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Abstract

The use of the UML specification language is very widespread due to some of its features. However,
the ever more complex systems of today require modeling methods that allow errors to be detected
in the initial phases of development. The use of formal methods make such error detection possible
but the learning cost is high.

This paper presents a tool which avoids this learning cost, enabling the active behavior of a sys-
tem expressed in UML to be verified in a completely automatic way by means of formal method
techniques. It incorporates an assistant for the verification that acts as a user guide for writing
properties so that she/he needs no knowledge of either temporal logic or the form of the specification

obtained.
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1 Introduction

The Unified Modeling Language (UML) [1,12] has unquestionable advantages
as a visual modeling technique, and this has meant that its applications have
multiplied rapidly since its inception. To the characteristics of UML itself
must be added numerous tools that exist in the market to help in its use
(Rational Rose, Argo UML, Rhapsody ...). However, unfortunately, none of
them guarantee specification correctness.

However, it is widely accepted that error detection in the early phases of
development substantially reduces cost and development time, as the errors
detected are not transmitted to or amplified in later phases. It would thus be
very useful to have a tool that would allow the integration of this semi-formal
development method with a formal method to enable system verification. This
paper presents a tool —TABU (Tool for the Active Behaviour of UML)— to
carry out this integration by providing a formal framework in which to verify
the UML active behaviour.

The tool uses SMV [10] (Symbolic Model Verifier) like formal specification,
as it has the adequate characteristics for representing the active behaviour of
a specification in UML. The main reason for this is that it is based on labeled
transition systems and because it allows the user’s own defined data types
to be used, thus facilitating the definition of variables. It also uses symbolic
model checking for the verification, which means that the test is automatic,
always obtains an answer and more importantly, should the property not be
satisfied generates a means of identifying the originating error.

The tool carries out, with no intervention on the user’s part, a complete,
automatic transformation of the active behaviour specified in UML into an
SMV specification, focusing mainly on reactive systems in which the active
behaviour of the classes is represented through state diagrams, while activity
diagrams are used to reflect the behaviour of class operations. XMI [11] (XML
Metadata Interchange) is used as the input format, thus making it independent
of the tool used for the system specification.

On the other hand, the tool has a versatile assistant that guides the user
in writing properties to be verified using temporal logic. The verification is
carried out in such a way that the user needs no knowledge of either for-
mal languages or temporal logic to be able to take advantage of its potential;
something which has traditionally been difficult to overcome when deciding
on the use of formal methods. In addition, notions of the form of the specifi-
cation obtained are unnecessary: that is, knowledge of the internal structure
of variables or modules obtained is not required for verification. Figure 1 is
a graphical representation of the tool’s architecture, the engineer only needs
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Fig. 1. Tool architecture

knowledge of UML and the system studied, the tool automatically obtains the
formal representation in SMV from textual representation in XMI. Parallel,
a wizard helps to write properties to be verified using LTL (Linear Temporal
Logic), moreover if a property is not satisfied, the tool shows a counterexample
trace.

The rest of the paper shows the functionalities of the tool illustrated
through a case study. It is analysed in terms of two main aspects of the
tool: how to obtain a formal specification from the UML diagrams, and how
the assistant helps and guides in verifying properties. This is followed by
a review of the work in the same field from the literature and, finally, the
conclusions are presented along with possible future work.
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2 From UML to SMV

The tool input is a UML specification which has been formatted using the
XMI exchange syntax. From this input, a SMV specification is automatically
generated. Three kinds of diagram are taken into account when transforming
the active behaviour from UML into SMV: class, state and activity diagrams.
The first provides information concerning the elements that make up the sys-
tem and their relationships, while the second and third provide information
about the behaviour, through time, of each of those elements.

In order to show how the tool works we use the example of an automatic
teller machine (figures 2, 3, 4, 5 and 6), both because it is a very well known
example, and because it incorporates in its specification most of the existing
building blocks of statemachine and activity diagrams.

The following is the basic description of the system. First of all, the user
introduces the credit card followed by a pin number. The system checks
whether it is correct and, if not it allows the user to try again. If the user
introduces three consecutive wrong pin numbers, the card will not be returned
to the user. Once the right pin is introduced, the user will be allowed to push
the operation button. This operation updates the card information including
the available left-over. At any time, the user can push the cancel button that
will make the card to be returned and an error signal to be generated.

3 Class diagram

The fundamental concept taken as our starting point is that of the active
class. The system is specified in terms of active classes which are associated
to the reception of signals. The behaviour of each active class is reflected in
a different SMV module, which in turn is instantiated in the main module by
each of the class objects.

