z,.(P) and Z,(P) 
denote the right and left singular ideals of P. In case P is a right nonsingular 
ring, we use So to stand for the localization functor associated with the 
singular torsion theory. In the present paper we only have need for SOP, which 
is just the maximal right quotient ring of P [6, p. 181. 

PROPOSITION 4.1. Let T be a right nonsingulav ring, M an essential right 
ideal of T, R any subidealizer of M. 

(a) Y(T) = {K < TT / K n R E Y(R)}. 

(b) Y(R) = (1 G RR I JM E TO- 
(c) Z,(A) = Z,(A) for any right T-moduule A. 

(d) Z,(R) = Z(T,) = 0. 

(e) Ii, is essential in TR , and S”R = SOT. 

Proof. (a) Consider any K E Y(T), and suppose that (K n R) n A = 0 
for some right ideal A of R. Then K n AM = 0 and so AM = 0, because 
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AM is a right ideal of T. Inasmuch as M E sP( T) and Z,(T) = 0, it follows 
that A = 0, and thus K n R E Y(R). 

Now let K be any right ideal of T such that K n R E Y(R), and suppose 
that K n A = 0 for some right ideal A of T. Then A n ik’ is a right ideal of R 
satisfying (K n R) n (A n M) = 0, whence A n M = 0. Inasmuch as 
ME Y(T), it follows that A = 0, and thus K E Y(T). 

(b) If J is a right ideal of R such that JM E 9’(T), then JM E 9’(R) 
by (a), hence J E Y(R). 

Now let J E Y(R) and suppose that JM n A = 0 for some right ideal A 
of T. Then (J n A)M = 0, hence J n A = 0. Now A n M is a right ideal of 
R satisfying J n (A n M) = 0, hence A n M = 0 and so A = 0. Therefore 
JM E Y(T). 

(c) is immediate from (a) and (b). 

(d) According to (c) we have Z(T,) = 0, and then Z(R,) = 0 also. 

(e) Since ME Y(T) and T is an essential right T-submodule of SOT, 
we see that MT is essential in (SOT)=, whence SOT/M is a singular right 
T-module. Also SOT is a nonsingular right T-module, hence in light of (c) 
we see that (S”T)R is nonsingular while (SOT/M), is singular, from which we 
infer that MR is essential in (S”T)R . Consequently R, is essential in (S”T)R , 
and in particular RR is essential in TR . Now SOT is a regular, right self- 
injective ring [because Z,(T) = 01, hence [6, Proposition 1.161 says that 
SOT 2 SOR. 

PROPOSITION 4.2. Assume that M is a Jinitely generated, projective, 
essential, generative right ideal in a right nonsingular ring T, and let R be any 
tame subidealizer of M. Set V = {v E SOT 1 vM < M}, and let S denote the 
idealizer of M in T. 

(a) V is a ring which is Morita-equivalent to T. 

(b) M is aJinitely generated, projective, generative left ideal of V. 

(c) R is a tame subidealixer of M in V, and S is the idealizer of M in V. 

(d) If TT is essential in r(SOT), then V is a left nonsingular ring and M is 
an essential left ideal of V. 

Proof. (a) The natural map 4: V + End,(M) is injective because 
ME Y(T) and (SOT)* is nonsingular. Since (SOT)* is injective, 41 is also 
surjective and so is an isomorphism. Now Mr is finitely generated projective 
by hypothesis, and it is a generator because it is generative, hence V must be 
Morita-equivalent to T. 



SUBRINGS OF IDEALIZER RINGS 421 

(b) It is obvious that M is a left ideal of I’. We see by Proposition 1.1 
that IIM is finitely generated, and R is clearly a subring of V, hence ,M must 
be finitely generated. 

Since Mr and TR are both finitely generated projective, MR must be 
finitely generated projective, hence there exist elements m, ,..., mk E M and 
maps fi ,...,fk E Hom,(M, , RR) such that m,(fix) + ... + mk(fkx) = x for 
all x E M. Recalling that M is an idempotent two-sided ideal of R, we see that 
the maps fi are endomorphisms of MR . In view of the discussion following 
Proposition 1.1, each fi is an endomorphism of MT and hence is left multipli- 
cation by some v)i E V. Since ME Y(T) and (SOT), is nonsingular, we now 
infer that mlvl + ... + mkvk = 1, whence M is a generative left ideal of I/. 

