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Recently, we have reported that the IL-2-stimulated T cells activate PKCθ in order to phosphorylate the serine res-
idues of αPIX-RhoGEF, and to switch on the Rac1/PYGM pathway resulting in T cell migration and proliferation.
However, themolecularmechanism connecting the activated IL-2-Rwith the PKCθ/αPIX/Rac1/PYGMpathway is
still unknown. In this study, the use of a combined pharmacological and genetic approach identified Lck, a Src
family member, as the tyrosine kinase phosphorylating PLCγ leading to Rac1 and PYGM activation in the IL-2-
stimulated Kit 225 T cells via the PKCθ/αPIX pathway. The PLCγ tyrosine phosphorylation was required to acti-
vate first PKCθ, and then αPIX and Rac1/PYGM. The results presented here delineate a novel signalling pathway
ranking equally in importance to the threemajor pathways controlled by the IL-2-R, i.e. PI3K, Ras/MAPK and JAK/
STAT pathways. The overall evidence strongly indicates that the central biological role of the novel IL-2-R/Lck/
PLCγ/PKCθ/αPIX/Rac1/PYGM signalling pathway is directly related to the control of fundamental cellular pro-
cesses such as T cell migration and proliferation.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tyrosine phosphorylated IL-2-R downstream signalling controls not
only the JAK/STAT, MAPK and PI3K pathways, the three best described
signal transduction pathways in IL-2-stimulated T lymphocytes [1,2]
but it also involves complex interactionswith other signalling networks,
here typified by signalling molecules such as tyrosine kinases Lck and
BTK [3], PLCγ, [4,5], serine/threonine kinase PKCθ [6] and the small
GTPases of the Rho family RhoA [7] and Rac1 [6,8]. In fact, small GTPases
of the Rac subfamily, and more specifically Rac1, have been gaining in
relevance in T cell biology [9,10]. Like other small GTPases, Rac functions
as a molecular switch that cycles between an inactive GDP-bound and
an active GTP-bound state. The transition between the inactive to the
active state is regulated by guanine nucleotide exchange factors
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(GEFs) [11–13]. Recently, we have identified αPIX (also known as
ARH-GEF6 or Cool-2) as the Rac1-specific GEF in IL-2-stimulated T
cells [6]. Upon IL-2/IL-2-R ligation and receptor activation, the exchange
activity of this Rac1-GEF, like other GEFs of the Dbl family activating
Rac1 [14–18], is directly regulated by phosphorylation [6]. In fact, in
IL-2-stimulated T cells,αPIXmust be phosphorylated at serine residues
225 and 488 by the PKCθ, in order to turn on its GDP/GTP nucleotide ex-
change activity [6].

In response to IL-2, Rac1 active form (Rac1-GTP) interacts with
downstream effector molecules to promote a variety of biological re-
sponses, such as control of the actin cytoskeleton reorganization [19],
and/or T cell migration and proliferation [6,8]. Importantly, IL-2-stimu-
lated T cell migration and proliferation responses depend on the activa-
tion of the glycogen phosphorylase muscle isoform (PYGM) via the
αPIX/Rac1 route [6].

PLCγ is a key intracellular signalling molecule that requires recruit-
ment to the membrane for its subsequent tyrosine phosphorylation
and activation [20]. This hydrolase regulates the intracellular concentra-
tion of its substrate phosphatidylinositol-4,5-bisphosphate (PIP2) by
generating inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG)
that control the intracellular calcium mobilization and PKCs activation,
respectively [21,22]. Given that the activated IL-2-R heterotrimer
formed by the ligand binding has no intrinsic kinase activity, the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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receptor initiates the intracellular signalling process by inducing the ac-
tivation of IL-2-R β and γ chains that are constitutively associated with
the JAK family (JAK1 and JAK3) of tyrosine kinases [23]. However, these
enzymes are not the only tyrosine kinases linked to the IL-2-R involved
in T cell signalling. IL-2 is capable of activating several different tyrosine
kinases, although the relationship amongst them is not fully clarified.
One of the activated tyrosine kinase that associates itself with the IL-
2-R β subunit is the Lck tyrosine kinase [24–26].

In this study, Lck was identified as a tyrosine kinase signalling up-
streamof Rac1 in the IL-2-stimulated T cells.More importantly, the con-
nection between the activated IL-2-R and the PKCθ/αPIX/Rac1/PYGM
signalling pathway mediating T cell migration and proliferation re-
sponses is established via the molecular tandem Lck/PLCγ, indepen-
dently of JAK tyrosine kinase activity and intracellular calcium release.
Finally, further evidence is provided that PLCγ must be tyrosine phos-
phorylated by Lck in order to activate the PKCθ/αPIX/Rac1/PYGM path-
way and thereby regulate T cell migration and proliferation.

Taken together our results reveal a novel early intracellular signal-
ling cascade playing a central role in the control of the T lymphocytes
migration and proliferation stimulated with IL-2. This novel signalling
pathway composed by IL-2-R/Lck/PLCγ/PKCθ/αPIX/Rac1/PYGM may
be as specifically and functionally significant as the three canonical
pathways already described in IL-2-stimulated T lymphocytes.

