Almost fully decomposable infinite rank lattices over orders

Wolfgang Rump*

Institut für Algebra und Zahlentheorie, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

Received 27 September 2004; received in revised form 27 December 2006; accepted 12 January 2007

Available online 1 February 2007

Communicated by I. Reiten

Abstract

Let be an order over a Dedekind domain with quotient field . An object of , the category of -projective -modules, is said to be fully decomposable if it admits a decomposition into (finitely generated) -lattices. In a previous article [W. Rump, Large lattices over orders, Proc. London Math. Soc. 91 (2005) 105–128], we give a necessary and sufficient criterion for -orders in a separable -algebra with the property that every -module is fully decomposable. In the present paper, we assume that is separable, but that the -adic completion is not semisimple for at least one . We show that there exists such that admits a decomposition with , where is fully decomposable, but itself is not fully decomposable.

MSC: Primary: 16G30; 16D70; secondary: 16H05

0. Introduction

Infinite rank lattices over orders form a rather new subject of study. For a cyclic group of prime order , it was shown by Butler, Campbell, and Kovács [3] that every -free -module decomposes into -lattices. The case was settled a little earlier by Butler and Kovács [4], and independently by Benson in a joint paper with Kumjian and Phillips on -theory of -algebras [2].

Let be a Dedekind domain with quotient field , and let be an -order in a finite dimensional -algebra. A -module is said to be a -lattice [11] if is finitely generated and projective as an -module. If the finiteness condition is dropped, i.e. if is just a projective -module, then is said to be a generalized -lattice [3]. The category of generalized -lattices will be denoted by , and its full subcategory of -lattices by . We call an object of a -lattice fully decomposable if it admits a decomposition into -lattices . Butler, Campbell, and Kovács have shown ([3], Theorem 2.1) that in case is lattice-finite, every object of is a direct summand of a fully decomposable one. Thus if is a complete discrete valuation domain, the Crawley–Jønsson–Warfield theorem ([1], Theorem 26.5) then implies that every generalized -lattice is fully decomposable. For such , the converse is also true, i.e. has to be lattice-finite if every is fully decomposable [14]. If is not lattice-finite, however, there even exists an indecomposable object in which is not finitely generated [14].

* Tel.: +49 711 685 65516; fax: +49 711 685 65322.

E-mail address: rump@mathematik.uni-stuttgart.de.

0022-4049/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2007.01.007
In the global case, the situation is much more delicate. In [15] we associate a hypergraph \(H(A) \) to any \(\Lambda \)-order \(A \) in a separable \(K \)-algebra \(A \), which decides whether every generalized \(\Lambda \)-lattice is fully decomposable. For example, the latter property holds for the group ring \(\mathbb{Z}C_{p^2} \) of a cyclic \(p \)-group of order \(p^2 \). However, there are plenty of \(R \)-orders \(\Lambda \), even lattice-finite ones, with generalized \(\Lambda \)-lattices \(L \) which are not fully decomposable. For such \(L \in \Lambda \text{-Lat} \), the decomposability behaviour can be quite different. For example, there are \(R \)-orders \(\Lambda \) (see [15], Example 2) which admit a projective \(L \in \Lambda \text{-Lat} \) without non-zero \(\Lambda \)-lattices as direct summands, such that \(L_p \cong L_{(p)} \) for each maximal ideal \(p \in \text{Spec} \ R \). On the other hand, it may happen that every non-finitely generated generalized \(\Lambda \)-lattice has a fully decomposable direct summand of infinite rank, but need not be fully decomposable itself ([15], Example 1).

In the present article, we deal with \(R \)-orders \(\Lambda \) in a finite dimensional \(K \)-algebra \(A \) which do not have a maximal overorder. By a theorem of Drozd [5], this happens if the algebra \(A_p := K_p \otimes_K A \) over the \(p \)-adically complete field \(K_p := R_p \otimes_R K \) is not semisimple for some \(p \in \text{Spec} \ R \). We define \(L \in \Lambda \text{-Lat} \) to be \textit{almost fully decomposable} if the \(A \)-module \(KL := K \otimes_R L \) admits a decomposition \(KL = M_0 \oplus M_1 \) with \(M_0 \) finitely generated, such that \(L \cap M_1 \) is fully decomposable. Our main result (Theorem 2) states that if \(A/\text{Rad} \ A \) is separable, and \(A_p \) is not semisimple for some \(p \in \text{Spec} \ R \), there exists an almost fully decomposable \(L \in \Lambda \text{-Lat} \) which is not fully decomposable. To prove this, we show first that \(\Lambda \) has an overorder \(\Lambda' = \Lambda_0' \oplus (\Lambda' \cap \text{Rad} \ A) \), such that \(\Lambda_0' \) is a maximal order. For a suitable block \(I \) of \(\Lambda_0' \), we construct a dense functor (Theorem 1)

\[
C : \Lambda' \text{-Lat} \rightarrow \Gamma \text{-Mod}.
\]

More precisely, for any \(\Gamma \)-module \(M \), there is a projective presentation \(L_1 \hookrightarrow L_2 \twoheadrightarrow M \), and the inclusion \(L_1 \hookrightarrow L_2 \) gives rise to a generalized \(T_2(\Gamma) \)-lattice \(L_M \), where \(T_2(\Gamma) \) denotes the triangular matrix order

\[
T_2(\Gamma) := \begin{pmatrix} \Gamma & 0 \\ \Gamma & \Gamma \end{pmatrix}.
\]

We define a functor

\[
C' : T_2(\Gamma) \text{-Lat} \rightarrow \Lambda' \text{-Lat},
\]

such that \(CC'(L_M) \cong M \) for all \(M \in \Gamma \text{-Mod} \). If we choose \(M \) to be an \(R \)-torsion indecomposable injective \(\Gamma \)-module, then \(C'(M) \in \Lambda' \text{-Lat} \subset \Lambda \text{-Lat} \) is almost fully decomposable, but not fully decomposable (Theorem 1). Note that the \(R \)-torsion indecomposable injective modules over a maximal order \(\Gamma \) look rather similar to the Prüfer groups \(\mathbb{Z}(p^\infty) \in \mathbb{Z} \text{-Mod} \) (Corollary of Proposition 8).

