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Abstract

This paper describes LPS, a Language Prototyping System that facilitates the mod-
ular development of interpreters from semantic building blocks. The system is
based on the integration of ideas from Modular Monadic Semantics and Generic
Programming.

To define a new programming language, the abstract syntax is described as the
fixpoint of non-recursive pattern functors. For each functor an algebra is defined
whose carrier is the computational monad obtained from the application of several
monad transformers to a base monad. The interpreter is automatically generated
by a catamorphism or, in some special cases, a monadic catamorphism.

The system has been implemented as a domain-specific language embedded in
Haskell and we have also implemented an interactive framework for language testing.

1 Introduction

The lack of modularity and reusability of traditional denotational semantics
has already been recognized [45]. Monads were applied by E. Moggi [43] to
capture the intuitive idea of separating values from computations. After his
work, P. Wadler [52,53] applied monads to the development of modular inter-
preters and to encapsulate the Input/Output features of the purely functional
programming language Haskell [27]. That work produced a growing interest
in the development of modular interpreters using monads [10,47,53]. However,
the monad approach has a problem. In general, it is not possible to compose
two monads to obtain a new monad [26]. A proposed solution was the use of
monad transformers which transform a given monad into a new one adding
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new operations [38]. The use of monads and monad transformers to specify the
semantics of programming languages was called modular monadic semantics
by S. Liang et al. [37,36]. The close relationship between modular monadic
semantics and action semantics was described in [54] where they present a
system that combines both approaches.

In a different context, the definition of recursive datatypes as least fixpoints
of pattern functors and the calculating properties that can be obtained by
means of folds or catamorphisms led to a complete discipline which could be
named as generic programming [39,40,3].

Following that approach, L. Duponcheel proposed the combined use of
folds or catamorphisms with modular monadic semantics [9] allowing the in-
dependent specification of the abstract syntax, the computational monad and
the domain value.

Monadic catamorphisms were studied in [11,19] and applied to practical
functional programming in [41]. Inspired by that work, we applied monadic
folds [30,31,32] to modular monadic semantics, allowing the separation be-
tween recursive evaluation and semantic specification in some special cases.

The paper is structured as follows: in section 2, we give a brief overview
of the underlying theory, in section 3, we describe the architecture of the Lan-
guage Prototyping System, section 4 describes the structure of the semantic
specifications, and section 5 the interactive framework. As an example, section
6 describes the specification of a functional programming language with some
imperative features and different evaluation semantics. Finally, we discuss
some conclusions and directions for future work.

It is assumed that the reader has some familiarity with a modern functional
programming language. Along the paper, we use Haskell notation with some
freedom in the use of mathematical symbols and declarations. As an example,
the predefined Haskell datatype

data Either ab = Lefta | Rightb

will be used as
al| £ La | Rp

We will also omit the type constructors in some definitions for brevity.
The notions we use from category theory are defined in the paper, so it is not
a prerequisite.

2 Theoretical Background

2.1 Monads and Monad Transformers

Although the notion of monad comes from category theory, in functional pro-
gramming a monad can be defined as a triplet (M, returny, >=u) with a type
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Description Name | Operations

Error handling ErrM | err : String — ErrM «

Environment Access | EM rdEnv : EM Env

mEnv : Env - EMa — EM «

State transformer SM | update : (State — State) — SM State

fetch : SM State

set : State — SM State

Continuations CM | callce: (CMa —- CM 3) - CM a) - CM «

Table 1
Some classes of monads

constructor M and a pair of polymorphic operations:

returny o — Mo
(>=m) :Ma— (a— MB) — M3

which must satisfy three laws (see, for example, [53]). The basic idea is
that a monad M encapsulates a notion of computation and a value of type
M o« can be considered as a computation M that returns a value of type a.

The simplest monad of all is the identity monad Id which can be defined

as
Id z £y
return r =z
m>=f =fm

In the rest of the paper we use a special syntax, called the do-notation.
The conversion rules are:

do{m; e}
do{z « m;e}
do { let ezp; e }
do{e}

m>=\_— do{e}
m>= Az — do{e}
let exp indo { e }

e

It is possible to define special classes of monads for different notions of com-
putations like state transformers, environment access, continuations, excep-
tions, Input/Output, non-determinism, resumptions, backtracking, etc. Each
class of monad has some specific operations apart from the predefined returny
and (>=py). Table 1 contains some classes of monads with their operations.