2. Materials and methods

2.1. Reagents

Lck inhibitor (7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-
d]pyrimidin-4-ylamine), the JAK1/3 inhibitor (Tofacitinib citrate), PKC
inhibitors Gö6976 and Rottlerin, mouse monoclonal anti-
phosphoSerine (clone PSR-45), monoclonal anti-Glutathione-S-trans-
ferase (GST) antibodies, MISSION® esiRNA targeting EGFP (Reference
EHUEGFP), MISSION® esiRNA targeting human LCK (Reference
EHU064811) andMISSION® esiRNA targeting human PLCγ1 (Reference
EHU069301) were from Sigma-Aldrich. Mouse monoclonal anti-HA an-
tibody was from Covance. Mouse monoclonal anti-Rac1 (clone 23A8)
antibody was from Millipore, and the enhanced chemiluminescence
(ECL) reagent was from GE Healthcare. IL-2 was kindly provided by
the “AIDS Research and Reference Reagent Program,” Division of AIDS
(NIAD, National Institutes of Health), USA.

2.2. Cell culture and DNA/esiRNA transfection

The Kit 225 T cells were cultured as described by Hori et al. in the
presence of 16 U/ml recombinant human IL-2 [27]. Kit 225 T cells are
a human T cell line established from a patient with T cell chronic lym-
phocytic leukaemia, this cell line expresses IL-2 receptor constitutively
and it depends exclusively on IL-2 for cellular proliferation [27]. Kit
225 T cells are synchronized in G0/G1 when deprived of IL-2 for 48 h
and subsequent stimulation with IL-2 allows cell cycle entry and pro-
gression. This feature represents a key advantage for IL-2-stimulated
signalling studies. For transient transfections, cells were cultured in
complete RPMI 1640medium in the absence of IL-2 for 24 h. Thereafter,
cells were washed and re-suspended in 200 μl of serum-free medium,
and placed in an electroporation cuvette (0.4 mm Sigma-Aldrich) con-
taining 10–20 μg of the different plasmids, or 15 ng esiRNAs. The electro-
porationwas carried out in a Gene Pulser Xcell Electroporator (Bio-Rad)
at 260 V and 950 μF [8]. The cuvette content was collected into 10ml of
complete RPMI 1640medium and cultured in the absence of IL-2 for an-
other 24 h.

2.3. Agonists and inhibitors

The Kit 225 T cells were maintained in the absence of IL-2 for 48 h
and subsequently stimulated with 500 U/ml IL-2 at 37 °C. In some
experiments, the Kit 225 T cells were pretreated with the Lck inhibitor
(10 μM) [28] or the JAK1/3 inhibitor (250 nM) [29] for 1 h prior to IL-2
stimulation.

2.4. Site-directed mutagenesis

The pCI-neoPLCγH335Q single mutated construct were generated ac-
cording to themanufacturer's instructions (QuickChange Lightning Site-Di-
rectedMutagenesis Kit, Stratagene). Oligonucleotides used formutating the
H335 for Q335 were as follows: 5′-ATCTCCTCCTCGCAGAACACGTACCTG-3′
(forward) and 5′-CAGGTACGTGTTCTGCGAGGAGGAGAT-3′ (reverse).

2.5. Activity assay for glycogen phosphorylase

Theglycogenphosphorylase activity assaywasperformedaspreviously
described [6,8]. Briefly, cells were washed twice with cold PBS and resus-
pended in 500 μl of TES buffer (20 mM Tris, pH 7.4, 1 mM EDTA,
225 mM sucrose, 2.5 mM DTT, 0.1 mM PMSF, 1 μg/ml leupeptin, 1 μg/ml
aprotinin). Samples were sonicated and centrifuged at 13,500 rpm for
10 min at 4 °C. The total protein (100 μg) was used to measure the
PYG activity in the assay buffer (50 mM KH2PO4 pH 7.5, 10 mM
MgCl2, 5 mM EDTA pH 8, 0.5 mM NADP+, 1.5 U/ml glucose-6-phos-
phate dehydrogenase, 1 units/ml phosphoglucomutase, 0.1 mg/ml gly-
cogen (all from Sigma-Aldrich). The assay buffer containing 300 μl of
TES, without NADP+, glycogen, phosphoglucomutase, and glucose-6-
phosphate dehydrogenase, was added to 100 μg of the total protein as
a blank control. To carry out the metabolic activity assay, the mixture
was incubated at 37 °C for 20 min. By placing samples on ice the reac-
tion was stopped. The sample absorbance was detected at 340 nm in a
spectrophotometer (Ultrospec 3100 pro, Amersham Biosciences). The
amount of NADPH formed was determined using a standard curve of
known NADPH concentrations (Sigma-Aldrich).

2.6. Rac1 activation assay

The Rac1 pull-down assaywas performed using a GST fusion protein
containing the Rac1 binding domain of PAK1 (GST-RBD-PAK1). The
transfected and the non-transfected cells kept in the absence of IL-2
for 48 h were stimulated with IL-2 for 10 min and lysed, as previously
described [6,8]. Cell lysates were centrifuged at 13,500 rpm for 10 min
at 4 °C and incubated for 1 h at 4 °C with 50 μg GST-RBD-PAK1 fusion
protein coupled to glutathione-Sepharose beads. The precipitated pro-
teins were eluted from beads using the 2 x loading buffer (12 mM
Tris, pH 6.8, 5% glycerol, 0.4% SDS, 140 mM 2-mercaptoethanol, 0.02%
bromophenol blue), separated by SDS-PAGE, and analysed by immuno-
blot with specific monoclonal antibodies. The immunoreactive bands
were visualized using ECL.