Each SMV module, representing a class, needs the signals the class re-
ceives as its input parameters, and those the class emits as output param-
eters. Thus, the said signals are reflected in the class diagram using the
stereotypes <<send>> and <<signal>> as shown in figure 2. Here, the signals
okPin, errorPin and updateBalanceCard correspond to the signals emitted by the
Card class, while introPin, introCard and returnCard are the ones it receives.

An additional class called environment also has to be included. It has no
associated behaviour and contains details of the signals produced outside the
system and which are input signals.
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Fig. 2. Class diagram of the ATM system
4 State machines

Behaviour of each of the active objects is reflected through state machine and
activity diagrams. To correctly control the evolution of a state machine, the
state it is in at any given moment must be known. This is achieved by using
a separate variable to store this information for each machine.

In addition, the fact that combined states, both sequential and concurrent,
may appear within a machine means that additional variables are needed in
order to deal with the submachines. These will be dealt with following the
same reasoning as for the main machine, with the exception of the peculiarities
they possess with respect to activation and deactivation.

As for the evolution machines, the SMV operator next is used. This repre-
sents the value taken by the variable in the following step. The state machine
is initiated using the init operator. As far as the machine for the ATM class
is concerned (see Figure 3), the SMV representation of the outermost machine
behaviour is as shown below: °

/*%kx* Statemachine for state: ATM ¥¥kxx/
st_ATM :{ checkBalance,waitOperation,active,
inactive,returningCard};
/***x*x Evolution of statemachine for class: ATMkx¥x*xx*/
init(st_ATM) := inactive;
next (st_ATM) := case {

6 Fach transition is assigned a unique identifier which corresponds to the XMI identifier
assigned automatically.
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Fig. 3. The state diagram of the ATM class

tr_G_9 : checkBalance;
tr_G_7 : waitOperation;
tr_G_4 : active;
tr_G_29 : inactive;
tr_G_16 : inactive;
tr_G_12 : returningCard;
tr_G_13 : returningCard;
default : st_ATM;

};

Where tr_G_9, tr_G_7, tr_G_4... represent the firing of transitions tr_¢_9,
tr_G_7, tr_G_4... The block default represents the behaviour where there is no
change of state, that is, when no transition present in the machine is fired and

it remains in the same state during the following step.

A similar reasoning has been used for the behaviour of the submachines,
based on having a different machine for each sequential composite state and
for each region of a concurrent composite state. By doing so, the behaviour
associated to the concurrent composite state checkBalance of Figure 3 is rep-

resented in terms of the following machines:

/***x**x Statemachine for state: checkBalanceATM **x*x/
st_checkBalanceATM :{updateATM,checkATM,FINAL,DontKnow};

/****x Statemachine for state: checkBalanceCard x**x*/
st_checkBalanceCard :{checkCard,FINAL,DontKnow};

/** Evolution statemachine state: checkBalanceATM *xx*/
init(st_checkBalanceATM) := DontKnow;
next (st_checkBalanceATM) := case {
tr_G_12 : DontKnow;
tr_G_13 : DontKnow;
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tr_G_9 : checkATM;

tr_G_44 : updateATM;

tr_G_46 : FINAL;

default : st_checkBalanceATM;

};
/** Evolution statemachine state: checkBalanceCard ***/
init (st_checkBalanceCard) := DontKnow;
next (st_checkBalanceCard) := case {
tr_G_12 : DontKnow;
tr_G_13 : DontKnow;
tr_G_9 : checkCard;
tr_G_38 : FINAL;
default : st_checkBalanceCard;
};

Where Dontknow is the state of a machine which is deactivated. Deacti-
vation can take place either because of the firing of transition tr_G_13, the
cancel button is pushed, or because both submachines reach the final state
and tr_G_12 is fired by termination. Its syntax is the following:

tr_G_12:=in_checkBalance & in_FINALcheckBalanceATM & in_FINALcheckBalanceCard;

5 Actions

The evolution of an active object can lead to different actions, including send-
ing signals and modifying the value of class attributes.

With regard to sending signals, it can happen in any of the following
situations: (1) the firing of a transition, if the signal is among the transition
effects; (2) the activation of a state, if the signal is among its entry actions;
and (3) the deactivation of a state, if the signal is among its exit actions.
Taking into account that both state activation and deactivation are due to
the firing of some transition, signal evolution can be represented in a similar
way to state machine evolution.