When describing the semantics of a programming language using monads,
the main problem is the combination of different classes of monads. It is
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not possible to compose two monads to obtain a new monad in general [26].
Nevertheless, a monad transformer 7 can transform a given monad M into a
new monad 7 M that has new operations and maintains the operations of M.
The idea of monad transformer is based on the notion of monad morphism that
appeared in Moggi’s work [43] and was later proposed in [38]. The definition
of a monad transformer is not straightforward because there can be some
interactions between the intervening operations of the different monads. These
interactions are considered in more detail in [36,37,38] and in [17] it is shown
how to derive a backtracking monad transformer from its specification.

Our system contains a library of predefined monad transformers corre-
sponding to each class of monad and the user can also define new monad trans-
formers. When defining a monad transformer 7 over a monad M, it is neces-
sary to specify the returnyy and (=7 ) operations, the lift : Ma — T M «
operation transforming any operation in M into an operation in the new monad
TM, and the operations provided for the new monad.

Table 2 presents the definitions of some monad transformers that will be
used in the rest of the paper.

2.2 Functors, Algebras and Catamorphisms

As in the case of monads, functors are also derived from category theory but
can easily be defined in a functional programming setting. A functor F can
be defined as a type constructor that transforms values of type « into values
of type F a and a function mape : (¢ — ) - Fa — Ff.

The fixpoint of a functor F can be defined as

uF 2 In (F (F))

In the above definition, we explicitly write the type constructor In because
we will refer to it later.

A recursive datatype can be defined as the fixpoint of a non-recursive
functor that captures its shape. For example, the inductive datatype Term

defined as
Term £ Num Int | Term + Term | Term — Term
can be defined as the fixpoint of the functor T
Tz 2 NumiInt | v +2z |z — 2z
where the mapr is defined as?:

mapr (= B) = (Ta—TpH)

2 In the rest of the paper we omit the definition of map functions as they can be automat-

ically derived from the shape of the functor.
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Terr Ma = M («|| String)

return © = return (L x)

t>=f = 1>=)\y— caseyof
Error Lv — fu
handling Re o o

liftm = m>= A\t — return (L)

err msg = return (R msgq)

TenoMa 2 Env — Ma

return r = A\p — returns
Environment r >=f = = (zp)>=(Aa—=[ap)

lift x = A\p — x>=return

rdEnv = \p — returnp

mEnvpr = A—zxp

Tstate M & State — M (v, State)

return t = A¢ — return(z,<)

r>=f = A = (z5)>=(\(v,¢") = fovd)
State lift = \¢ = z>3>=(\z — return(z,<))
transformer update f = ¢ — return(s, f<)

fetch = update (A\¢ — <)

set ¢ = update (A\_— )

Teom Mwa £ (a — Mw) = Mw

return = Ak = KX
Continuations z>>=f = M= z(Av = f oK)

lift x = Ak = I>=kK

callce f = Ak = (f (Am = (A.— mK)) k)

Table 2

Some monad transformers with their definitions
mapt [ (Numn) =n
mapr [ (21 + 22) =fm + fx

mapr(JUl - xz) =fm —fm

Once we have the shape functor T, we can obtain the recursive datatype
as the fixpoint of T

Term =& uT

As an example, the term 3 + 4 can be represented as
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In ((In (Num 3)) + (In (Num 4))) : Term

The sum of two functors F and G, denoted by F & G can be defined as
F®G)r 2 Fz| Gz

where mapg g g is defined as

maprgc f (L z) L (mape f )
maprgc f (Rz) = R (maps f z)

Using the sum of two functors, it is possible to extend recursive datatypes.
For example, we can define a new pattern functor for factors as

Fe 2o xz |22

and the composed recursive datatype of expressions that can be terms or
factors can easily be defined as

Expr = p(T & F)

Given a functor F, an F-algebra is a function ¢f : Fa — « where « is
called the carrier. An homomorphism between two F-algebras ¢ : Fa — «
and ¢ : F 3 — [ is a function h : o — [ which satisfies

h.p = 1.mapeh

It is possible to consider a new category with F-algebras as objects and homo-
morphisms between F-algebras as morphisms. In this category, In : F(uF) — uF
is an initial object, i.e. for any F-algebra ¢ : Fa — «a there is a unique ho-
momorphism (¢]) : uF — « satisfying the above equation.