2.7. Immunoprecipitation assay

The Kit 225 T cells were transfected with pMT2-HA-αPIX, pCI-
neoPLCγ or the empty vectors (pMT2-HA, pCI-neo) or the esiRNAs to
knock down PKCθ and PLCγ1 or esiRNA EGFP, as previously described,
and cells were treated or not with 500 U/ml IL-2 for 10 min. Cells
were washed three times in ice-cold PBS and lysed in the RIPA buffer
(50 mM Tris pH 7,4, 150 mM NaCl, 1% IGEPAL, 0.25% Na-Deoxicolate,
1 mM EDTA, 1 mM PMSF, 1 mM Na3VO4, 1 mM NaF, 1 μg/ml aprotinin,
1 μg/ml leupeptin). HA-αPIX was immunoprecipitated at 4 °C for 2 h
with the anti-HA antibody. The immune complexes were recovered
using Gamma Bind Plus Sepharose beads (GE Healthcare, Pittsburgh,
PA, USA), washed and eluted from beads and resolved electrophoreti-
cally by SDS-PAGE and analysed by Western blot with the anti-
phosphoserine or the anti-HA antibodies. The immunoreactive bands
were visualized using ECL.
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2.8. In vitro kinase assay

The Kit 225 T cells were pretreated or not with the tyrosine kinase
inhibitors, as indicated, for 1 h and incubated in the presence or in the
absence of 500 U/ml IL-2 for 10 min at 37 °C and washed twice with
cold PBS. Moreover, the Kit 225 T cells transfected with the esiRNA
PLCγ1 to knock down PLCγ1 or the esiRNA EGFP, as previously de-
scribed, were stimulated or not with 500 U/ml IL-2 for 10 min at 37 °C
and washed twice with cold PBS. Thereafter, cells were lysed with the
lysis buffer (20 mM Tris pH 7.4, 137 mM NaCl, 5 mM EDTA, 1 mM
EGTA, 10 mM NaF, 1 mM Sodium Pyrophosphate, 100 mM β-glycero-
phosphate, 10 μg/ml aprotinin, 1mMPMSF, 10% glycerol and 1% v/v Tri-
ton X-100) and the lysates were clarified by centrifugation for 10min at
13,500 rpm at 4 °C. PKCθ was immunoprecipitated with a specific anti-
body and the immunocomplexes were recovered using Gamma Bind
Plus Sepharose beads (GE Healthcare, Pittsburgh, PA, USA). The
immunocomplexes were washed twice with the cold lysis buffer,
twice with the cold washing buffer (10 mM HEPES (pH 7.4), 100 mM
NaCl, 20 μg/ml aprotinin and 0.5% IGEPAL-360 and twice with the reac-
tion buffer (20mMTris (pH 7.4), 20mMNaCl, 1mMDTT, 10mMMgCl2
and 1 mMMnCl2). 500 ng of the purified recombinant GST-αPIX204–532

encompassing the two potential serine phosphorylation sites (S225 and
S488) of αPIX and ATP (20 μM) were then added to the reaction mix-
ture. The in vitro kinase reaction was carried out for 30 min at 30 °C,
after that it was stopped by adding 30 μl of the 2× loading buffer. Pro-
teins were separated by SDS-PAGE, followed by Western blot. The im-
munoreactive bands were visualized with the anti-phosphoserine
antibody and ECL.

2.9. Cell viability assay

Kit 225 T cells were seeded at 104 cells per well in a 96-wellplate, IL-
2-deprived cells for 48 h, were pretreated (+) or not _(−) with 2.5 μM
Rottlerin for 1 h, prior to IL-2 stimulation for 24 h. Cell viability was
measured with CellTiter 96 Non-Radioactive Cell Proliferation Assay
(MTT) (Promega, Madison, WI, USA), according to the manufacturer's
instructions.

2.10. Cell migration assay

The esiRNA transfected cell suspensions (2.5 × 105 cells in 100 μl)
were placed into the upper chamber, whereas 600 μl of medium with
or without IL-2 (500 U/ml) was introduced into the lower chamber.
Both chambers were incubated overnight at 37 °C in 5% CO2 and 95%
air. Cells in the upper and in the bottom chamber were recovered sepa-
rately into equal volumes for cell counting. The percentage of migrating
cells was determined as follows: [the number of cells migrating (the
lower chamber) / the total number of cells (the cells in the lower
chamber + the remaining cells in the upper chamber)]. The assay was
performed using the pore filters (8 μm, Corning® Costar® Transwell®
and the cell culture inserts were from Sigma-Aldrich) and the cell
counts were done in triplicate.