Inasmuch as R is a subidealizer of a generative left ideal of V, we can use 
the discussion following Proposition 1.1 to see that V OR M s M. According 
to Proposition 1.1, RM is projective, hence we conclude that .M is projective 
also. 

(c) It is clear that R is a tame subidealizer of M in V, and that S is a 
subring of V which is contained in the idealizer of M. If zi is any element of 
the idealizer of M in V, then we have Mv C M, hence it follows from the 
identity TM = T that v E T. However, vM < M because v E V, hence we 
see that v E S. Therefore S is the idealizer of M in V. 

(d) We claim that RM must be essential in R(S”T). Given any sub- 
module A of R(S”T) satisfying M n A = 0, we see that M(T n TA) = 0. 
In view of the relation TM = T, it follows that T n TA = 0, and then 
TA = 0 because TT is essential in T(SOT). Thus A = 0, and so RM is 
essential in R(S”T). As a consequence RM is essential in RV, hence M is 
certainly an essential left ideal of V. 

As another consequence we see that vM is essential in V(S”T), hence ,V 
must be essential in V(S”T). Since SOT is a regular ring [because Z,(T) = 01, 
it now follows as in [6, Proposition 1.161 that Z,(V) = 0. 

THEOREM 4.3. Assume that T is a semiprime right and left Goldie ring 
with GWD(T) < 1, and let M be a finitely generated, essential, generative, 
semimaximal right ideal of T. Let R be any tame subidealizer of M, and let S 
denote the idealizer of M in T. 

(a) R is a semiprime right and left Goldie ring. 

(b) If R = S, then r.gl.dim.(R) = r.gl.dim.(T), l.gl.dim.(R) = 
l.gl.dim.(T), and GWD(R) = GWD(T). 

(c) If R # S, then r.gl.dim.(R) = sup(2, r.gl.dim.(T)}, l.gl.dim.(R) = 
sup(2, l.gl.dim.(T)}, and GWD(R) = 2. 



422 K. R. GOODEARL 

(d) R is right noetherian if and only if T is right noetherian and (S/R)R 
is finitely generated. 

(e) R is left noetherian if and only if T is left noetherian and R(S/R) is 
finitely generated. 

Proof. Inasmuch as T is a semiprime right and left Goldie ring, it follows 
from [ 11, Theorem 1.71 that T is right and left nonsingular as well as right 
and left finite-dimensional. According to [12, Corollary 1, p. 2281, it follows 

from this that every finitely generated flat right or left T-module is projective, 
hence, due to the assumption GWD( T) < 1, we see that T is right and left 
semihereditary. In particular, we note that Mr must be projective. 

Since T is a semiprime right and left Goldie ring, its right and left maximal 
quotient rings must coincide, i.e., SOT is also the maximal left quotient ring 
of T. It follows that =T is essential in =(SOT), hence we see from Proposition 4.2 
that the ring k’ described there is Morita-equivalent to T, that IM is a finitely 
generated, projective, essential, generative left ideal of V, and that S is the 
idealizer of M in V. Also, the Morita-equivalence implies that V is a semi- 

prime right and left Goldie ring with GWD( V) < 1. Thus, with the sole 
exception of semimaximality, we see that V, n/r, R, S satisfy the left-right 
duals of all our hypotheses on T, M, R, S. 

Inasmuch as M is semimaximal in T, the ring S is a tame subidealizer of ilf. 
Thus, according to Proposition 1.3, M will be a semimaximal left ideal of V 

provided we show that Vs is flat. In view of Proposition 4.1, we see that 
Z,(S) = 0 and that sS is essential in sV. Since S is left semihereditary by 
Theorem 2.8, it now follows from [6, Lemma 2.21 that V, is flat. 

(a) According to Proposition 4.1, Z,(R) = 0, and by symmetry 
Z,(R) = 0 also. Since TR is flat, any independent family {Ai} of nonzero left 
ideals of R gives rise to an independent family { TA,} of nonzero left ideals of T, 
hence it follows from the finite-dimensionality of TT that RR must be finite- 
dimensional. Symmetrically, R, is finite-dimensional also. Noting that any 
right annihilator ideal of R must be Y-closed in the sense of [6, p. 141, 
we see from [6, Theorem 1.241 that R has ACC on right annihilators. There- 
fore R is a right Goldie ring, and likewise also a left Goldie ring. If  N is any 
nilpotent right ideal of R, then NM is a nilpotent right ideal of T, hence 
NM = 0 and so N = 0. Therefore R is semiprime. 

