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a b s t r a c t

For a connected graph G = (V , E), an edge set S ⊂ E is a 3-restricted edge cut if G − S is
disconnected and every component of G − S has order at least three. The cardinality of a
minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by
λ3(G). A graph G is called minimally 3-restricted edge connected if λ3(G− e) < λ3(G) for
each edge e ∈ E. A graphG is λ3-optimal if λ3(G) = ξ3(G), where ξ3(G) = max{ω(U) : U ⊂
V (G), G[U] is connected, |U| = 3},ω(U) is the number of edges between U and V \U , and
G[U] is the subgraph of G induced by vertex set U . We show in this paper that a minimally
3-restricted edge connected graph is always λ3-optimal except the 3-cube.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A network can be convenientlymodeled as a graph G = (V , E). A classicmeasure of the fault tolerance of a network is the
edge connectivity λ(G). In general, the larger λ(G) is, the more reliable the network is [2]. A more refined measure known
as restricted edge connectivity was proposed by Esfahanian and Hakimi [5], which was further generalized to k-restricted
edge connectivity by Fábrega and Fiol [6] (called k-extra edge connectivity in their paper).
Let G be a connected graph. An edge set S ⊂ E(G) is said to be a k-restricted edge cut of G if G − S is disconnected and

each component of G− S has at least k vertices. The minimum cardinality of a k-restricted edge cut is called the k-restricted
edge connectivity of G, denoting by λk(G). A k-restricted edge cut S with |S| = λk(G) is called a λk-cut. Not all graphs have
λk-cuts [4,5,12,21]. Thosewhich do have λk-cuts are called λk-connected graphs. According to current studies on k-restricted
edge connectivity [10,11,13,17], it seems that the larger λk(G) is, the more reliable the network is. In [21], Zhang and Yuan
proved that λk(G) 6 ξk(G) holds for any integer k 6 δ(G)+ 1 except for a class of graphs (such a graph is constructed from
a set of complete subgraphs Kδ by adding a new vertex u and connect u to every other vertex), where δ(G) is the minimum
degree of G and ξk(G) = min{ω(U) : U ⊂ V (G),G[U] is connected,|U| = k}, ω(U) is the number of edges between U and
V \ U , and G[U] is the subgraph of G induced by U . A graph G is called λk-optimal if λk(G) = ξk(G). There is much research
on sufficient conditions for a graph to be λk-optimal, such as symmetric conditions [11,13,17,18], degree conditions [14,15,
19], and girth-diameter conditions [1,6,16,20]. For more information on this topic, we refer the readers to the nice survey
paper by Hellwig and Volkmann [7].
In this paper, we give another type of sufficient condition called a minimally restricted edge connected condition. A

graph G is a minimally k-restricted edge connected graph (minimally λk-graph for short) if λk(G − e) < λk(G) (and thus
λk(G − e) = λk(G) − 1) for each edge e ∈ E(G). It is implied in the definition that λk(G − e) exists for each edge e. If e is a
pending edge, then G − e does not have λk-cut for k > 2. So, we always assume δ(G) > 2 when G is a minimally λk-graph
for some k > 2. A minimally λ1-graph is exactly a minimally edge connected graph, which has been shown to be λ-optimal
([9] Exercise 49). In [8], the authors have proved that every minimally λ2-graph is λ2-optimal. In this paper, we show that
every minimally λ3-graph is always λ3-optimal except the 3-cube.
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2. Preliminaries and terminologies

Let G = (V , E) be a graph. For two disjoint vertex sets U1,U2 ⊂ V (G), denote by [U1,U2]G the set of edges of G with
one end in U1 and the other end in U2, G[U] is the subgraph of G induced by vertex set U ⊂ V (G), U = V (G) \ U is the
complement of U , ωG(U) = |[U,U]G| is the number of edges between U and U . When the graph under consideration is
obvious, we omit the subscript G. Write dA(U) = |[U, A\U]|, dA(u) = dA({u}). Sometimes, we use a graph itself to represent
its vertex set. For example, ω(C) is used instead of ω(V (C)), where C is a subgraph of G; for an edge e = uv, dA(e) is used
instead of dA({u, v}), etc.
A λ3-fragment is a subset U of V (G)with [U,U] being a λ3-cut. If U is a λ3-fragment, then so is U , and both G[U] and G[U]

are connected. A λ3-fragment with minimum order is called a λ3-atom. The order of a λ3-atom is denoted by α3(G). Clearly,
α3(G) 6 |V (G)|/2.
A graph H is λ3-independent if each component of H has at most two vertices. A connected graph of order at most two is