2.11. Cell proliferation measurement

The esiRNA transfected cells were seeded in 24-well plates in com-
plete RPMI (106 cells/ml), and maintained in the absence of IL-2 for
48 h. Subsequently, cells (106)were incubatedwith 4 μMPKH26 follow-
ing the manufacturer's instructions (Sigma-Aldrich). A sample (104

cells)was taken as the start control and the remaining cellswere treated
with 16 U/ml IL-2 every 24 h for 3 days. Fluorescence was measured
every 24 h for three days to monitor the cell division rate on a
FACSCalibur (Becton & Dickinson) flow cytometer. The data obtained
were analysed using the flow cytometric analysis program ModFit LT
3.0 (Verity Software House, Topsham,ME). This program uses a nonlin-
ear least squares analysis to iteratively find the best fit to the raw data
by changing the position, height, and coefficient of variation of each
Gaussian. The area under each generational Gaussian is taken as a mea-
sure of the relative number of cells in that generation and the sum of all
Gaussians corresponds to the relative number of cells in the total
population.

2.12. Statistical analysis

The Student's t-test for the mean of two-paired samples was used to
determine the significance between data means (*p b 0.05,***p b 0.001)

3. Results

3.1. PLCγ1 leads to PYGM activation

To examine whether PLCγ1 could be a link between IL-2 receptor
and PYGM, Kit 225 T cells were transfected with pCI-neoHA (mock con-
trol), pCI-neoHAPLCγ1 (wt), pCI-neoHAPLCγ1-palm (constitutively ac-
tive form of PLCγ1) or pCI-neoHAPLCγ1H335Q (an inactive mutant of
PLCγ1) and stimulated or not with 500 U/m1 IL-2 for 10 min, lysed
and PYGM activity was determined as described in Materials and
methods, Section 2.5. As shown in Fig. 1A, IL-2 induced robust PYGMac-
tivity in Kit 225 T cells transfectedwith the empty vector. This IL-2 stim-
ulation of PYGM activity was already maximal and it was not increased
any further either in cells overexpressing PLCγ1 or the PLCγ1 constitu-
tively active form. In fact, PLCγ1 constitutively active mutant overex-
pression reached the maximal PYGM activity in the absence of IL-2. In
contrast, transfection with PLCγ1H335Q completely abolished PYGM ac-
tivity both with or without IL-2 stimulation. Western blots show
PLCγ1 endogenous and ectopic expression levels of all forms of PLCγ1
and an equivalent amount of tubulin was used in each of the conditions
analysed (Fig. 1A).

Next, in order to corroborate that PLCγ1 was specifically regulating
the PYGM activity in IL-2-stimulated T cells, plcγ1 was knocked down
in Kit 225 T cells. To this end, Kit 225 T cells were transfected with
esiRNA human PLCG1 (PLCγ1) or esiRNA targeting EGFP, as a negative
control. 24-h post-transfection PYGM activity was determined in both
Kit 225 T cells stimulated with IL-2 for 10 min and unstimulated. As
shown in Fig. 1B, IL-2 stimulated robust PYGM activity in
egfp(esiRNA)-transfected Kit 225 T cells. plcγ1-knockdown
(plcγ1(esiRNA)) cells stimulated by IL-2 for 10 min did not show any
PYGM activity. Western blots show, on the one hand PLCγ1 expression
levels after esiRNA transfection, and on the other hand an equivalent
amount of tubulin was used in each of the conditions analysed (Fig. 1B).

3.2. PLCγ1 regulates Rac1/PYGM pathway activation via nPKCs

In order to demonstrate that PLCγ1 functions as a positive regulator
molecule upstream of Rac1 in Kit 225 T cells, PLCγ1 was knocked-down
with plcγ1(esiRNA), as we described above, and the endogenous active
Rac1 was measured by the pull-down assay. As shown in Fig. 2A, in
the absence of PLCγ1 (knockdown) IL-2 was unable to stimulate Rac1
activation. PLCγ1 expression levels in the presence of esiRNA control
(egfp) or plcγ1(esiRNA) were determined byWestern blot. The Rac1 de-
tected in whole cell lysates shows that the total loaded proteins are
equivalent in all lanes (Fig. 2A).

PKC inhibitors were used to investigatewhether PLCγ1 required any
PKCs activity in order to control the Rac1/PYGM pathway activation. To
this end, Kit 225 T cells deprived of IL-2 for 24 h were transfected with
empty vector (mock control) or PLCγ1-palm (constitutively active
form of PLCγ1). 24-h post-transfection, cells were pretreated or not
with 100 nM Gö6976 (an inhibitor of classic PKCs, mainly α and β)
and 2.5 μM Rottlerin (which was initially described as PKCθ inhibitor)
[30,31], followed or not by stimulation with 500 U/ml IL-2 for 10 min
and the Rac1 activation was measured by the pull-down assay. PLCγ1-
palm overexpressing cells, as well as control stimulated cells, exhibited
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(mock control), pClneo-HA-PLCγ1wt, pClneo-HA-PLCγ1-palm (the constitutively active mutants) and pClneo-HA-PLCγ1H335Q (the constitutively inactivemutant), and (B) plcγ1(esiRNA)
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antibodies, as indicated. The results show the mean of the three independent experiments ± S.D. and the statistical analysis shows a significant difference (***, p b 0.001).
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a maximal Rac1 activation even in the absence of IL-2 stimulation (Fig.
2B). Inhibition of classic PKCs did not affect Rac1 activation in PLCγ1-
palm overexpressing cells; notwithstanding, Rottlerin efficiently
prevented PLCγ1-palm mediated Rac1 activation (Fig. 2B).