As for modifying the value of an attribute that it will be specified through
the use of the SMV operators init and next. Attributes will be initialised
with init if they have an initial value in the class diagram, whereas their
evolution (next) will depend on the firing of transitions. For instance, the
SMYV behaviour for the attribute errorCounter in class ATM, which keeps track
of how many wrong consecutive pin numbers have been introduced, is the
following (see Figures 2, 3 and 4).

/**xxx Attribute: errorCounter *¥x*x/

ATM_errorCounter: 0..3;

init (ATM_errorCounter) :=0;

next (ATM_errorCounter) := case {
tr_G_b55: ATM_errorCounter +1;
tr_G_29: 0;

tr_G_16: 0;
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Fig. 4. Activity diagram for the activity checkErrors
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Fig. 5. Statechart of Card class.

do / checkPin

default : ATM_errorCounter;

};

6 Activity diagrams

A class operation control flow can be modeled using activity diagrams which,
fundamentally, show the control flow between activities. Its SMV specification
can be found in the module that reflects class behaviour. These activity
diagrams are activated whenever a call to an activity is produced within a
state using the notation do <activity>.

Activity diagrams can be considered as a special case of state diagrams
where the majority of states are activity states and most transitions are fired
by termination. So the mechanism used to represent them is similar to that
used for state machines. The only difference is that, for concurrent evolution,
the special states of division and union (fork and join) are used. They are
activated whenever any state which has a call to this activity inside it is
activated. Likewise, they are deactivated whenever a transition is produced
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that deactivates the state in which it is contained.

7 Verification

Having obtained a system specification in a formal language with a solid math-
ematical basis means that it is possible to check whether the system complies
with certain desirable properties. As with the formal specification methods,
the increasing complexity of software systems requires the development of new
verification methods and tools to carry it out either automatically or semi-
automatically.

In our tool, verification is carried out using the SMV tool model checker.
With this, it is possible to make the verification process completely automatic.
That is, given a property, a positive or negative reply is always obtained.

The property must be expressed in a temporal logic present in SMV 7, CTL
(Computation Tree Logic) or LTL (Linear Temporal Logic). This property
writing is not a trivial problem. To write them correctly, advanced knowledge
of logics and the type of specification obtained from the system is necessary.
Our tool overcomes this problem as it has an assistant that guides the user
through the writing of properties until the property to be verified is finally
obtained following the appropriate syntax.

Our starting point was the pattern classification proposed by Dwyer et
al. [4] to which our own cataloguing of the different properties to be automat-

" Cadence SMV. http://www-cad.eecs.berkeley.edu/ kenmcmil /smv
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ically verified has been added.

7.1  Property patterns

The property writing assistant is based on the pattern scheme proposed by
Dwyer et al [4] where it is established a first classification between patterns
of occurrence and order. Most of the properties of a system to be verified in
practice, fit in with one of these two categories.

Occurrence patterns describe properties with respect to the occurrence of
a state or signal during the evolution of a system. These include absence
(never), universality (always), existence (sometimes) and bounded existence
(appearing a certain number of times). Order patterns establish properties
with respect to the order in which they occur. They include: precedence
(s precedes p), response (s responds to p), and combinations of both: chain
precedence (s and t precede p or p precedes s and t), chain response (s and t
respond to p or p responds to s and t), and constrain chain (s and t without
z respond to p).

On the other hand, each kind of pattern has a scope of application which
indicates the system execution on which it must be verified. There are five
basic scopes: Global (the entire program execution), Before R (the execution
up to a given property), After Q (the execution after a given property), Be-
tween Q and R (any part of the execution from a given property to another
given property) and after Q until R (like between but the designated part of
the execution continues even if the second property does not occur). Figure 7
illustrates the portion of an execution that are designated by the different
kinds of scopes.

7.2 Property classification

The different properties to be verified have been catalogued to establish limits
for the scopes (Q and R) and to specify the order of properties when more
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than one must be determined (s, t 0 z), so that the user does not need to know
or understand the structure of the specification obtained in SMV to carry out
verification. The established property types are as follows (see Figure 8).

» A state machine with one active object is in a particular state.
* An object activity is in a particular state.
e A signal or event is produced.

* Value comparison of an attribute.

The tool will automatically generate the property in the adequate format,
in accordance with the chosen option and the selected pattern and scopes.
Once we have the properties to be verified, it is possible, using the tool itself,
to execute the SMV model checker to carry out the verification. If the property
is not satisfied, it generates a trace showing a case where it is not verified.