In a sense, triangular matrix orders \(\Lambda = T_2(\Gamma) \) over a maximal \(R \)-order \(\Gamma \) are the simplest type of \(R \)-orders in a non-semisimple \(K \)-algebra. They are most suitable to explain the nature of almost fully decomposable \(\Lambda \)-lattices. Here the relationship between \(\Gamma \)-modules and their projective presentations gives rise to an equivalence

\[
\Gamma \text{-Mod} \cong T_2(\Gamma) \text{-Lat}
\]

between the category \(\Gamma \text{-Mod} \) of \(\Gamma \)-modules and the “stable” category of \(T_2(\Gamma) \text{-Lat} \) modulo injective objects (Proposition 6). By the way, for an arbitrary \(R \)-order \(\Lambda \), the above mentioned argument ([3], Theorem 2.1) implies that every injective object of \(\Lambda \text{-Lat} \) is a direct summand of a coproduct \(\bigsqcup_{i \in I} E_i \) of injective \(\Lambda \)-lattices \(E_i \) (see Proposition 1). Now if \(M \in \Gamma \text{-Mod} \) does not decompose into finitely generated \(\Gamma \)-modules, the corresponding object \(L_M \in T_2(\Gamma) \text{-Lat} \) given by a projective presentation \(L_1 \hookrightarrow L_2 \twoheadrightarrow M \) cannot be fully decomposable. If \(M \) is not finitely generated, then \(L_2 \) cannot be finitely generated, and that part of the invariant factor theorem that survives in the infinite rank case, implies that the inclusion \(L_1 \hookrightarrow L_2 \) which represents \(L_M \) splits off an infinitude of (non-zero) finitely generated direct summands \(E_1 \hookrightarrow E_2 \). So far, this phenomenon occurs for all \(M \) which are not finitely generated (Proposition 7). If, in particular, \(M \) is chosen to be indecomposable and injective, the corresponding object \(L_M \in T_2(\Gamma) \text{-Lat} \) will be almost fully decomposable.

1. The category \(\Lambda \text{-Lat} \)

We start with some general terminology for an additive category \(\mathcal{A} \). Recall that a pair of morphisms \(X \xrightarrow{a} Y \xrightarrow{b} Z \) in \(\mathcal{A} \) is said to be a \textit{short exact sequence} if \(a = \ker b \) and \(b = \cok a \). We indicate kernels in \(\mathcal{A} \) by \(\hookrightarrow \) and cokernels by \(\twoheadrightarrow \). An object \(Q \) of \(\mathcal{A} \) is said to be \textit{projective} (injective) if for each short exact sequence \(X \xrightarrow{a} Y \xrightarrow{b} Z \) in \(\mathcal{A} \),
every morphism \(Q \rightarrow Z \) factors through \(b \) (resp. every morphism \(X \rightarrow Q \) factors through \(a \)). The full subcategory of projective (injective) objects will be denoted by \(\text{Proj}(\mathcal{A}) \) (resp. \(\text{Inj}(\mathcal{A}) \)). We will say that \(\mathcal{A} \) has enough projectives (in a strict sense) if for each object \(X \) of \(\mathcal{A} \), there exists a cokernel \(P \rightarrow X \) with \(P \in \text{Proj}(\mathcal{A}) \). Similarly, we say that \(\mathcal{A} \) has enough injectives if for each \(X \in \text{Ob} \mathcal{A} \), there is a kernel \(X \leftarrow I \) with \(I \in \text{Inj}(\mathcal{A}) \). For a full subcategory \(\mathcal{E} \) of \(\mathcal{A} \), the ideal of \(\mathcal{A} \) generated by the identical morphisms \(1_C \) with \(C \in \text{Ob} \mathcal{E} \) will be denoted by \([\mathcal{E}] \). By \(\text{add} \mathcal{E} \) we denote the full subcategory of objects \(C \in \text{Ob} \mathcal{A} \) with \(1_C \in [\mathcal{E}] \).

For a ring \(R \), we write \(R\text{-Mod} \) (resp. \(R\text{-mod} \)) for the category of all (resp. finitely presented) left \(R \)-modules. More generally, the coherent functors from \(\mathcal{A}^{op} \) to the category \(\text{Ab} \) of abelian groups can be regarded as an additive category and will be denoted by \(\text{mod}(\mathcal{A}) \). Thus \(R\text{-Mod} \cong \text{mod}(R\text{-Proj}) \), where \(R\text{-Proj} \coloneqq \text{Proj}(R\text{-Mod}) \). There is an equivalent, more explicit description of \(\text{mod}(\mathcal{A}) \) (see [7,12] or [13], Section 2). Let \(\text{Mor}(\mathcal{A}) \) be the additive category with morphisms \(A_1 \xrightarrow{a} A_0 \) in \(\mathcal{A} \) as objects, and commutative squares

\[
\begin{array}{ccc}
A_1 & \xrightarrow{f_1} & B_1 \\
\downarrow{a} & & \downarrow{b} \\
A_0 & \xrightarrow{f_0} & B_0
\end{array}
\]

(1)
as morphisms \(a \rightarrow b \). If \(\mathcal{E} \) denotes the full subcategory of \(\text{Mor}(\mathcal{A}) \) with split epimorphisms \(A_1 \rightarrow A_0 \) as objects, the ideal \([\mathcal{E}]\) consists of the morphisms (1) in \(\text{Mor}(\mathcal{A}) \) which admit a morphism \(h: A_0 \rightarrow B_1 \) with \(f_0 = bh \). Then \(\text{mod}(\mathcal{A}) \) can be represented as a factor category

\[
\text{mod}(\mathcal{A}) \cong \text{Mor}(\mathcal{A})/[\mathcal{E}].
\]

(2)