Next, the effect of these PKC inhibitors on PYGM activity in PLCγ1-
palm overexpressing Kit 225 T cells was also examined. As shown in
Fig. 2C, IL-2-stimulated PYGM maximal activity in Kit 225 T cells
transfected with the empty vector control was equivalent to the
PYGM activity reached in Kit 225 T cells transfected with PLCγ1-palm.
Expectedly, the classic PKC inhibitor (Gö6976) did not affect PYGM ac-
tivity of either empty vector control or PLCγ1-palm overexpressing
cells. In contrast, PYGM activity was completely blocked in PLCγ1-
palm-overexpressing Kit 225 T cells treated with the novel PKC inhibi-
tor, Rottlerin (Fig. 2C). However, this compound alone or in the pres-
ence of IL-2 did not alter the viability of Kit 225 T cells
(Supplementary Fig. 1S).

3.3. PLCγ1 regulates αPIX-RhoGEF serine phosphorylation via PKCθ

To find out whether or not PLCγ1 played a role in the control of the
αPIX phosphorylation/activation upstream of PKCθ, Kit 225 T cells de-
prived of IL-2 for 24 h were co-transfected with pMT2-HA-αPIX and
pClneo-HA (empty vector) or pClneo-HA-PLCγ1-palm (the constitu-
tively active mutant). As shown in Fig. 3A, IL-2 stimulated αPIX serine
phosphorylation and it was blocked by Rottlerin. When the effect of
PLCγ1-palm overexpression on αPIX phosphorylation was examined,
the phosphorylation signal measured was stronger than that found in
control cells stimulated by IL-2. IL-2 stimulation of PLCγ1-palm overex-
pressing cells did not increase the phosphorylation signal any further
than that of unstimulated PLCγ1-palm overexpressing Kit 225 T cells.
In contrast, Rottlerin forcefully blocked αPIX serine phosphorylation
in both the unstimulated and the stimulated PLCγ1-palm-overexpress-
ing Kit 225 T cells. To determine the amount of immunoprecipitated
αPIX, membranes that were used to examineαPIX serine phosphoryla-
tion were stripped and reblotted with the anti-HA antibody. PLCγ1-
palm expression in whole cell lysates was also examined by SDS-PAGE
and followed by Western blot. Immunoreactive bands were visualized
using anti-HA antibody (Fig. 3A).

To test whether or not PLCγ1 controlled αPIX serine phosphoryla-
tion residues through PKCθ, IL2-deprived Kit 225 T cells were co-
transfected with pMT2-HA-αPIX and esiRNAs (egfp, plcγ1, pkcθ) or
pMT2-HA-αPIX with PLCγ1-palm (PLCγ1 constitutively active mutant)
and pkcθ(esiRNA) or pMT2-HA-αPIXwith PKCθA148E (PKCθ constitutive-
ly active mutant) and plcγ1(esiRNA), as indicated in Fig. 3B. After 24 h,
cells were stimulated or not with IL-2 for 10 min and lysed. As shown
in Fig. 3B, IL-2 stimulated αPIX serine phosphorylation that was
completely blocked in the absence of either PLCγ1 or PKCθ expression.
Combining the overexpression of the constitutively active form of
PLCγ1 (PLCγ1-palm) along with PKCθ knock-down resulted in inhi-
bition of αPIX serine phosphorylation either in the presence or in the
absence of IL-2. Conversely, Kit 225 T cells overexpressing PKCθ
constitutively active form (PKCθ

A148E) and PLCγ1 knockdown showed
that αPIX serine was phosphorylated independently of any stimuli,
and comparably, αPIX showed a phosphorylation signal equivalent
to that of the control cells. To determine the amount of
immunoprecipitated αPIX, membranes that were used to examine αPIX
serine phosphorylation were stripped and reblotted with the anti-HA
antibody. Ectopic HA-PLCγ1-palm and HA-PKCθA148E expression, and en-
dogenous PLCγ1 and PKCθ expression in whole cell lysates were also ex-
amined by SDS-PAGE and followed byWestern blot. The immunoreactive
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independent experiments. (C) The cell extracts were used to measure the glycogen phosphorylase activity, as described under Experimental Procedures. The protein expression levels
were analysed by Western blotting using a specific anti-HA antibody. The results show the mean of the three independent experiments ± S.D. and the statistical analysis shows a
significant difference (***, p b 0.001).
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bands were visualized using specific antibodies, as indicated. Finally, an
equivalent amount of tubulinwas used in each of the conditions analysed
(Fig. 3B).