λ3-trivial. A graph is called λ3-non-trivial if it has a component which contains at least three vertices.
The following two observations will be used frequently without mentioning them explicitly. The first is that if two

connected subgraphs G1 and G2 have nonempty intersection, then G1 ∪ G2 is also connected. The second is that for a vertex
set F of a connected graph G and a component C of G− F , if G[F ] is connected, then so is G− C .
For terminologies not given here, we refer to [3] for reference.

3. Main result

First, it should be noted that if α3(G) = 3, then G is λ3-optimal. In fact, Bonsma et al. [4] have proved that λ3(G) 6 ξ3(G)
holds for any λ3-connected graph G. On the other hand, considering a λ3-atom A of G, we have λ3(G) = ω(A) > ξ3(G). So,
λ3(G) = ξ3(G). In view of this observation, to derive our main theorem, it suffices to show that α3(G) = 3. In the following,
we prove that if G is a minimally 3-restricted edge connected graph with α3(G) > 4, then G is isomorphic to 3-cube.

Lemma 1. Let G be a λ3-connected graph with δ(G) > 2, F be a subset of G with G[F ] being connected. If one of the following
conditions is satisfied:

(a) ω(F) < λ3(G), or
(b) ω(F) = λ3(G) and |F | < α3(G),

then G[F ] is λ3-independent.

Proof. Suppose F has a λ3-non-trivial component C . Since G[C] is connected, we have ω(F) > ω(C) > λ3(G), which is
clearly a contradiction to condition (a). If condition (b) occurs, then ω(F) = ω(C) = λ3(G). Hence V (C) is a λ3-fragment.
But then |F | > |C | > α3(G), contradicting |F | < α3(G). �

Lemma 2. Let G be a λ3-connected graph with δ(G) > 2 and α3(G) > 4, A be a λ3-atom of G, and B be a λ3-fragment of G.

(a) If a subset U of A is such that G[U] is connected and G[A \ U] has a λ3-non-trivial component, then dA(U) > dA(U).
(b) If a subset U of B is such that G[U] is connected and G[B \ U] has a λ3-non-trivial component, then dB(U) > dB(U).
(c) δ(G[A]) > 2.

Proof. (a). Suppose dA(U) 6 dA(U). Then ω(A \ U) = ω(A) + dA(U) − dA(U) 6 ω(A) = λ3(G). By noting that
|A \ U| < |A| = α3(G), it follows from Lemma 1 that G[A \ U] is λ3-independent, a contradiction.

(b). The proof of (b) is similar to that of (a); note that under the assumption dB(U) < dB(U), it can be deduced that
ω(B \ U) < λ3(G).

(c) is a consequence of (a). In fact, for each vertex x ∈ A, if A − x is λ3-independent, then dA(x) > 2 since |A| > 4.
If A − x contains a λ3-non-trivial component, taking U = {x} in (a), we have dA(x) > dA(x). Then it follows from
dA(x) > 1

2 · (dA(x)+ dA(x)) =
1
2 · dG(x) > 1 that dA(x) > 2. �

Similar to Lemma 2, we can prove the following lemma. The key observation to the proof, as well as some proofs after it,
is that for any edge e ∈ E(G), if λ3(G − e) < λ3(G), then any λ3-fragment of G − e contains exactly one end of e, and is a
λ3-fragment of G. Note that the observation is true when G is minimally 3-restricted edge connected.

Lemma 3. Let G be a λ3-connected graph with δ(G) > 2 and α3(G) > 4, e = uv be an edge of G, λ3(G − e) < λ3(G), A be a
λ3-atom of G− e with u ∈ A and v 6∈ A.

(a) If a subset U of A is such that G[U] is connected, G[A] −U has a λ3-non-trivial component, and e is not incident with U, then
dA(U) > dA(U).

(b) dG[A](x) > 2 for each x(6= u) ∈ A.