(b) If  R = T, then we are done, hence we may assume that R # T. It 
follows that M is a proper essential right ideal of T, hence M cannot be a direct 
summand of T, i.e., (T/M), is not projective. Since M, is finitely generated 
(T/M), cannot be flat either, hence GWD(T) > 0 and r.gl.dim.(T) > 0. 
According to Theorems 2.6 and 2.7, r.gl.dim.(R) = r.gl.dim.(T) and 
GWD(R) = GWD(T). By symmetry, l.gl.dim.(R) = l.gl.dim.(Y), hence 
l.gl.dim.(R) = I.gl.dim.(T). 
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(c) Set II = (X E R / (S/R)% = 01, which is a proper two-sided idcal 

of R. Since R n HT = H by Lemma 2.5, we see that HT is a proper right 
ideal of T. Now HT E Y(T) because M < HT, hence HT cannot be a 
direct summand of T, i.e., T/NT is not projective. Observing that TjHT is 
isomorphic to a direct summand of T/M (because T/M is semisimple), and 
that T/M is a finitely presented right Z-module with pd,(T/M) .< 1, we 
see that TjHT too is a finitely presented right T-module with pd,( T/HT) < 1. 
Since T/HT is not projective it thus cannot be flat, hence we obtain 
wdr(T/HT) = 1 and pd,(T/HT) = 1. According to Theorems 2.6 and 2.7, 

we now have r.gl.dim.(R) = sup(2, r.gl.dim.(T)) and GWD(R) = 2. By 
symmetry, I.gl.dim.(R) = sup(2, l.gl.dim.( I’)}, hence l.gl.dim.(R) = 
sup(2, l.gl.dim.(T)}. 

(d) is automatic from Theorem 3.1. 

(e) By symmetry and (d), R is left noetherian if and only if P is left 
noetherian and R(S/R) is finitely generated. This is enough because I’ is 
left noetherian if and only if T is left noetherian. 

5. SPLITTING RINGS 

A ring P is said to be a (right) splitting ring provided that for every right 
P-module A, Z(A) is a direct summand of A. As noted in [2, Propositionl.121, 
this is equivalent to the requirement that Ext,r(A, C) = 0 for all nonsingular 
A, and all singular C, . According to [7, Theorem lo], the idealizer of an 
essential, generative, semimaximal right ideal in a right nonsingular splitting 

ring is again a splitting ring, hence we ask when a subidealizer in a splitting 
ring can be a splitting ring. One preparatory lemma is required first. 

LEMMA 5.1. Let M be an essential generative right ideal in a right non- 
singular ring T, and let R be any tame subidealizer of M. If  A is any nonsingular 
right R-module, then 

(a) The natural map A -+ A OR T is injective. 

(b) Z(A OR T) can be embedded in a direct sum of copies of T/M. 

(c) If  C is any right (R/M)-module, then Ext,“(A, C) = 0 for all n > 0. 

(d) If C is any right T-module, then Ext,“(A, C) s Ext,“(A OR T, C) 
for all n > 0. 

Proof. (a) According to [6, Proposition 1.181, A may be embedded in 
some direct product P of copies of SOR. Inasmuch as S”R = SOT, P is 
also a right T-module, hence we can express the embedding as a composition 
A + A OR T--f P OR T + P. Thus A + A OR T must be injective. 
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(b) Since TorrR(A/AM, T) = 0 by Lemma 2.4, we obtain an exact 
sequence 

O+AM@,T+A@,T+(A/AM)@,T-+O. 

In view of (a) we see that A can be embedded in a right T-module, hence 
AM is a right T-module. Thus AM OR T g AM, which is nonsingular, 
hence the map 

Z(A OR T) -+ A OR T---f (A/AM) @R T 

must be injective. Inasmuch as A/AM is a projective right (R/M)-module, 
we see that (A/AM) OR T can be embedded in a direct sum of copies of 
T/M, from which the required embedding of Z(A OR T) follows. 

(c) In view of the projectivity of TR , we have TorSR(T, R/M) = 0 
for all p > 0. As we noted above, AM is a right T-module, hence [l, Propo- 
sition 4.1.2, p. 1171 says that TorrR(AM, R/M) g TorlTIAM, T OR (R/M)]. 
However, T OR (R/M) = 0 because M is generative, hence we obtain 
TorlR(AM, R/M) = 0. Observing that (A/AM) OR M = 0, we see that 
TorlR(A/AM, R/M) = 0 1 a so, and thus Tor,a(A, R/M) = 0. Inasmuch as 
RM is projective, we also obtain TorDR(A, R/M) = 0 for all p > 1. 