() is called fold or catamorphism and satisfies a number of calculational
properties [3,6,40,46]. It can be defined as:

(1) : (Fe—a)— (uF — )
(¢) = . mapr (¢) . out

where

out . puF — F (uF)
out (Inz) ==

As an example, we can obtain a simple evaluator for terms defining a T-
algebra whose carrier is the type M Int, where M is, in this case, any kind of
monad.

oT : T(MInt) — (M Int)
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o1 (Num n) = return n
T (tl + tg) = do
v — 4
Uy < 1y

return (v + vz)
©oT (tl — tg) = do

v — G

Vo — 1y

return (v; — vg)

Applying a catamorphism over ¢t we obtain the evaluation function for
terms:

evalrerm : Term — M Int
evalrerm = eval,r = (o7)

The operator @ allows to obtain a (F @ G)-algebra from an F-algebra ¢
and a G-algebra v

@: (Foe—a)—= (Ga—a)— (F&G)a—

The above definition allows to extend the evaluator for terms and factors
without modifying the existing definitions. If we want to add factors, we only
need to define the corresponding F-algebra over M Int as:

©F (tl X tg) = do
v — 1
Uy < 1y
return (v; X vy)
©OF (tl - tg) = do
v — 4
Uy < 1y
if v, == 0then
err “Divide by zero”
else
return (v; <+ vy)

Notice that, in this case, the monad M must support the err operation, i.e.
it must support partial computations. Now, a new evaluator for expressions is

automatically obtained by means of a catamorphism over the (T & F)-algebra.

eval gy, : W(TdF) — MInt
eUalEzpr = eUalu(T@F) = ([QOT S QOF])
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The theory of catamorphisms can be extended to monadic catamorphisms
as described in [11,19,30,32]. Given a monad M, we define a monadic function
f :a— M. For some combinations of monads and functors F, we define the
monadic extension of a functor F™ declaring the function

mapf @ (@ = MpB) = (Fa— M (F 3))

In the same way, we can define monadic F-algebras as @ : F @« — M a and
monadic catamorphisms as

) : Fe—->Ma)—uF - Ma
([e]) = we Q@ mapP ([we]) Q return . out

where @ represents the composition of monadic functions and can be de-
fined as

(@ : (F=M9) = (a=Mp)—=(a—=My)
fQqg =Xz = gz>=f

Using monadic catamorphisms, it is possible to separate the recursive eval-
uation from the semantic specification. In the simple evaluator example, we
can define the monadic extension of the functor T as:

mapy (= MB) = (Ta— (M(TB)))
map¥ f (Num n) = return (Num n)
mapT f (21 + 1) = do

vn [

U < [ 1

return (v + vy)
map? f (z, — 2) = do

v fo

v [z

return (v, — v)

Notice that the above definition could have been obtained automatically.
However, it specifies an explicit order of evaluation and a mandatory recursive
evaluation of subcomponents, which could be inappropiate for other expres-
sions.

Now, the semantic specification consists of a simple monadic T-algebra

woT :Ta —- Ma
wt (Num n) = return n

wrt (v, + v) = return (v + )
wrt (v — v) = return (v — )

and the evaluation of terms is automatically obtained as a monadic cata-
morphism
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eval Term . Term — M Int
evalrerm = eval,r = ([w])

It is possible to define the sum of two monadic algebras

®m : (Fe—>Ma)—= (Ga—-Ma) = (F&G) a— Ma)
(z0F ®m we)(L ) = wrz
(e ®m we)(Rz) = we

Finally, it is possible to combine catamorphisms and monadic catamor-

phisms with the following definition

-,2) :Fa—-Ma)— (G(Ma)—>Ma)— uF®G) - Ma
([, ) = case out z of
Lv — (wQmapf (o, ¢) Q return) v

Rv — (¢.map ([w,p)) v

3 Architecture of the Language Prototyping System

The Language Prototyping System (LPS) is defined as a domain specific lan-
guage embedded in Haskell. The structure of LPS is divided in several parts:

There are different programming language descriptions and the user can de-
fine new languages. If the user wants to add a new language, it is necessary
to define the parser, the pretty-printer and the semantic specification.

The interactive framework allows runtime selection and interpretation of
the different programming languages that were defined.