In order to confirmPLCγ1 involvement in PKCθ-mediatedphosphor-
ylation of αPIX serine residues 225 and 488, endogenous PKCθ, activity
was examined by an in vitro kinase assay using a GST-αPIX204–532 fusion
protein as an exogenous substrate for PKCθ. Briefly, Kit 225 T cells were
transfected with plcγ1(esiRNA) to knockdown PLCγ1 or egfp(esiRNA) as
negative control and stimulated or not with IL-2 for 10 min. PKCθ was
immunoprecipitated from cell lysates and immunocomplexes were in-
cubatedwith ATP andGST-αPIX204–532. Subsequently, proteinswere re-
solved by SDS-PAGE followed by Western blot and GST-αPIX204–532

serine phosphorylation was visualized using an anti-phosphoserine an-
tibody. As illustrated in Fig. 3C, in the absence of PLCγ1 expression, IL-2
was unable to stimulateαPIX serine phosphorylation. To determine the
amount of immunoprecipitated PKCθ, the membrane that was used to
examine the GST-αPIX204–532 serine phosphorylation was stripped
and reblotted with anti-PKCθ antibody. The same membrane was
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reblotted once again, but this timewith anti-GST antibody and served to
determine the amount of GST-αPIX204–532 fusionprotein added to in the
vitro kinase reaction. Endogenous PLCγ1 expression inwhole cell lysates
was also examined by SDS-PAGE and followed byWestern blot. Immu-
noreactive bands were visualized using anti-PLCγ1 antibody. Tubulin
Western blot analysis shows that equal amounts of protein were used
(Fig. 3C).
3.4. Src family member, lck, connects the IL-2R and the PLCγ1/PKCθ/αPIX/
Rac1 pathway

To examine whether or not JAK1/3 and/or Lck participated in tyro-
sine phosphorylation of PLCγ1 in Kit 225 T cells, IL-2-deprived cells
were pretreated with potent and selective inhibitors of Lck [28] or
JAK1/3 [29] or vehicle and subsequently stimulated with IL-2. As
shown in Fig. 4A, IL-2 stimulated PLCγ1 tyrosine phosphorylation that
was completely blocked by the Lck inhibitor. However, the JAK1/3 in-
hibitor did not alter IL-2-stimulated tyrosine phosphorylation of
PLCγ1 (Fig. 4A). This result prompted us to verify the efficiency of this
inhibitor in our experimental conditions by demonstrating that the
JAK1/3 inhibitor was active and able to completely block IL-2-stimulat-
ed AKT phosphorylation (Fig. 4B).

Nextwe investigatedwhether or not the absence of non-receptor ty-
rosine kinase activity impacted on the PKCθ-mediated phosphorylation
of αPIX serine residues 225 and 488. To this end, PKCθ activity present
in the immunocomplexes was measured by an in vitro kinase assay
using a GST-αPIX204–532 fusion protein as described above. As shown
in Fig. 4C, IL-2 stimulated robust αPIX serine phosphorylation that
was unaffected by the JAK1/3 inhibitor (Fig. 4C). However, the Lck in-
hibitor completely blocked IL-2-stimulated αPIX serine phosphoryla-
tion (Fig. 4C). To determine the amount of immunoprecipitated PKCθ,
the membrane that was used to examine the serine phosphorylation
of GST-αPIX204–532 was stripped and reblotted with an anti-PKCθ anti-
body (Fig. 4C). The same membrane was reblotted once again but this
time with an anti-GST antibody to determine the amount of GST-
αPIX204–532 fusion protein added to the in vitro kinase reaction (Fig. 4C).

To further characterize the involvement of Lck and/or JAK1/3 in the
signalling pathways stimulated by IL-2 leading to Rac1 activation, Kit
225 T cells that were deprived of IL-2 for 48 h and pretreated with
10 μM Lck inhibitor, 250 nM JAK1/3 inhibitor or the vehicle for 1 h
and stimulated or not with 500 U/ml IL-2 for 10 min. Subsequently,
Rac1 activation was analysed. As shown in Fig. 4D, the JAK1/3 inhibitor
did not interfere with IL-2-stimulated Rac1 activation. In contrast, the
Lck inhibitor completely blocked Rac1 activation stimulated by IL-2
(Fig. 4D). To confirm this result, Lck was knocked down with
lck(esiRNA), as described above, and the active endogenous Rac1 was
measured by the pull-down assay. In the absence of Lck (knockdown),
IL-2 was unable to stimulate Rac1 activation (Fig. 4E). Lck expression
level in cells transfected with esiRNA control (egfp) or lck(esiRNA) was
determined by Western blot. Rac1 detected in whole cell lysates
shows that the loaded proteins were equivalent in all lanes (Fig. 4E).

In order to further investigate the hypothesis that Lck signals down-
stream from the IL-2-R to the PLCγ1/PKCθ/αPIX/Rac1 pathway, Kit 225
T cells that were deprived of IL-2 for 24 h were transfected with empty
vector (mock control), or pClneo-LckY505F (Lck constitutively active
form) or cotransfected pClneo-LckK273R (Lck dominant negative mu-
tant) together with PLCγ1 constitutively active form (pClneo-PLCγ1-
palm) or cotransfected pClneo-LckY505F together with pClneo-PLCγ1-
H355Q (dominant negative mutant of PLC γ1). After 24 h, cells were
pretreated with 100 nM Gö6976 and 2.5 μM Rottlerin or the vehicle
for 1 h followed by stimulation or not with 500 U/ml IL-2. Rac1 activa-
tion was measured by the pull-down assay, as described previously.
As shown in Fig. 4F, IL-2 stimulated Rac1 activation and it was not in-
creased any further in either unstimulated or in IL-2-stimulated Lck-
Y505Foverexpressing cells. Likewise, inhibition of classic PKCs with
Gö6976 did not affect Rac1 activation either in unstimulated or in IL-
2-stimulated LckY505Foverexpressing cells (Fig. 4F). However, Rottlerin
efficiently inhibited Rac1 activation stimulated by overexpression of
Lck constitutively active form, both in unstimulated as well as in IL-2-
stimulated cells (Fig. 4F). When Rac1 activation in Kit 225 T cells over-
expressing LckK273R/PLCγ1-palm was examined, it was observed that
PLCγ1-palm (PLCγ1 constitutively active form) was enough to stimu-
late Rac1 activation, independently of both stimuli and overexpression
of Lck inactive form (Fig. 4F). Nonetheless, this mechanism is reversed
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in LckY505F/PLCγ1H335Q overexpressing cells, where Lck constitutively
activemutantwasunable to activate Rac1 in the presence of PLCγ1H335Q