According to [l, Proposition 4.1.3, p. 1181, we now have Ext,“(A, C) e 
Ext&,(A/AM, C) for all n > 0, and the latter terms are all zero because 
R/M is a semisimple ring. 

(d) This will follow immediately from [l, Proposition 4.1.3, p. 1181 
provided we show that TorSR(A, T) = 0 for all p > 0. 

We have TorlR(A/AM, T) = 0 by Lemma 2.4. As noted above, AM is a 
right T-module, hence ToriR(AM, T) z Tor,r(AM, T) = 0 by Proposition 
1.2, and thus Tor,R(A, T) = 0. Inasmuch as pd(RT) < 1 by Lemma 2.9, 
we also have TorDR(A, T) = 0 for allp > 1. 

THEOREM 5.2. Let M be an essential generative right ideal in a right 
nonsingular ring T, and let R be any tame subidealizer of M. If T is a splitting 
ring, and if Ext,l(T/M, C) = 0 for all singular C, , then R is a splitting ring. 

Proof. Given any nonsingular A, and any singular CR , we must show 
that Ext,l(A, C) = 0. Inasmuch as Ext,r(A, C/CM) = 0 by Lemma 5.1, 
it suffices to show that Ext,r(A, CM) = 0. Recalling that M = M2, it 
follows that there is no loss of generality in assuming that CM = C. 

Now C g P/J for some direct sum P of copies of MR and some R-sub- 
module J of P. There exists an exact sequence 

0-t J/JM- P/JM-+ C-+0, 
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and we have Ext,s(A, J/J&Z) = 0 by Lemma 5.1, hence all that remains is 
to show that Ext,r(A, P/JM) = 0. 

Obviously PI] and J/]M are singular, whence P/ JM must be singular. 
Since P is a right T-module, JM is a T-submodule of P, hence PI JM is 
a right T-module. According to Proposition 4.1, P/JM is also singular as a 
T-module, from which we see that 

Ext,‘NA OR T)IZ(A OR T), PIIMI = 0 

(because T is a splitting ring). 
In view of Lemma 5.1, there exists an exact sequence 

O+Z(A OR T)+ V+ W-to, 

where V is a direct sum of copies of T/M. According to our hypotheses we 
have Ext,l(T/M, P/ JM) = 0, w h ence Ext,l(V, P/JM) = 0. Inasmuch as T 
is a splitting ring, [14, Theorem 1.31 says that the injective dimension of 
the singular T-module P/]M is at most 1, from which we infer that 
Ex@(W, P/JM) = 0. In view of the exact sequence above, we obtain 
Ext,l[Z(A OR T), P/JM] = 0, and thus Ext,r(A OR T, P/JM) = 0. A 
final application of Lemma 5.1 now shows that Ext,l(A, P/JM) = 0, and 
we are done. 

At this point we note one special case where Theorem 5.2 may be applied, 
namely when all singular right T-modules are injective. (See [6, Chapter III] 
for an investigation of rings with this property.) In this case T is obviously a 
splitting ring, and the Ext condition is automatic. 

As in the cases of right global dimension and global weak dimension, the 
question of when a tame subidealizer of a right ideal M becomes a splitting 
ring can be answered precisely in case M is a semimaximal right ideal. In 
order to accomplish this, we need a sharpened version of Lemma 5.1(b), 
which we obtain from the following two lemmas. 

LEMMA 5.3. Assume that M is a generative semimaximal right ideal of T, 
and let R be any tame subidealizer of M. Let S denote the idealizer of M in T, 
and set H = {x E R j (S/R)x = O}. 

(a) H is a two-sided ideal of S. 

(b) T/S and NT/H are both semisimple right R-modules. 

Proof. (a) It is clear that H is a two-sided ideal of R, and we note that 
MC H. We have HIM = (H/M)2 b ecause RIM is semisimple, which 
together with the idempotence of M ensures that H is idempotent. Inasmuch 
as SH C R, we see from this that SH = H. 