From now on, let \(R \) be a Dedekind domain with quotient field \(K \), and let \(\Lambda \) be an \(R \)-order [11] in a finite dimensional \(K \)-algebra \(A \). By \(\Lambda\text{-Lat} \) we denote the additive category of generalized \(\Lambda \)-lattices, that is, \(\Lambda \)-modules \(L \) which are projective over \(R \). The objects \(E \) of \(\Lambda\text{-Lat} \) which are finitely generated over \(R \) form the full subcategory \(\Lambda\text{-lat} \) of \(\Lambda\text{-lattices} \). For a generalized \(\Lambda \)-lattice \(L \), the natural homomorphism \(L \rightarrow K \otimes_R L \) is monic since \(K \) is a direct summand of a free \(R \)-module. Therefore, we have a natural embedding \(L \hookrightarrow KL := K \otimes_R L \). In particular, the \(K \)-algebra \(A \) can be identified with \(KA \). For a generalized \(\Lambda \)-lattice \(L \), the cardinal \(\rho(L) \coloneqq \dim KL \) will be called the rational rank of \(L \). If \(\rho(L) \geq N_0 \), we call \(L \) a large \(\Lambda \)-lattice. A generalized \(\Lambda \)-lattice \(L \) is said to be fully decomposable [15] if \(L \cong \bigsqcup E_i \) with \(E_i \in \Lambda\text{-lat} \).

Remark. The category \(\Lambda\text{-Lat} \) has kernels, but not every morphism has a cokernel. For example, consider a free presentation \(\mathbb{Z}^1 \xrightarrow{f} \mathbb{Z}^J \rightarrow \mathbb{Z}^{N_0} \) of the Baer–Specker group. Then \(f \) has no cokernel in \(\Lambda\text{-Lat} \). Otherwise, \(\mathbb{Z}^{N_0} \) would have a free direct summand \(\mathbb{Z}^{(N_0)} \) of countable infinite rank, which is impossible by Sasiada’s theorem ([18], Proposition 94.2).

Notice that \(\Lambda\text{-Lat} \) has coproducts. A sequence of morphisms \(L' \xrightarrow{a} L \xrightarrow{b} L'' \) in \(\Lambda\text{-Lat} \) is short exact if and only if it is short exact in \(\Lambda\text{-Mod} \).

Proposition 1. The category \(\Lambda\text{-Lat} \) has enough projectives and enough injectives. An object \(L \) of \(\Lambda\text{-Lat} \) is projective (injective) if and only if \(L \) is a direct summand of a coproduct \(\bigsqcup_i Q_i \) with \(Q_i \in \text{Proj}(\Lambda\text{-lat}) \) (resp. \(Q_i \in \text{Inj}(\Lambda\text{-lat}) \)).

Proof. For a given \(L \in \Lambda\text{-Lat} \), there is a surjection of a free \(\Lambda \)-module \(\Lambda^J \) onto \(L \), hence a short exact sequence \(L' \rightarrow \Lambda^J \rightarrow L \). Thus \(\Lambda\text{-Lat} \) has enough projectives. Furthermore, we have an \(R \)-split monomorphism \(\Lambda \cong \text{Hom}_{\Lambda}(\Lambda, L) \hookrightarrow \text{Hom}_{R}(\Lambda, L) \cong \Lambda^* \otimes_R L \), where \(\Lambda^* \coloneqq \text{Hom}_R(\Lambda, R) \). To show that \(\Lambda^* \in \text{Inj}(\Lambda\text{-Lat}) \), let \(c: L_1 \rightarrow L_2 \) be a kernel in \(\Lambda\text{-Lat} \). Then the isomorphism \(\text{Hom}_\Lambda(L_i, \Lambda^*) \cong \text{Hom}_R(L_i, R) \) is natural in \(L_i \). Since \(c \) is a split monomorphism in \(R\text{-Mod} \), this implies that \(\Lambda^* \in \text{Inj}(\Lambda\text{-Lat}) \). Thus if \(R \) is a direct summand of \(R^J \), we get a sequence

\[
L \xrightarrow{c} (\Lambda^*)^J \xrightarrow{f} (\Lambda^*)^J
\]

(3)

with \(c = \ker f \). Hence \(\Lambda\text{-Lat} \) has enough injectives. The remaining assertions follow immediately. \(\square \)
Corollary. The categories $\text{Proj}(A\text{-}\text{Lat})$ and $\text{Inj}(A\text{-}\text{Lat})$ are equivalent.

Proof. The Nakayama functor $P \mapsto \text{Hom}_A(P, A)^*$ gives an equivalence $\text{add}(A) \cong \text{add}(A^*)$. Now the corollary follows by [15], Proposition 1. □

Definition. We call a generalized A-lattice L almost fully decomposable if there is a decomposition $KL = M_0 \oplus M_1$ of A-modules with M_0 finitely generated, such that $L \cap M_1$ is fully decomposable.

We are interested in almost fully decomposable generalized A-lattices L which are not fully decomposable. For such L, the projection into M_0 cannot be finitely generated.

Proposition 2. Let L be a generalized A-lattice with a fully decomposable submodule $L' \in A\text{-}\text{Lat}$ such that L/L' is finitely generated. Then L is fully decomposable.

Proof. There is a short exact sequence $L' \hookrightarrow L \twoheadrightarrow E$ with E finitely generated. Hence there exists a finitely generated submodule F of L with $L' + F = L$. This gives a commutative diagram

$$
\begin{array}{ccc}
L' \cap F & \hookrightarrow & F \\
\downarrow & & \downarrow \\
L' & \overset{e}{\hookrightarrow} & L \\
\downarrow & & \downarrow \\
L' & \twoheadrightarrow & E
\end{array}
$$

with short exact rows. Assume that $L' = \bigsqcup_{i \in I} E_i$ with $E_i \in A\text{-}\text{Lat}$. Since $L' \cap F$ is finitely generated, there is a finite subset $J \subset I$ with $L' \cap F \subset \bigsqcup_{i \in J} E_i$. Consequently, the projection $p': L' \to \bigsqcup_{i \in J} E_i$ factors through the inclusion e. So we get a split epimorphism $q: L \to \bigsqcup_{i \in J} E_i$ and a short exact sequence $\bigsqcup_{j \in J} E_j \hookrightarrow \text{Ker } q \twoheadrightarrow E$ which shows that $\text{Ker } q$ is finitely generated. Hence L is fully decomposable. □

The following proposition shows that almost full decomposability behaves nicely with respect to Hom-functors.