For example, for the automatic teller machine, it would be possible to ver-
ify that the card is never retained; this means that the signal retained never
happens. The property description is as follows:

DESCRIPTION The card is never retained
PATTERN Absence

SCOPE Global

PROPERTY CLASSIFICATION A signal is produced

SPECIFICATION AUTOMATICALLY OBTAINED G(“retained)

As expected, the result of the checker is false. If the generated counterexam-
ple trace is analyzed (see next table), it can be seen that the card is retained
when there has been 2 wrong pin numbers and again errorPin is generated.
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8 Related work

Most works dealing with UML verification using formal method techniques
focus on state diagram verification. Many such papers are based on previous
works that, using formal methods, verified the classic statechart Harel [6] on
which the UML state diagrams are based.

Yet today, as the use of UML is so widespread, researchers are looking
to take a step further in UML verification with formal methods. Research is
focusing on obtaining tools that automatically give the system specification
in a formal language without the user’s intervention and, as far as is possible,
to achieve an automatic verification process.

The tools developed for verifying UML system specifications can be classi-
fied according to the formal language used, as a language prior to verification,
for representing the system.

* Promela Language (tool Spin). Most work done on UML verification has
been developed for the model checker Spin. The main contributions in this
field are:

- vUML [9,13]. vUML is a tool for the automatic verification of UML
models, focusing on state diagrams. It is easy to use, generating automat-
ically a representation of the system in Spin and performing an automatic
verification to check that states of error are never reached and that states
catalogued as desirable are reached.

- Latella, Majzik & Massink [8] work with UML state diagrams, encoding
them through hierarchical automata (HA) from which they generate the
specification for Spin. The transformation is not carried out automatically,
although they have achieved this in later works using XMI DarMajBen02.

- HUGO [14,7]. This project includes a set of tools to apply model checking
to UML state diagrams and collaborating ones. The latter are used to
check whether the interaction represented in the collaboration diagram
can be performed using state machines. That is, for the verification. The
step from UML to Spin is carried out automatically using XMI.

* SMV language. There are also some works in the literature which try to
verify UML by using the SMV model checker.
- VeriUML [2] are a set of integrated tools developed in the University
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of Michigan that allow UML state diagrams to be verified and to check
whether the model is syntactically correct.

This first set of tools, developed in the year 2000, was later extended
[15,16], allowing verification of the model’s static part. The points of entry
for this approach are the class diagram, the restrictions imposed on the
said diagram written in OCL and an object diagram, all in XMI format.
But the verification is not automatic.

- TCM (Toolkit for Conceptual Modeling), is a set of tools developed by R.
Eshuis [5] which allows only activity diagrams to be verified by convert-
ing them to transition systems that can be verified using nuSMV. The
transformation is automatic, although it is not based on XMI.

If a comparison is made between the work presented in this paper and the
above-mentioned work, it can be concluded that the main characteristics of
this paper focus on the possibility of performing an automatic verification of
the behaviour of a UML specification in which the said behaviour is reflected
through state and activity diagrams and is also semi-transparent for the user.
Most works do not carry out an automatic verification and vUML [9,13], which
does, does not use the potential of temporal logic, implementing a limited
verification based on checking that it is impossible to reach error states. These
error states are introduced by the user in the diagrams, so the diagrams are
more complicated.

It should also be pointed out, though it has not been discussed here through
lack of space, that the representative elements of both state and activity dia-
grams are included in this approach (except for synchronization states, events
with parameters, and the dynamic creation and destruction of objects), some-
thing that cannot be said of other contributions in this field, in which few of
the characteristics provided by UML (history states, deferred events, transi-
tions fired by termination...) are dealt with.

9 Conclusions and future lines of work

This paper presents a tool whose main aim is to integrate formal methods
with non-formal ones in such a way as to be transparent for the user. To be
precise, it verifies the UML active behaviour using SMV. Although this is not
a new idea, as far as we know at the present time, nowhere are activity and
state diagrams jointly verified, using the former to represent the behaviour of
the class operations.

However, the most innovative characteristic of the tool is that, in spite of
using the potential of temporal logic to verify systems, the user need have
no knowledge of its working. In addition, the user needs no knowledge of
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the structure of the specification obtained either, thus eliminating one of the
major inconveniences of using formal methods.

As for future lines of work, some kind of treatment of the traces obtained
in the verification when the property is not satisfied would seem to be of great
interest. More precisely, that the representation of the traces should be visual
instead of written, by using either some of the UML diagrams or an animated
representation of the state and activity machines which could help the user to
locate the error source very quickly.
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