(PLCγ1 inactive mutant), both in the presence or absence of IL-2 stimu-
lation (Fig. 4F). HA-PLCγ1 and HA-Lck mutants' overexpression levels
were determined by Western blot (Fig. 4F). Rac1 detected in the
whole cell lysates shows that the loaded proteins were equivalent in
all lanes (Fig. 4F).

3.5. Lck controls PYGM activation in Kit 225 T cells stimulated with IL-2

When PYGMactivitywas examined in 225 T cells treatedwith Lck or
JAK1/3 inhibitors and stimulated by IL-2, it was observed that inhibition
of JAK1/3 did not affect IL-2-stimulated PYGM activity (Fig. 5A). In con-
trast, Lck inhibitor efficiently blocked IL-2-stimulated PYGM activity
(Fig. 5A).

In order to confirm the involvement of Lck in regulating PYGM activ-
ity, PYGM activation was determined in Kit 225 T cells overexpressing
Lck (wt), LckY505F (constitutively active form of Lck) and LckK273R
(dominant negative form of Lck) with or without IL-2 stimulation. As
shown in Fig. 5B, Lck (wt) overexpression alonewas enough to partially
stimulate PYGM activity. Additionally, Lck constitutively active mutant
overexpression was found to activate PYGM to levels comparable to
those reached by IL-2 stimulation. In fact, IL-2 stimulation of cells over-
expressing Lck (wt) or LckY505F did not increase PYGM activation any
further. In contrast, LckK273R transfection completely abolished PYGM
activation with or without IL-2 stimulation (Fig. 5B). Immunoblotting
show Lck endogenous and ectopic expression levels of all forms of Lck.
An equivalent amount of tubulin was used in each of the conditions
analysed (Fig. 5B).

To confirm results obtained with Lck demonstrating that this tyro-
sine kinase functions also as a PYGM-activating molecule in Kit 225 T
cells, Lck was knocked down with lck(esiRNA), as described above, and
IL-2-stimulated PYGMactivity in Lck-knockdownKit 225 T cellswas ex-
amined. The results presented in Fig. 5C show that IL-2 was unable to
stimulate PYGM activation in the absence of Lck expression. Lck expres-
sion levels after esiRNA transfection is also shown. Tubulin blot analysis
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indicates that equivalent amounts of protein were used in SDS-PAGE
analysis (Fig. 5C).

3.6. Lck and PLCγ1 are required for IL-2-stimulated chemotaxis and prolif-
eration of Kit 225 T cells

To investigate the role of Lck and PLCγ1 in IL-2-stimulated Kit 225 T
cell migration and proliferation, cells were transfected with egfp (nega-
tive control), lck or plcγ1(esiRNAs). In order to verify the efficiency of the
RNA expression silencing, a cell sample from each condition was lysed
and the whole cell lysates were separated by SDS-PAGE followed by
Western blot. The expression levels of Lck and PLC γ1 were visualized
using specific antibodies as indicated in Fig. 6A. Tubulin Western blot
shows that equal amounts of protein were used in the analysis.

Another cell sample was used to examine the effects of lck and plcγ1
expression silencing on the chemotaxis of IL-2-stimulated T cell through
Polyethylene Terephthalate (PT) membranes. As shown in Fig. 6B, IL-2
stimulated robust migration of Kit 225 T cells. In contrast, lack of either
Lck or PLCγ1 expression abolished IL-2-stimulatedKit 225 T cellsmigra-
tion. Finally, a third cell sample was used to evaluate the role of either
Lck or PLCγ1 in IL-2-stimulated cell proliferation. The cellular response
was analysed after flow cytometry by monitoring the decrease in fluo-
rescence of the PKH6 dye incorporated into the cell membranes,
which is diluted approximately 2-foldwith each cell division. PKH26-la-
belled cells were treated with 16 U/ml IL-2 every 24 h for 3 days. As
shown in Fig. 6C, IL-2 stimulation of control cells (egfp(esiRNA)
transfected cells) cultured for 3 days resulted in approximately a 3-
fold increase in the cell number compared to unstimulated cells.
Remarkably, IL-2-stimulated cell proliferationwasdramatically reduced
with either lck(esiRNA) or with plcγ1(esiRNA) expression knockdown
(Fig. 6C).