Proposition 3. Let E be a A-lattice with $\Gamma := \text{End}_A(E)^{\text{op}}$, and let $L \in A\text{-}\text{Lat}$ be almost fully decomposable. Then $\text{Hom}_A(E, L) \in \Gamma\text{-}\text{Lat}$ is almost fully decomposable.

Proof. By definition, there exists a decomposition $KL = M_0 \oplus M_1$ with M_0 finitely generated and $L \cap M_1 \cong \bigsqcup_{i \in I} E_i$, such that $E_i \in A\text{-}\text{Lat}$ for all $i \in I$. Hence

$$
K \text{Hom}_A(E, L) = \text{Hom}_K(E, KL) = \text{Hom}_K(E, M_0) \oplus \text{Hom}_K(E, M_1),
$$

and $\text{Hom}_A(E, L) \cap \text{Hom}_K(E, M_1) = \text{Hom}_A(E, L \cap M_1) \cong \bigsqcup_{i \in I} \text{Hom}_A(E, E_i)$. □

For a maximal ideal p of R, let R_p denote the p-adic completion of R. Then $A_p := R_p \otimes_R A$ is an R_p-order in $A_p := R_p \otimes_R A$. For $L \in A\text{-}\text{Lat}$, we define $L_p := R_p \otimes_R L$.

Lemma 1. Let A be an R-order in a finite dimensional K-algebra A. For an A-module M and a maximal ideal p of R, let $L' \in A_p\text{-}\text{Lat}$ be a A_p-submodule of $M_p := R_p \otimes_R M$ with $KL' = M_p$. Then there exists an $L \in A\text{-}\text{Lat}$ with $KL = M$ and $L_p = L'$.

Proof. By [15], Proposition 4, the intersection $L' \cap M$ is a generalized $(A_p \cap A)$-lattice, and there exists a generalized A-lattice H with $KH = M$ by [15], Lemma 1. Choose an automorphism α of $K M$ with $\alpha(L' \cap M) \subset H_p \cap M$. Then $\text{Hom}_A(L', M) \cong \text{Hom}_K(E, KL) \subset \alpha^{-1} H_p$. Thus if we replace H by $\alpha^{-1} H$, we can assume that $L' \subset H_p$. Now we define $L := L' \cap \bigcap_{q \in \mathfrak{p}} H_q$, where q runs through $\text{Spec } R \setminus \{p\}$. Then $L \subset H_p \cap \bigcap_{q \notin \mathfrak{p}} H_q = H$ by [15], Lemma 2. Hence $L \in A\text{-}\text{Lat}$. Moreover, [15], Lemma 2, yields $L_p = R_p L' \cap \bigcap_{q \notin \mathfrak{p}} H_q = L' \cap M_p = L'$. □

Proposition 4. Let p be a maximal ideal of R, and let $L' \in A_p\text{-}\text{Lat}$ be almost fully decomposable but not fully decomposable. Assume that KL' is an injective A_p-module. Then there exists an almost fully decomposable but not fully decomposable $L \in A\text{-}\text{Lat}$, and a fully decomposable $L'' \in A_p\text{-}\text{Lat}$ with $L_p \cong L' \oplus L''$ and $\rho(L) = \rho(L')$.

□
Proof. By assumption, $KL' \cong N_0 \oplus N_1$ with $N_0 \in \mathcal{A}_p\text{-mod}$ and $L' \cap N_1 \cong \bigsqcup_{i \in I} F_i$, such that $0 \neq F_i \in \mathcal{A}_p\text{-lat}$ for all $i \in I$. Since $K F_i$ is injective, there is a finitely generated projective right A-module Q_i such that $K F_i$ is a direct summand of the A-module $\text{Hom}_{K_p}(K_p \otimes_K Q_i, K_p) \cong K_p \otimes_K \text{Hom}_A(Q_i, K)$. So there exist $E_i \in \mathcal{A}_p\text{-lat}$ and $F'_i \in \mathcal{A}_p\text{-lat}$ with $(E_i)_p \cong F_i \oplus F'_i$ for all $i \in I$. Similarly, we find $E \in \mathcal{A}_p\text{-lat}$ and $F, F' \in \mathcal{A}_p\text{-lat}$ with $K F = N_0$ and $E_p \cong F \oplus F'$. With $M_0 := K E$ and $M_i := \bigsqcup_{i \in I} K E_i$, this gives $(M_0 \oplus M_1)_p \cong K F \oplus K F' \oplus \bigsqcup_{i \in I}(K F_i \oplus K F'_i) \cong N_0 \oplus K (L' \cap N_1) \oplus K F' \oplus \bigsqcup_{i \in I} K F'_i \cong K (L' \oplus F' \oplus \bigsqcup_{i \in I} F'_i)$. By Lemma 1, there exists a generalized A-lattice H with $K H = M_0 \oplus M_1$ and $H_p \cong L' \oplus F' \oplus \bigsqcup_{i \in I} F'_i$. Hence $(H \cap M_1)_p \cong H_p \cap \bigsqcup_{i \in I}(K F_i \oplus K F'_i) \cong (L' \cap N_1) \oplus \bigsqcup_{i \in I} F'_i = \bigsqcup_{i \in I}(F_i \oplus F'_i) = \bigsqcup_{i \in I}(E_i)_p$. Now we define

$$L := H_p \cap \bigcap_q \left((E \cap H)_q \oplus \bigsqcup_{i \in I}(E_i \cap H)_q\right),$$

where q runs through $\text{Spec } R \setminus \{p\}$. Thus $L \subset H_p \cap \bigcap_q H_q = H$ implies that $L \in \mathcal{A}_p\text{-Lat}$. Moreover, $L_p \cong H_p \cong L' \oplus L''$ for some fully decomposable L'' with $\rho(L') \leq \rho(L')$. Hence $\rho(L) = \rho(L')$. Also, we have $L \cap M_1 = L \cap (M_1)_p = \bigcap_q L \cap (M_1)_q = \bigcap_q (H \cap M_1)_q = \bigcap_q \bigcap_{i \in I}(E_i \cap H)_q = \bigcap_{i \in I}(E_i \cap H)$. Hence L is almost fully decomposable. Finally, suppose that L is fully decomposable. Then $L_p \cong L' \oplus L''$ is so, and the Crawley–Jønsson–Warfield theorem ([1], Theorem 26.5) implies that L' is fully decomposable, a contradiction. □

2. A typical example

In this section, we consider an R-order A with no large indecomposables, but with an abundance of generalized A-lattices which are not fully decomposable. Let $N(A)$ denote the prime radical of A, that is, the intersection of all prime ideals of A. Since A is noetherian, the prime radical $N(A)$ is nilpotent. Hence

$$N(A) = A \cap \text{Rad } A. \quad (4)$$

We will say that A has a splitting prime radical if there is a suborder A_0 of A with $A = A_0 \oplus N(A)$.