There are some modules for common tools. These tools give support to
theoretical concepts like functors, algebras, catamorphisms, etc. and to
common structures like heaps, stacks, symbol tables, etc.

Finally, the semantic blocks will allow the definition of the computational
monad. The system includes a library of some specific kinds of monads
(with their corresponding monad transformers) but the user can also define
new blocks.

4 Semantic specifications

The main goal is to obtain extensible and reusable semantic descriptions which
will form the basis for different programming languages. In general, the se-
mantic specification of a programming language can be obtained as a function
uwF — MV where:

M is the computational monad which can be defined as (77 . Tz ... Tp) M/
where 7; is a monad transformer that adds some notion of computation
and M’ is the base monad. In this way, it is possible to add or remove
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computational features to a programming language without changing the
rest of the specification.

* V is the value type. It can be defined using extensible union types which
facilitate the incremental extension of value types. To achieve this, we use
multi-parameter type classes with overlapping instances currently imple-
mented in the main Haskell systems. A more detailed presentation of this
approach can be found in [38]. In the rest of the paper, we assume that the
components of a value « || 5 are subtypes of it, and that, if « is a subtype
of v, then we have the operations 1: o — v and [|: v — a.

* 1 F is the fixpoint of a functor F that describes the shape of the abstract
syntax tree. F can usually be decomposedasF; & Fo @& ... & F, whereF;
are different pattern functors that capture syntactic entities as arithmetic
expressions, comparisons, declarations, etc. For each F; we define an F;-
algebra or a monadic F;-algebra.

Therefore, the interpreter function uF — MV can be obtained as a cata-
morphism or a monadic catamorphism.

5 Interactive Framework

We have implemented an application which allows runtime selection of inter-
preted programming languages and provides a common framework for lan-
guage testing. In order to use programming languages of different types in
the same data structure, we used the approach described in [34] combining
existential types with type classes.

In order to integrate a new language to be interpreted under our frame-
work, it is necessary to supply the parser, the pretty printer and the semantic
specification. We use the Parsec combinator library [35] which is based on
the parser combinators described in [22], but the system does not depend on
any particular parser library. Regarding pretty printing, we use the library
developed in [21]. As in the case of parsing, the system does not depend on
this particular library.

The interactive framework can be configured with a list of languages

Ly = [haba"';ln]

At any moment the system contains an active programming language
l; € Ly and it allows the following operations:

Loading a program p; written in the current language [;.

Execute that program p;.

Select a different language.

Interrupt and debug the language that it is executing.

Show information about the loaded program and the current language.
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We have implemented descriptions of simple imperative, functional, object-

oriented and logic programming languages.

6 Specification of MLambda

As an example, in this section we apply LPS to the specification of MLambda,
a simple functional language with some imperative features.

6.1 Syntactical Structure

In order to simplify the presentation, the syntactical structure of MLambda
consists of a single category of expressions. It will be divided in different syn-
tactical components which will allow an independent semantic specification.
The syntactical components will be:

Arithmetic expressions.

Arithz & NumInt |z + 7z |z -2 |z x 2 | v+ 1

Boolean expressions

A

Booleanz = BBool | x ANz | z V &

Comparisons
Cmpr =z <z |z>z|z<z|z>z|z=1x|z+7

Variables

Varz = V Name

References and assignments
Refz 2 refo |z |z =2 | z;02

This block offers reference variables and assignments. ref e allocates a
new location in the heap with the value of e and returns the new location, ! z
obtains the value from the position referenced by the value of e, e; := e
assigns the value of ey to the position referenced by the value of e, and
finally, ey ; ey evaluates ey after ey.

Functional Abstractions
Funcz = Ay Namez | A\y Namez | A\ Names | 1@z

Ax n e indicates lambda abstraction (for example, An — n + 3). We use
three different types of evaluation, by name (\y), by value (Ay) and lazy
(A). e1 @ ey indicates the application of e; to e.
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* Local Declarations
Decz = Lety Namez x | Lety Name xz x| Let, Name z ©

Letx n ey ey indicates the evaluation of ey assigning the value of e to z.
We will allow recursive evaluation in three ways, by name (Lety), by value
(Lety) and lazy (Letr).

o First class continuations

Callccz £ Callee

The language can be defined as the fixpoint of the sum of the defined
functors

L = u(Arith @ Boolean & Cmp @ Var @ Ref @& Func @ Dec)

6.2 Computational Structure

The computational structure will be described by means of a monad, which
must support the different operations needed. In this sample language, we
need: environment access, state update, partial computations, and continua-
tions.