4. Discussion

This study identifies Lck as a tyrosine kinase upstream of Rac1 in IL-
2-stimulated T cells and provides novel evidence demonstrating that
PLCγ requires tyrosine phosphorylation by Lck in order to control the
PKCθ/αPIX/Rac1/PYGM pathway, and thereby regulate T cell migration
and proliferation.

Protein tyrosine phosphorylation/dephosphorylation cycles are one
of the major events in early intracellular signalling. In order to activate
STAT,MAPK and PI3K; the threemajor and best characterized signalling
cascades (Fig. 7, grey layout) and control transcriptional activity regu-
lating cell survival and T cell proliferation [1], receptors that do not
have intrinsic tyrosine-kinase activity, like the IL-2 receptor, require
binding to non-receptor tyrosine kinases, such as Janus Kinase family
members 1 and 3 (JAK1/3) [32,33]. This canonical signalling network
regulated by JAK1/3 is not unique. In fact, other tyrosine kinases linked
to the IL-2-R are involved in T cell signalling, such as Lck [34–36]. In-
deed, IL-2-stimulated T cells proliferationmediated by Lck via aMAP ki-
nase-independent pathway was reported by Brockdorff et al. [3]. The
findings presented here point in the same direction, i.e. pharmacological
inhibition of JAK1 and3 did not affect PLCγ1 andαPIX tyrosine- and ser-
ine-phosphorylation, respectively, and Rac1/PYGM-activation in IL-2-
stimulated Kit 225 T cells. However, Lck activity inhibition blocked not
only PLCγ1 tyrosine phosphorylation, but it also blocked αPIX-
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mediated Rac1/PYGM activation. The expression knockdown of either
Lck or PLCγ1 strengthen these findings even further.

It is well established that signals emanating from receptors linked to
tyrosine kinases such as TCR [37,38], BCR [39] and IL-2-R [40] actively
regulate the enzymatic activation of PLCγ1 by tyrosine phosphorylation
[34–36]. In fact, Veri et al. reported that in activated lymphocytes, Lck
activation stimulated PLCγ1 tyrosine phosphorylation [41]. PLCγ1 con-
trols IP3 generation and intracellular calcium mobilization and ensuing
PKC activation [21,22]. Notably, we reported previously that IL-2-R acti-
vation signals to the Rac1/PYGM pathway via PKCθ [6] in IL-2–stimulat-
ed T cells. Here a combined pharmacological and genetic approach
demonstrates that PKCθ activation is mediated by PLCγ.

For some authors [42,43] but not all [24,44], the IL-2-stimulated cel-
lular proliferation andmigration depend on intracellular calciummobi-
lization. It is noteworthy that PKCθ serine threonine kinase belongs to
the family of novel PKCs that are activated in a DAG-dependent and cal-
cium-independentmanner [45] and yet, it regulates the dynamics of the
immunological synapse [46–48] and other functions, including: the
control and clustering of integrin LFA-1 on the surface of T cells [49] fa-
cilitating stable adhesion between T cells and APCs [50–52], and T cell
migration and proliferation [6].

Regardless the controversy, several lines of evidence indicate that IL-
2-stimulated intracellular calcium mobilization is not a component of
the signalling cascade presented here. Our data demonstrates that the
IL-2/IL-2R engagement signals to the PKCθ/αPIX/Rac1/PYGM pathway
via Lck tyrosine kinase activation independently of calciummobilization
or JAK1/3 activation in Kit 225 T cells.

Finally, taken our recent results demonstrating that PKCθ mediates
Rac1/PYGM activation via αPIX phosphorylation in IL-2-stimulated Kit
225 T cells [6] together with the findings described in this study, we



Fig. 7. The model of T cell migration and proliferation stimulated by the IL-2 receptor. The stimulation of IL-2 receptor leads to the activation of the three canonical pathways: PI3K, Ras/
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propose a novel signalling pathway constituted by Lck/PLCγ1/PKCθ/
αPIX/Rac1/PYGM and also governed by IL-2. The overall evidence indi-
cates that this pathway participates in the control of T cellmigration and
proliferation (Fig. 7, orange layout), independently of the canonical
pathways JAK/STAT,MAPK and PI3K.We hypothesize that the biological
significance of this pathway, whosemain element is the tandem consti-
tuted by Rac1/PYGM, could be attributed to the functioning of an early
intracellular signalling pathway that regulates reversible glycosylation
(O-GlcNAc) by serine and threonine residues in proteins, rather than
ATP generation or synthesis of macromolecules [53]. The equilibrium
between O-glycosylation/phosphorylation of proteins constitutes a nu-
trient sensor that modulates intracellular signalling, transcription and
actin cytoskeletonmodifications [54]. The imbalance between the levels
of phosphorylation and glycosylation underlies pathologies such as
human neurodegenerative diseases, Type 2 Diabetes, cancer, infectious
diseases [55] and perhaps even some rare diseases like McArdle's dis-
ease. Future studies will allow us to characterize the signalling
molecules downstreamof PYGM that participate in this signal transduc-
tion pathway and its relevance to health and disease.

In conclusion, our findings open new prospects of modulating the
control mechanisms of cell migration and proliferation in IL-2-stimulat-
ed T cells by targeting molecules of the Rac1 GTPase/PYGM pathway.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.cellsig.2016.07.014.
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