Proposition 5. Assume that $A/\text{Rad } A$ is a separable K-algebra. Then A admits an overorder Γ' with splitting prime radical.

Proof. By the Wedderburn–Mal’cev theorem, there is a subalgebra A_0 of A with $A = A_0 \oplus \text{Rad } A$. Let $\pi : A \to A_0$ be the projection with respect to this decomposition. Then $A_0 := \pi(A)$ is an R-order in A_0, and there is a non-zero $\lambda \in R$ with $A \subset A_0 \oplus \lambda^{-1} N(A)$. Hence $A_0 \subset A + \lambda^{-1} N(A)$. So it follows that

$$\Gamma' := A_0 + \lambda^{-1} N(A) + \lambda^{-2} N(A)^2 + \cdots$$

is an overorder of A with splitting prime radical. □

For a maximal R-order A_0 in a semisimple K-algebra A_0, let us consider the triangular R-order

$$T_2(A_0) := \begin{pmatrix} A_0 & 0 \\ 0 & A_0 \end{pmatrix} \subset T_2(A_0) = \begin{pmatrix} A_0 & 0 \\ A_0 & A_0 \end{pmatrix}. \quad (5)$$

By [15], Proposition 11, every generalized A_0-lattice is fully decomposable, hence projective over A_0. So we have an equivalence

$$T_2(A_0)\text{-Lat} \cong \text{Mor}(A_0\text{-Proj}). \quad (6)$$

Therefore, the functor $\text{Mor}(A_0\text{-Proj}) \to A_0\text{-Mod}$ which maps an object $L_1 \xrightarrow{f} L_2$ to $\text{Cok } f \in A_0\text{-Mod}$ induces an additive functor

$$C_0 : T_2(A_0)\text{-Lat} \to A_0\text{-Mod}. \quad (7)$$

Proposition 6. The functor (7) induces an equivalence of additive categories

$$T_2(A_0)\text{-Lat}/[\text{Inj}(T_2(A_0)\text{-Lat})] \cong A_0\text{-Mod}. \quad (8)$$
Proof. Since every A_0-module has a projective presentation, the functor (7) is full and dense. As $A_0\text{-}\mathbf{Mod} \cong \text{mod}(A_0\text{-}\mathbf{Proj})$, Eq. (2) implies that $\text{Mor}(A_0\text{-}\mathbf{Proj})/\{\mathcal{E}\} \cong A_0\text{-}\mathbf{Mod}$, where \mathcal{E} consists of the objects $L_1 \xrightarrow{f} L_2$ in $\text{Mor}(A_0\text{-}\mathbf{Proj})$ for which f is a split epimorphism in $A_0\text{-}\mathbf{Proj}$. On the other hand, the injective objects in $T_2(A_0)\text{-}\mathbf{lat}$ correspond to split epimorphisms in $A_0\text{-}\mathbf{lat}$. So the equivalence (8) follows by Proposition 1. \hfill \Box

Lemma 2. Let A_0 be a maximal R-order, and let L be a generalized A_0-lattice with a finitely generated submodule E, such that L/E is R-torsion-free. Then $L/E \in A_0\text{-}\mathbf{Proj}$.

Proof. By [15], Proposition 11, there is a decomposition $L = \bigoplus_{i \in I} E_i$ with $E_i \in A_0\text{-}\mathbf{lat}$. Hence there is a finite subset J of I with $E \subset \bigoplus_{i \in I \setminus J} E_i$. This gives a commutative diagram

\[
\begin{array}{cccc}
e & \rightarrow & L & \rightarrow & \bigoplus_{i \in I \setminus J} E_i \\
\downarrow & & \downarrow & & \downarrow \\
\bigoplus_{i \in J} E_i & \rightarrow & \bigoplus_{i \in I \setminus J} E_i \\
\end{array}
\]

with exact rows and columns. Hence $L/E \cong F \oplus \bigoplus_{i \in I \setminus J} E_i \in A_0\text{-}\mathbf{Proj}$. \hfill \Box

Proposition 6 shows that a $T_2(A_0)$-lattice L is not fully decomposable unless $C_0(L)$ decomposes into finitely generated A_0-modules. Nevertheless, the equivalence (8) does not imply the existence of indecomposable large $T_2(A_0)$-lattices. On the contrary, we have

Proposition 7. For a maximal R-order A_0, every indecomposable $L \in T_2(A_0)\text{-}\mathbf{Lat}$ is finitely generated.