The resulting monad can be obtained applying the corresponding monad
transformers to a base monad. In this example, we use the identity monad Id
as the base monad but in a more practical language we could have been used
other monads, like the predefined 10 monad to obtain direct communication
with the external world.

This computational structure is defined as

Comp é (7.E'rr . 7TS'tate . 7'Em/ . TCont) Id

6.3 Domain value

The domain value will consist of two primitive types, integers and booleans,
and the combined type of functions. Functions will be represented as values
of type Comp Value — Comp Value. The Domain Value can be described as:

Value £ Int||Bool|| Loc||Comp Value — Comp Value

6.4 Semantic Specification

6.4.1 Auxiliary Functions
In order to facilitate the semantic specifications, we declare some auxiliary
functions.
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o ceval With will be used for arithmetic and boolean evaluation. In the follow-
ing definitions, «, 8 are considered subtypes of ~.

eval With c(a—sa—=p8)—>y—>y—> My
eval With ® v, v, =return 1T (L v, © | vy)

» Although we are not going to present the whole implementation, we assume
that we have some utility modules implementing common data structures.
Heap « is an abstract datatype addressed by locations of type Loc with the
following operations:

allocy : o — Heap a — (Loc, Heap «) — allocate new values
lkpy : Loc — Heap a — « — lookup
updy : Loc — o — Heap o — Heap o — update

We will also use a Table o data structure with the following operations:

lkpr : Name — Tablea — « — lookup
updr : Name — a — Tablea — Tablea — update

We will store computations in both structures, i.e. the environment will
be a value of type Table (Comp Value) and the state will be a value of type
Heap (Comp Value)

6.4.2 Algebras and Monadic Algebras

For each of the syntactical components we must specify an algebra or a
monadic algebra. If the component always requires the recursive evaluation
of subcomponents, we only need a monadic algebra w, otherwise, we need an
algebra .

e Arithmetic Expressions

@arith [Num n] = return (1 n)

[
@arith [T + y] = evalWith (+) z y
@anth [z — y] = evalWith (=) z y
@anth [ X y] = evalWith (x) z y
@anth [+ y] = evalWith (+) z y
* Boolean Expressions
WBoolean | B b] = return (1 b

WBoolean |Z A y] = evalWith (A) z y
WBoolean |2 V y] = evalWith (V) z y

* Comparisons

Wemp [ >yl = evalWith (>) z y
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<yl =evalWith (<
>yl = evalWith (>

<yl = evalWith (<
wemp [2 == y] = eval With (=
Wemp [ # y] = evalWith (#

)
)
)z
=)
)

» Variables. To obtain the value of a variable we only need to access the
environment and to search the name in the symbol table.

TWVar I[V .Z']I = do
p < rdEnv
lkpr z p

* References and assignments. We will need to change the state so we will
have to use the operators fetch, set and update from SM.

ref [ref €] = do
v e
h <« fetch
let (loc, h') = allocy (return v) h
set h'
return loc

©Ref I[' e]] = do
Vjpe < €
h < fetch

lka (~L Uloc) h

©ref [61 = €] = do
Uloe < €1
V < €
update (updy (1 vipe) (return v))
return v

©Ref |[61; 62]] = d0{€1; 62}

e Functional abstractions. In this specification we show the difference between
different evaluation mechanisms. Either we evaluate before returning the
function (Ay), we return the function that will evaluate the argument if it
is needed (Ay) or we create a thunk that will only be evaluated the first
time it is needed (Ap).
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YFun [A\v 2 €] = do
p < rdEnv
return (T (Am — do
v — m
inEnv (updy z (return v) p) e

)

©Fun [Av z €] = do
p < rdEnv
return (T (Am — inEnv (updr £ m p) e))

©Fun [ 2 €] = do
p < rdEnv
return (1 (Am — do
h <« fetch
let (loc, h') = allocy m h
set (updy loc (mkThunk loc m) h')
inEnv (updy z (fetch >= lkpy loc) p) e

)

©run [e1 @ es] = do
U < €1
p < rdEnv
(4 vp) (inEno p )

mkThunk : Loc — Comp Value — Comp Value
mkThunk loc m = do
vV m
update (updg loc (return v))
return v

* Local declarations. We create a new location to store the local declaration
in the heap and, depending on the evaluation mechanism, we evaluate e;
and store its value in that location before calling e; (LETY ), we store in that
location the computation that will evaluate e; when it is needed (LETYy),
or we create and store in that location a thunk that will only evaluate e;
the first time it is needed (LET}).