Lemma 4. Let G be a λ3-connected graphwith δ(G) > 2 and α3(G) > 4, A be a λ3-atom of G, B be a λ3-fragment of G, A∩B 6= ∅.
Then for any component C of G[A ∩ B], either G[A] − C or G[B] − C is λ3-independent.
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Proof. Suppose both G[A] − C and G[B] − C have λ3-non-trivial components. Then by taking U = V (C) in Lemma 2, we
have

dA(U) > dA(U) > dB\A(U) = dB(U)

and

dB(U) > dB(U) > dA\B(U) = dA(U),

a contradiction. �

Similar to Lemma 4, by using Lemma 3 instead of Lemma 2, it can be proved that

Lemma 5. Let G be a λ3-connected graph with δ(G) > 2 and α3(G) > 4, e = uv be an edge of G, λ3(G − e) < λe(G), A be a
λ3-atom of G − e with u ∈ A and v 6∈ A, B be a λ3-fragment of G such that A ∩ B 6= ∅ and e is not incident with B. For any
component C of G[A ∩ B], either G[A] − C or G[B] − C is λ3-independent.

Lemma 6. Let G be a minimally λ3-graph with α3(G) > 4, A be a λ3-atom of G, e = uv be an edge of G[A], B be a λ3-atom of
G− e. Then,

(a) G[A ∩ B], G[A \ B] and G[B \ A] are all connected;
(b) |A ∩ B| = 2, |A \ B| = 2;
(c) G[A] is C4 (4-cycle) or K4 (complete graph on 4 vertices) or K−4 (K4 minus one edge);
(d) G[A ∪ B] is connected;
(e) |[A ∩ B, A ∪ B]| = |[A \ B, B \ A]| = 0, and dA(x) = dA(x)− 1 for each x ∈ A.

Proof. By the observation before Lemma 3, wemay suppose, without loss of generality, that u ∈ B and v ∈ B. Then A∩B 6= ∅
and A \ B 6= ∅. Because of |A| 6 1

2 |V (G)| and |B| 6
1
2 |V (G)|, we have |A ∪ B| = |V (G)| − |A| − |B| + |A ∩ B| > |A ∩ B|.

(a). Suppose G[A ∩ B] has two components C1, C2. If one of C1 and C2, say C2, has at least two vertices, then by the
connectedness of G[A] and G[B], both G[A] − C1 and G[B] − C1 have λ3-non-trivial components containing C2, contradicting
Lemma 4. Next, suppose V (C1) = {x}, V (C2) = {y}, and y 6= u. By Lemma 2(c), we have dA(y) > 2. By Lemma 3(b), we have
dB(y) > 2. So both G[A]−C1 and G[B]−C1 have λ3-non-trivial components, again a contradiction. So, G[A∩B] is connected.
Suppose G[A\B] is not connected. Then a contradiction can be obtained by using Lemma 4 to A and B (note that B is also a

λ3-fragment). In fact, the case that G[A \ B] has a component with at least two vertices can be analyzed similar to the above
paragraph. In the case that A \ B is an independent set with at least two vertices, we have |A ∩ B| > 2 since δ(G[A]) > 2. By
the connectedness of G[A ∩ B], we see that for any vertex y ∈ A \ B, G[A] − y is λ3-non-trivial. If there is a vertex y ∈ A \ B
with degree one in G[B], then G[B] − y is λ3-non-trivial. If there exists a vertex x ∈ A \ Bwith dG[B](x) > 2, let y be another
vertex in A \ B. Then G[B] − y has a λ3-non-trivial component containing x. Taking C = {y} in Lemma 4 and using B to take
the place of B, we arrive at a contradiction.
Similar to the above deduction, by using Lemmas 3 and 5 instead of Lemmas 2 and 4, it can be proved that G[B \A] is also

connected.
(b). First suppose |A ∩ B| = 1. By |B| > |A| > 4, we have |B \ A| > |A \ B| > 3. By (a), G[B \ A] and G[A \ B] are both

λ3-non-trivial, which contradicts Lemma 4(taking U = A ∩ B there).
Next suppose |A ∩ B| > 3. By (a), G[A ∩ B] is λ3-non-trivial. By the connectedness of G[A] and G[B], we see that

G[A ∩ B] = G[A ∪ B] is also connected. Taking F = A ∩ B in Lemma 1, by noting that |F | = |A ∩ B| < |A| = α3(G), we have
ω(A ∩ B) > λ3(G). Combining this with ω(A) = ω(B) = λ3(G) and the following well known submodular inequality,