Proof. Firstly, the block decomposition of A_0 carries over to $T_2(A_0)$. Therefore, via Morita equivalence, we can assume that A_0 is a maximal order Δ in a division algebra D over K. Thus, by (6) and [15], Proposition 11, a generalized $T_2(\Delta)$-lattice L is given by a morphism $f: L_1 \rightarrow L_2$ in $A_0\text{-}\mathbf{Proj}$. As $\text{Im} f$ is projective, f decomposes into $\text{Ker} f \rightarrow 0$ and $\text{Im} f \hookrightarrow L_2$. Therefore, we can assume that L is given by an embedding $L_1 \hookrightarrow L_2$. It suffices to show that L_2 admits a decomposition $L_2 = F + C$ with $0 \neq F \in \Delta\text{-}\mathbf{lat}$, such that $L_1 = (L_1 \cap F) \oplus (L_1 \cap C)$. For any non-zero $x \in K L_2$, consider the ideal $I_x := \{a \in D \mid a(D x \cap L_2) \subset L_1\}$ of Δ. We set $I := \sum_{x \in KL_2} I_x$. If $I = 0$, then $L_1 = 0$, which implies that L is fully decomposable. Thus we assume that $I \neq 0$. Since Δ is left noetherian, there are $x_1, \ldots, x_n \in L_2$ with $I_{x_i} \neq 0$ and $I = I_{x_1} + \cdots + I_{x_n}$. By Lemma 2, we infer that $E := (D x_1 + \cdots + D x_n) \cap L_2$ is a direct summand of L_2. Moreover, there is a non-zero ideal a of R with $aE \subset L_1$. Now we proceed as in the lattice case [10]. Let p_1, \ldots, p_m be the maximal ideals of R which contain a. Then there are elements $y_1, \ldots, y_m \in E$, such that $R_p \otimes_R I_{y_i} = R_p \otimes_R I$. By the Strong Approximation Theorem ([11], Theorem 4.11), we find an element $y \in E$ with $R_p \otimes_R I = R_p \otimes_R I$ for $i \in \{1, \ldots, m\}$. Since $a \subset I_y \subset I$, this gives $I_y = I$. On the other hand, every $x \in L_1$ satisfies $x \in D x \cap L_1 = I_x(D x \cap L_2) \subset I(D x \cap L_2)$, whence $L_1 \subset IL_2$. By Lemma 2, there is a decomposition $L_2 = (D y \cap L_2) \oplus C$. Hence $1L_2 = I(D y \cap L_2) \oplus IC$, where $I(D y \cap L_2) = I_y(D y \cap L_2) \subset L_1$. Therefore, we get $L_1 = (I(D y \cap L_2) + IC) \cap L_1 = I(D y \cap L_2) \oplus (IC \cap L_1)$. \hfill \Box

3. Almost fully decomposable large A-lattices

Let Γ be a maximal R-order in A. Then Γ_p is a maximal R_p-order in A_p for any maximal ideal p of R. Hence A_p is semisimple. For a simple A_p-module S, the non-zero Γ_p-submodules E of S form a chain of isomorphic Γ_p-lattices. Therefore, the isomorphism class of $S(p^\infty) := S/E \in \Gamma^-\text{-}\mathbf{Mod}$ does not depend on E. This definition can be extended to every $p \in \text{Spec } R$. Namely, for $p = 0$ and a simple A-module S, we set $A_p := A$ and $S(p^\infty) := S$.

Lemma 3. Let A be an R-order in A. Every simple A-module is isomorphic to a factor module F/E with $E, F \in A\text{-}\mathbf{lat}$, such that $K E = K F$ is a simple A-module.
Proof. Every simple \(A \)-module is isomorphic to a factor module \(F/E \) with \(E, F \in A\text{-lat} \) and \(KE = KF \). (Choose, e.g., \(F := A \).) Consider a short exact sequence \(N \twoheadrightarrow KF \twoheadrightarrow S \) with \(S \in A\text{-mod} \) simple. If \(p(F) \neq p(E) \), then \(F/E \cong p(F)/p(E) \), and we are done. If \(p(F) = p(E) \), we get a commutative diagram

\[
\begin{array}{ccc}
E' & \rightarrow & E \\
\downarrow & & \downarrow \\
p(E) & \rightarrow & p(F)
\end{array}
\]

with short exact rows. Hence \(F'/E' \cong F/E \) and \(\dim KE' < \dim KF \). Therefore, the lemma follows by induction.

\[\square \]

Proposition 8. Let \(\Gamma \) be a maximal \(R \)-order in \(A \). Up to isomorphism, there is a one-to-one correspondence between simple \(\Gamma \)-modules \(U \) and simple \(A_\mathfrak{p} \)-modules \(S \), where \(\mathfrak{p} \) runs through the maximal ideals of \(R \). The correspondence is given by \(U \cong \text{Soc} S(p^{\infty}) \).

Proof. Let \(U \) be a simple \(\Gamma \)-module. Then there is a maximal ideal \(\mathfrak{p} \) of \(R \) with \(pU = 0 \). Since \(\Gamma_\mathfrak{p} \cong R_\mathfrak{p} \otimes_R \Gamma \), every \(\Gamma \)-submodule of \(U \) can be regarded as a \(\Gamma_\mathfrak{p} \)-module. Thus \(U \) is simple as a \(\Gamma_\mathfrak{p} \)-module. By Lemma 3, there is a simple \(A_\mathfrak{p} \)-module \(S \), such that \(U \cong F/E \) for some \(E, F \in A_\mathfrak{p}\text{-lat} \) with \(KE = KF = S \). Thus \(U \cong \text{Soc} S(p^{\infty}) \). Conversely, every simple \(\Gamma_\mathfrak{p} \)-module is simple as a \(\Gamma \)-module. This establishes the one-to-one correspondence.

As a consequence, we get the following generalization of the classification of indecomposable injective \(\mathbb{Z} \)-modules, which will be needed for the construction of almost fully decomposables.

Corollary. Let \(\Gamma \) be a maximal \(R \)-order in \(A \). For every simple \(A_\mathfrak{p} \)-module \(S \) with \(\mathfrak{p} \in \text{Spec} R \), the \(\Gamma \)-module \(S(p^{\infty}) \) is indecomposable and injective, and every indecomposable injective \(\Gamma \)-module is of this form.