48’/33/3-3 
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Since S/M is a semisimple right (R/M) -module, we obtain a decomposition 
S/M = (R/M) @ A of right (R/M)-modules. Noting that A E (S/R)R , 
we see that H/M = {y E R/M / Ay = O}. I nasmuch as H/M is a left ideal of 
S/M, we infer from this that (H/M)A 1s a nilpotent left ideal of S/M. Now 
S/M is a semisimple ring because M is semimaximal in T, hence we obtain 

(H/M)A = 0. In view of the equation S/M = (R/M) @ A, it follows that 
H/M is a right ideal of S/M, whence HS = H. 

(b) We can write M as a finite intersection Mr n ... n Me of maximal 
right ideals of T. Setting Ci = {t E T 1 tM < Mi} for each i, we note that 
the Ci are submodules of TR and that S = C, n ... n C, . Thus to show 

that (T/S), is semisimple, it suffices to prove that each T/C, is a simple right 
R-module. Given any t E T\C, , we see from the maximality of Mi that 
tM f  Mi = T, from which it follows that tR + Ci = T. Therefore (T/CJR 
is indeed simple. 

Inasmuch as HS = H by (a), (HT/H), is an epimorphic image of some 
direct sum of copies of (T/S), . As we have just shown that (T/S), is semi- 

simple, it follows that (HT/H), is semisimple also. 

LEMMA 5.4. Assume that M is an essential, generative, semimaximal right 
ideal in a right nonsingular ring T, and let R be any tame subidealizer of M. Let 
S denote the idealizer of M in T, and set H = (x E R j (S/R)x = O}. If A is any 
nonsingular right R-module, then Z(A OR T) can be embedded in a direct sum 
of copies of T/H-T. 

Proof. Noting that (R/H)M = 0, we see from Lemma 2.4 that 
TorrR(R/H, T) = 0, hence the map H OR T + HT is an isomorphism. 
Since this map is the composition of the map H OR T -+ HT OR T with 
the isomorphism HT OR T + HT, we find that the map H OR T--f HT OR T 
is an isomorphism. Recalling from Proposition 1.2 that TorrR(HT, T) g 
Tor,r(HT, T) = 0, we infer from this that TorrR(HT/H, T) = 0. 

Inasmuch as A is nonsingular, it follows from [6, Proposition 1.181 that we 
may assume A to be a submodule of some direct sum P of copies of SOR, and 
we use Proposition 4.1 to see that P is also a right T-module. Now AHTIAH 
is an epimorphic image of some direct sum of copies of HT/H, and (HT/H), 
is semisimple by Lemma 5.3, hence we infer that ANT/AH must be 
isomorphic to a direct summand of a direct sum of copies of HT/H. Since 
TorlR(HT/H, T) = 0, it follows that TorlR(AHT/AH, T) = 0, and so the 
map AH OR T -+ AHT OR T is injective. Of course AHT OR T E AHT, 
which is a nonsingular right R-module because PR is nonsingular, hence we 
infer that AH OR T is nonsingular. 
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Observing that (A/AH)M = 0, we obtain TorlR(A/AH, T) = 0 from 

Lemma 2.4, hence we get an exact sequence 

o-tAHO,T-tAO,T-t(A/AH)O,T-tO. 

Inasmuch as Z(AN @JR T) = 0, the map 

Z(A OR T) -+ A OR T--f (A/AH) OR T 

must be injective. In view of the fact that A/AH is a projective right (R/H)- 

module, we see that (A/AH) OR T may be embedded in a direct sum of 
copies of T/HT, and the required embedding of Z(A OR T) follows. 

THEOREM 5.5. Assume that M is an essential, generative, semimaximal 
right ideal in a right nonsingular ring T, and let R be any tame subidealizer of M. 
Let S denote the idealizer of M in T, and set H = (x E R 1 (SIR)x = O}. Then 

R is a splitting ring if and only if T is a splitting ring and Ext,l( TIHT, C) = 0 
for all singular C, . 

Proof. First assume that T is a splitting ring and that Extrl( T/HT, C) = 0 
for all singular Cr. . Given any nonsingular A, and any singular C, , proceed 

as in Theorem 5.2 to the point where 

Ext,l[(A OR T)/Z(A OR T), PjJM] = 0. 

Invoking Lemma 5.4, we obtain an exact sequence 

O-+Z(A& T)+ I,‘--+ W-+0, 

where 17 is a direct sum of copies of T/HT. In view of our hypothesis on 

T/HT, the remainder of the argument proceeds as in Theorem 5.2, and we 
find that R is indeed a splitting ring. 