ω(A ∩ B)+ ω(A ∪ B) 6 ω(A)+ ω(B),

we have ω(A ∪ B) = ω(A ∪ B) < λ3(G). Taking F = A ∪ B in Lemma 1, we see that G[A ∪ B] is λ3-independent, that is,
G[A ∪ B] is composed of some singletons and complete graphs of order two.
We claim that for each component C of G[A ∪ B], dA(C) = dB(C) and dA∩B(C) = 0. It should be noted that C is connected

to both A \ B and B \ A, since G[A] and G[B] are connected. First suppose C is a singleton x. Since |A ∪ B| > |A ∩ B| > 3
and G[B \ A] is connected, we see that G[A] − x has a connected subgraph of order at least 3. Applying Lemma 2(b) to the
λ3-fragment A and the vertex set {x}, we have dA(x) > dA(x). Hence

dA(x) 6 dA(x) = dB\A(x) = dB(x)− dA∩B(x).

Similarly,

dB(x) 6 dB(x) = dA\B(x) = dA(x)− dB∩A(x).

It follows that dA(x) = dB(x) and dA∩B(x) = 0. Next suppose C is an edge e = v1v2. If |A ∪ B| = 3 and |A \ B| = 1, then
G[A ∪ B] is composed of e and a singleton y. Set A′ = (A\B)∪{v1, v2}. Then both G[A′] and G[A′] are connected subgraphs of
order at least 3. Since dA\B(y) = dB\A(y), we have ω(A′) = ω(A′) = ω(B∪ {y}) = ω(B)+ dA\B(y)− dB\A(y) = ω(B) = λ3(G).
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So A′ is a λ3-fragment. But then α3(G) 6 |A′| = 3, contradicting the assumption that α3(G) > 4. So, |A ∪ B| > 4 or |A \B| > 2
(hence |B \ A| > 2). Taking the place of x by e in the proof for C being a singleton, we have dA(e) = dB(e) and dA∩B(e) = 0.
The claim is proved.
As a consequence of the claim, for any vertex set U which is the union of the vertex sets of some components in G[A ∪ B],

we have dA\B(U) = dB\A(U) and dA∩B(U) = 0.
Let U be the vertex set of one or two components of G[A ∪ B] such that |U| = 2. Set A′ = (A \ B)∪U . Then 3 6 |A′| < |A|

and both G[A′] and G[A′] are connected. Since ω(A′) = ω(A′) = ω(B)+ dA\B(A ∪ B \ U)− dB\A(A ∪ B \ U) = ω(B) = λ3(G),
we see that A′ is a λ3-fragment of Gwith less vertices than A, a contradiction.
Hence |A ∩ B| = 2. It follows that |A \ B| = |A| − |A ∩ B| > 2. If |A \ B| > 3, then |B \ A| > 3. By (a), both G[A \ B] and

G[B \ A] are λ3-non-trivial, contradicting Lemma 4. So, |A \ B| = 2, and (b) is proved.
(c) follows from (a), (b) and Lemma 2(c).
Suppose A \ B = {a, d} and A ∩ B = {b, c}. Then ad, bc ∈ E(G).

Claim 1. For each edge e = xy ∈ E(G[A]), dA(e) > dA(e), equality holds if and only if dA(x) = dA(x)−1 and dA(y) = dA(y)−1.

Taking U = {x} in Lemma 2(a), we have dA(x) > dA(x). Hence dA(x) 6 dA(x)−1 = dA\{x,y}(x). Similarly, dA(y) 6 dA(y)−1 =
dA\{x,y}(y). Then the claim follows from

dA(xy) = dA\{x,y}(x)+ dA\{x,y}(y) > dA(x)+ dA(y) = dA(xy).

Claim 2. dA\B(bc) = dB\A(bc), dA∪B(bc) = 0, dA(b) = dA(b)− 1 and dA(c) = dA(c)− 1.