Proof. Since \(A \) is semisimple, every \(A \)-module is injective in \(\Gamma\text{-Mod} \). This shows that for each \(\mathfrak{p} \in \text{Spec} R \), the simple \(A_\mathfrak{p} \)-modules are injective in \(\Gamma\text{-Mod} \). Since \(\Gamma \) is hereditary, this implies that the factor modules \(S(p^{\infty}) \in \Gamma\text{-Mod} \) are injective. Clearly, \(S(p^{\infty}) \) is indecomposable for \(p = 0 \). To show that \(S(p^{\infty}) \) is indecomposable for \(p \neq 0 \), let \(S(p^{\infty}) = S/E_0 \) with \(E_0 \in \Gamma_\mathfrak{p}\text{-lat} \) and \(KE_0 = S \in A_\mathfrak{p}\text{-mod} \). The proper non-zero \(\Gamma_\mathfrak{p} \)-submodules of \(S \) form a chain \(\{E_i \mid i \in \mathbb{Z}\} \) with \(E_i \subset E_j \) for \(i > j \). We will show that any proper \(\Gamma \)-submodule \(E \) of \(S \) with \(E_0 \subset E \) coincides with some \(E_i \). Since \(E \) is a union of finitely generated \(\Gamma \)-submodules, we can assume that \(E \) is finitely generated. Hence \(p^n E \subset E_0 \) for some \(n \in \mathbb{N} \). Suppose that \(n \) is minimal with respect to \(p^n E \subset E_i \subset E \) for some \(i \in \mathbb{Z} \). If \(n > 0 \), then \(R_\mathfrak{p}(E_i + p^{n-1} E) = (R + p R_\mathfrak{p})(E_i + p^{n-1} E) \subset E_i + p^{n-1} E \). Hence \(E_i + p^{n-1} E = E_j \) for some \(j \in \mathbb{Z} \), and \(p^{n-1} E \subset E_j \subset E \), a contradiction. This proves that the \(\Gamma \)-module \(S(p^{\infty}) \) is indecomposable. Conversely, let \(I \) be an indecomposable injective \(\Gamma \)-module. If \(I \) is \(R \)-torsion-free, then \(KE = KF \) and \(KE \) must be simple. If \(I \) is not \(R \)-torsion-free, the submodule \([p]I := \{x \in I \mid px = 0\} \) of \(I \) is non-zero for some maximal ideal \(\mathfrak{p} \) of \(R \). Hence \(I \) is the injective envelope of a simple \(\Gamma \)-module \(U \). By Proposition 8, this implies that \(I \) is of the desired form.

Now we turn our attention to the construction of almost fully decomposable generalized \(A \)-lattices which are not fully decomposable. First, we assume that the \(R \)-order \(\Lambda_0 := \Lambda/N(\Lambda) \) in \(A/\text{Rad} A \) is maximal. For \(L \in A\text{-Lat} \), consider the short exact sequence

\[
N(\Lambda)L \cap \text{Soc} KL \hookrightarrow L \cap \text{Soc} KL \rightarrow CL
\]

of \(A_0 \)-modules, where \(\text{Soc} KL \) denotes the socle of \(KL \in A\text{-mod} \). Then \(L \mapsto CL \) defines an additive functor

\[
C : A\text{-Lat} \rightarrow A_0\text{-Mod},
\]

and (9) gives a projective resolution of \(CL \). Note that \(C \) maps \(A \)-lattices to finitely generated \(A_0 \)-modules.

Theorem 1. Let \(R \) be a Dedekind domain with quotient field \(K \), and let \(\Lambda \) be an \(R \)-order in a finite dimensional \(K \)-algebra \(A \) such that \(\Lambda_0 := \Lambda/N(\Lambda) \) is a maximal order. Assume that \(\Lambda \) has a splitting prime radical. Let \(\Lambda_1 \) be the product of the blocks \(\Gamma \) of \(\Lambda_0 \) with \(\Gamma(\text{Rad} A/\text{Rad}^2 A) \neq 0 \).
(a) Every $I \in \Lambda_1$-Mod is isomorphic to C_L for some $L \in A$-Lat.
(b) If I is R-torsion and indecomposable injective, then L can be chosen to be almost fully decomposable, not fully decomposable, with KL injective and $\rho(L) = S_0$.

Proof. (a) By assumption, A_0 can be regarded as a suborder of A with $A = A_0 \oplus N$, where $N := N(A)$. Since A_1 is maximal, I has a projective resolution $L_1 \hookrightarrow L_2 \twoheadrightarrow I$ with $L_1, L_2 \in A_1$-Lat. Define
\[
L := \{ f \in \text{Hom}_{A_0}(A, L_2) \mid f(N) \subset L_1 \} \in A$-Lat.
\]
With $J := \text{Rad} A$, $A_0 := K A_0$, and $X := KL_2$, we have
\[
KL = \{ f \in \text{Hom}_{A_0}(A, X) \mid f(J) \subset KL_1 \}.
\]
Therefore, $\text{Soc} KL = \{ f \in \text{Hom}_{A_0}(A, X) \mid f(J) = 0 \} \cong \text{Hom}_{A_0}(A/J, X)$ can be identified with X. With this identification,$$
L \cap \text{Soc} KL = \{ f \in \text{Hom}_{A_0}(A, L_2) \mid f(N) = 0 \} = \text{Hom}_{A_0}(A/N, L_2) = L_2 \subset X.
$$
Let us show that
\[
\{ f \in \text{Hom}_{A_0}(A, L_1) \mid f(N) = 0 \} \subset NL.
\]
By assumption, every block of KA_1 has a simple direct summand occurring in J/J^2. By Harada’s theorem ([9], Theorem 1.1; [11], Theorem 22.7), this implies that there is a surjection $p: N^m \to A_1$ in A-Lat for some $m \in \mathbb{N}$. Every $f \in \text{Hom}_{A_0}(A, L_1)$ with $f(N) = 0$ factors through the natural map $q: A \to A/N \to A_1$. Since $q \in A$-Lat, we have $q = pr$ for some $r: A \to N^m$ in A-Lat. Hence there are $r_i \in \text{Hom}_A(A, N)$ and $f_i \in \text{Hom}_{A_0}(N, L_1)$ with $f = \sum_{i=1}^m r_i f_i$. Since $A_0 N$ is a direct summand of $A_0 A$, the f_i can be extended to A, whence $f = \sum_{i=1}^m r_i(1)f_i \in NL$. Therefore, we get
\[
NL \cap \text{Soc} KL = \{ f \in \text{Hom}_{A_0}(A, L_1) \mid f(N) = 0 \} = \text{Hom}_{A_0}(A/N, L_1) = L_1 \subset X,
\]
which yields $CL \cong I$.