Conversely, assume that R is a splitting ring. Given any nonsingular right 
T-module A and any singular right T-module C, we see from Proposition 4.1 
that A, is nonsingular and C, is singular, whence Ext,l(A, C) = 0. Then 
Extrl(A, C) = 0 by Proposition 1.2, hence T is a splitting ring. 

According to Lemma 2.4, TorrR(S/R, T) = 0, hence we obtain an exact 

sequence 

O-tR@RT+S@RT-+(S/R)@RT-+O. 

The composition 

R@RT+S@RTLT-+R@RT 

(where f  is just multiplication) is clearly the identity on R OR T, hence the 
exact sequence above splits and we find that [(S/R) OR T], is isomorphic to 
a direct summand of (S OR T)T. 
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If C is any singular right T-module, then we have Extsr(S, C) = 0 
because R is a splitting ring. In view of Lemma 5.1, it follows that 
Ext,i(S OR T, C) = 0 and hence that Ext,r[(S/R) OR T, C] = 0. Inasmuch 
as S/R is a faithful right (R/H)-module, we see that (R/H)a must be isomorphic 
to a direct summand of a direct sum of copies of (S/R)R . Thus T/HT is 
isomorphic to a direct summand of a direct sum of copies of (S/R) OR T, and 
so Ext,l(T/HT, C) = 0. 

We conclude by illustrating the usefulness of the preceding results in 
constructing examples. According to [14, Theorem 2.21, the right global 
dimension of a right splitting ring is at most 2, and examples have been 
constructed in [S] and [6, Example 5.1 l] of splitting rings with global 
dimension 2. However, both of these examples have nonzero socle, whereas 
the present example will be a right and left Ore domain which is a left 
splitting ring as well as a right splitting ring. Also, both global dimensions of 
this ring are 2, as well as the global weak dimension. 

To begin with, choose any field F of characteristic 0 which is infinite- 
dimensional over the rationals (which we shall denote by Q). We consider F 
to be a differential field with the zero derivation, and according to [8, Theorem, 
p. 7711 F may be extended to a universal differential field K. Next let T 
denote the ring of differential polynomials over K as constructed in [4, 
Theorem 1.41: T is a principal right and left ideal domain, T is a simple 
ring but not a division ring, and all simple right T-modules are injective. 
It is easy to see that the same arguments, with appropriate changes of sign, 
show that all simple left T-modules are injective. As indicated in [6, pp. 54, 
551, all singular right T-modules are injective, and likewise all singular left 
T-modules are injective. 

Choosing any maximal right ideal M of T, we use the fact that T is not a 
division ring to see that M is an essential right ideal of T. In particular, 
M # 0, hence the simplicity of T ensures that M is also generative. Since Q 
is clearly contained in the center of T, we see that the ring R = Q -/- M is a 
tame subidealizer of M. According to Theorem 5.2, R must be a right 
splitting ring. 

The ring T is obviously a semiprime right and left Goldie ring with all 
three global dimensions equal to 1. Since M must be a principal right ideal of 
T, all the hypotheses of Theorem 4.3 are satisfied, and we see in particular 
that R is a right and left Goldie ring. Of course R is a domain because T is, 
and so R must be a right and left Ore domain. Inasmuch as the derivation on F 
is zero, it follows from the construction of T that F is contained in the center 
of T and thus in the idealizer of M. Therefore R is not equal to the idealizer 
of M, hence Theorem 4.3 says that r.gl.dim.(R) = I.gl.dim.(R) = 
GWD(R) = 2. 
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If we let V be as in Proposition 4.2, then it follows from the Morita- 
equivalence that all singular left V-modules are injective. As proved in 
Theorem 4.3, I’ is a left nonsingular ring and M is a finitely generated, 
projective, essential, generative, semimaximal left ideal of V, hence it follows 
from Theorem 5.2 that R is also a left splitting ring. 

Finally, letting S denote the idealizer of M in T, we see that F + M is a 
subring of S, whence (F + M)/M is a subring of S/M. Inasmuch as F is 
infinite-dimensional over Q, we see that S/M must be infinite-dimensional 
over R/M, from which we conclude that neither (S/R)R nor R(S/R) can be 
finitely generated. According to Theorem 4.3, R is neither left nor right 
noetherian. 

To recapitulate, we have constructed a right and left Ore domain R which 
is neither right nor left noetherian, such that R is a right and left splitting 
ring, while the right and left global dimensions of R and its global weak 
dimension are all equal to 2. 
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