©Ypec [Lety = e 3] = do
(loc, p) < prepareDecl e x
v < nEnvpe
update (updy loc (return v))
nEnv p e
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¢Ypec [Lety © €1 &3] = do
(loc, p) < prepareDecl e
update (updg loc (inEnv p e1))
inEnv p e

©pec [ Let, z e &3] = do
(loc, p) < prepareDecl e x
update (updg loc (mkThunk loc (inEnv p e1)))
nEnv p ey

prepareDecl : Comp Value — Name — Comp (Loc, Env)
prepareDecl m x = do

h <« fetch

let (loc, h') = allocy m h

set h'

p < rdEnv

return (loc, updy x (fetch >= lkpy loc) p)

* First class continuations are directly obtained using the callcc operator from
the ContM.

©caliee [Callec] = return (1 fec)

where
feem = do
Ur < M
callec (A& — (L vf) (return (T k)))

Once we have specified the algebras and monadic algebras, we define the
corresponding interpreter as a combination of catamorphism and monadic
catamorphism:

we @ (Arith @ Boolean @ Cmp @ Var) Value — Comp Value
Wr = Warith ®m @WBoolean Pm WCmp D Wvar

oz ¢ (Ref & Fun @ Dec)(Comp Value) — Comp Value
©r = PRef D PFun D PDec

Inter, : £ — Comp Value
Inter; = ([, ¢c)
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7 Conclusions and future work

The Language Prototyping System is a combination of generic programming
concepts and modular monadic semantics, which offers a very modular way
to specify the semantics of programming languages. It allows the definition
of reusable semantic blocks and provides an interactive system for language
testing.

The system can be considered as another example of a domain-specific lan-
guage embedded in Haskell [20,28,51]. This approach has some advantages:
the development is easier as we can rely on the fairly good type system of
Haskell, it is possible to obtain direct access to Haskell libraries and tools,
and we do not need to define a new language with its syntax, semantics,
type system, etc. At the same time, the main disadvantages are the mixture
of error messages from the domain-specific language and the host language,
some Haskell type system limitations and the Haskell dependency, which im-
pedes obtaining executable prototypes implemented in other languages. At
this moment we are assessing whether it would be better to define an inde-
pendent domain specific meta-language for monadic semantic specifications.
Some work in this direction can be found in [42,5].

On the theoretical side, [17] shows how to derive a backtracking monad
transformer from its specification. That approach should be applied to other
types of monad transformers in order to prove the correctness of the system.
It would be interesting to study the combination of algebras, coalgebras, mon-
ads and comonads to provide the semantics of interactive and object-oriented
features [4,24,23,29,49]. Another line of research is the automatic derivation
of compilers from the obtained interpreters. This line has already been started
in [13,14].

LPS allows the definition of a language from reusable semantic building
blocks. In [8], the same problem is solved in the Action Semantics framework.
In our approach, however, there are no conflicts leading to inconsistencies be-
cause the combined constructions belong to different abstract syntax entities.
It would be very interesting to make deeper comparisons of the modularity of
semantic specification techniques as has been started in [44,33].

With regard to the implementation, we have also made a simple version
of the system using first-class polymorphism [25] and extensible records [12].
This allows the definition of monads as first class values and monad trans-
formers as functions between monads without the need of type classes. How-
ever, this feature is still not fully implemented in current Haskell systems.
The current implementation could benefit from recent advances in generic
programming [18] which would allow the automatic generation of some defini-
tions. Although there is a proposal for a Generic Haskell [16], it has not been
implemented yet.

In order to obtain a complete language design assistant [15] it would be
interesting to develop a Graphical User Interface or to integrate LPS in other
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tools like the ASF+SDF Meta-Environment [50].

Finally, the initial goal of our research was the development of prototypes
for the abstract machines underlying the Integral Object-Oriented Operating
System Oviedo3 [2] with the aim to test new features as security, concurrency,

reflectiveness and distribution [7,48]. More information on the system can be
obtained at [1].
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