(b) If I is an R-torsion module, then $KL_1 = KL_2$. Hence $KL = \text{Hom}_{A_0}(A, X)$ by Eq. (12). Since A_A is flat and $A_0 X$ is injective, this implies that $A KL$ is injective ([6], Theorem 3.2.9). Assume, in addition, that I is indecomposable injective. By Proposition 8 and its Corollary, there is a maximal ideal p of R and a simple A_1-module U with injective envelope I, such that $p U = 0$. By Lemma 3, U can be represented as a factor module E_1/E_0 with $E_0, E_1 \in A_1$-Lat and $S := KL E_0 = K E_1 \in K A_1$-mod simple. Since S/E_0 is an injective A_1-module, the Corollary of Proposition 8 implies that the inclusion $E_0 \subset E_1$ can be extended to a chain of proper A_1-submodules $E_0 \subset E_1 \subset E_2 \subset \cdots$ with $E_{i+1}/E_i \cong E_1/E_0$, such that $\tilde{E} := \bigcup_{i=0}^{\infty} E_i$ satisfies $\tilde{E}/E_0 \cong I$. Define $L_2 := \bigcap_{i=0}^{\infty} E_i$. Then the inclusions $E_i \hookrightarrow \tilde{E}$ induce a natural epimorphism $\rho: L_2 \to \tilde{E}/E_0 \cong I$. We set $L_1 := \text{Ker} \rho$. Then the generalized A-lattice (11) satisfies $\rho(L) = S_0$ and is not fully decomposable. It remains to be shown that L is almost fully decomposable. Let e_i denote the inclusion $E_i \hookrightarrow E_{i+1}$. Then
\[
f_i : E_i \overset{1}{\rightarrow} E_i \oplus E_{i+1} \hookrightarrow L_2
\]
is monic with $f_i(E_i) \subset L_1$. Moreover, a straightforward calculation yields
\[
KL_2 = KE_0 \oplus \bigoplus_{i=0}^{\infty} Kf_i(E_i).
\]
With $C := \bigoplus_{i=0}^{\infty} Kf_i(E_i)$, this shows that $C \cap L_2 = C \cap L_1$. Hence L is almost fully decomposable. \[\square\]

Corollary. Assume that $A_0 := A/N(A)$ is a maximal order and that A has a splitting prime radical. The following are equivalent.

(a) The functor (10) is dense.

(b) Every simple A-module is a direct summand of $\text{Rad} A/\text{Rad}^2 A$.

Proof. (a) ⇒ (b): Let S be a simple A-module which does not occur as a direct summand of J/J^2, where $J := \text{Rad } A$. Suppose that $S \cong C L$ for some $L \in \Lambda$-Lat. Then (9) gives rise to a short exact sequence

$$J L \cap \text{Soc } K L \hookrightarrow \text{Soc } K L \xrightarrow{\rho} S$$

with $\rho(L \cap \text{Soc } K L) = S$. We set $L' := L \cap \text{Soc } K L$ and choose $i \in \text{Hom}_A(S, \text{Soc } K L)$ with $pi = 1$. Then $E := i^{-1}(L') \subset S$ is an A_0-lattice with $KE = S$. So there is an A_0-lattice F with $KF = S$ and $E \subsetneq F$. Hence $(i(F) + L')/L' \cong (i(F)/(i(F) \cap L')) \cong F/E$. This gives a commutative diagram

$$
\begin{array}{c}
F' := (i(F) + L') \cap J L \бург \rightarrow i(F) + L' \hookrightarrow S \\
E' := L' \cap J L \бург \rightarrow L' \hookrightarrow S
\end{array}
$$

(15)

with exact rows. As F is finitely generated, we have $i(F) + L' \in A_0$-Lat, whence $F' \in A_0$-Lat. Moreover, the diagram (15) yields an isomorphism $F/E \cong F'/E'$ of A_0-modules. Since A_0 is maximal, this isomorphism is induced by a homomorphism $F \rightarrow F'$. Therefore, we get a non-zero morphism $\rho(S) = K F \rightarrow K F' \hookrightarrow J L$. Since J is nilpotent, it follows that S is a direct summand of $J^m L/J^{m+1} L$ for some $m > 0$. Hence we get an epimorphism $J \otimes_A J^{m-1} L \rightarrow J^m L \rightarrow S$, which shows that $\text{Hom}_A(J, S) \neq 0$. Thus S is a direct summand of J/J^2, in contrast to the assumption. The reverse implication $(b) \Rightarrow (a)$ follows immediately by Theorem 1.

Now we are ready to prove our main result. Assume that A_p is a maximal R_p-order for almost all $p \neq 0$ in $\text{Spec } R$. By Drozd’s theorem [5], there exists a maximal overorder of Λ if and only if A_p is semisimple for every $p \in \text{Spec } R$.

Theorem 2. Let R be a Dedekind domain with quotient field K, and let Λ be an R-order in a finite dimensional K-algebra A such that $A/\text{Rad } A$ is separable over K. Assume that A_p is not semisimple for some $p \in \text{Spec } R$. Then there exists an almost fully decomposable, but not fully decomposable $L \in \Lambda$-Lat with $\rho(L) = \aleph_0$.

Proof. With regard to Proposition 4, we assume that A is not semisimple. Then it suffices to construct an almost fully decomposable $L \in \Lambda$-Lat with $K L$ injective and $\rho(L) = \aleph_0$, such that L is not fully decomposable. By Proposition 5, there is an overorder Λ' of Λ with splitting prime radical. Thus $\Lambda' = \Lambda_0' \oplus N(\Lambda')$. Choose a maximal overorder Γ_0 of Λ_0'. Then $\Gamma := \Gamma_0 \oplus \Gamma_0 N(\Lambda)/\Gamma_0$ is an overorder of Λ. Therefore, Theorem 1 yields an almost fully decomposable $L \in \Gamma$-Lat with $K L$ injective and $\rho(L) = \aleph_0$, such that L is not fully decomposable. Hence L is almost fully decomposable in Λ-Lat. If L would be fully decomposable, say, $L = \bigoplus_{i \in I} E_i$ with $E_i \in \Lambda$-lat, then $L = \Gamma L = \bigoplus_{i \in I} \Gamma E_i$, a contradiction. Thus $L \in \Lambda$-Lat meets the requirements. \(\square \)

References