By Claim 1, we have

dA\B(bc) = dA(bc) > dA(bc) = dB\A(bc)+ dA∪B(bc). (1)

If |B \ A| = 2, then B is also a λ3-atom of G, and similar to (1), we have

dB\A(bc) = dB(bc) > dB(bc) = dA\B(bc)+ dA∪B(bc). (2)

If |B \ A| > 3, then by (a), G[B \ A] is λ3-non-trivial. By Lemma 2(b), inequality (2) is still valid. Combining (1) and (2), we
have the first and the second equality of the claim. As a consequence, equality holds for (1), and thus the third and the fourth
equality of the claim follow from Claim 1.
(d). Suppose C1 and C2 are two components of G[A ∪ B]. Since dA(ad) > dA(ad) by Claim 1, we have

ω(C1) < ω(A ∪ B) = ω(A ∪ B) = ω(B)+ dA∪B(ad)− dA∪B(ad)
= ω(B)+ (dA(ad)− dB\A(ad))− (dB\A(ad)+ dA(ad))
= ω(B)− dA(ad)+ dA(ad)− 2dB\A(ad)
6 ω(B) = λ3(G).

By Lemma 1, C1 is λ3-independent, and thus |V (C1)| 6 2. Since G[B\A] is connected, |B\A| > 2, and C2 is connected to B\A,
we see that G[A] − C1 has a λ3-non-trivial component. By Lemma 2(b) and Claim 2, we have

dA(C1) 6 dA(C1) = dB\A(C1) = dB(C1).

Similarly,

dB(C1) 6 dB(C1) = dA\B(C1) = dA(C1).

It follows that dB(C1) = dA(C1). Set A′ = (A \ B) ∪ C1. Then both G[A′] and G[A′] are connected. By Claim 2, we have
ω(A′) = ω(A\B)+dB(C1)−dA\B(C1) = ω(A\B)+dB(C1)−dA(C1) = ω(A\B) = ω(A)+dA\B(bc)−dB\A(bc) = ω(A) = λ3(G).
Hence A′ is a λ3-fragment ofG. since |A′| 6 |A|, we see that A′ is also a λ3-atom ofG. Applying Claim 1 to A′ and A respectively,
we have

dA′(ad) > dA′(ad) > dA(ad)+ dC2(ad) > dA(ad),

and

dA(ad) > dA(ad) > dC1(ad) = dA′(ad),

a contradiction. So, G[A ∪ B] is connected.
(e). Noting that in proving Claim 2, it suffices for B to be a λ3-fragment (it needs not to be a λ3-atom of G − e). Hence,

by taking the place of B by B, we have dB\A(ad) = 0, and dA(a) = dA(a)− 1, dA(d) = dA(d)− 1. Together with Claim 2, the
results follow immediately. �

Theorem 1. The only minimally λ3-connected graph which is not λ3-optimal is the 3-cube.
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Fig. 1. An illustration for the proof of Theorem 1.

Proof. Suppose G is a minimally λ3-connected graph which is not λ3-optimal. Then α3(G) > 4. Let A be a λ3-atom of G,
e = uv be an edge of G[A], and B be a λ3-atom of G − e. Then Lemma 6 is applicable to A and B. Suppose A ∩ B = {b, c},
A \ B = {a, d}. Then ad, bc ∈ E(G). By Lemma 6(c), we may assume, without loss of generality, that ab, cd ∈ E(G).
By Lemma 6(e), dA(x) = dA(x)− 1 for each x ∈ {a, b, c, d}. Hence

λ3(G) = ω(A) = dA(a)+ dA(b)+ dA(c)+ dA(d)
= dA(a)+ dA(d)− 2+ dA(b)+ dA(c)− 2
= dA(ad)+ dA(bc)
= 2|[ad, bc]|.

Let D be a λ3-atom of G − bc. Then Lemma 6 is also applicable to A and D. Suppose, without loss of generality, that
A ∩ D = {c, d}. Set F1 = (B \ A) \ D, F2 = (B \ A) ∩ D, F3 = (A ∪ B) ∩ D, F4 = (A ∪ B) \ D (see Fig. 1).
By Lemma 6(e), we have

|[{a, d}, F1 ∪ F2]| = |[{b, c}, F3 ∪ F4]| = |[{a, b}, F2 ∪ F3]| = |[{c, d}, F1 ∪ F4]| = 0. (3)

It follows that |[a, F1 ∪ F2 ∪ F3]| = 0, and thus |[a, F4]| = |[a, A]| = dA(a) = dA(a)− 1 > δ(G[A])− 1 > 1. By the same
argument, we have

|[a, F4]| = dA(a) > 1, |[b, F1]| = dA(b) > 1,
|[d, F3]| = dA(d) > 1, |[c, F2]| = dA(c) > 1.

(4)

As a consequence,

[A, A] = [a, F4] ∪ [b, F1] ∪ [c, F2] ∪ [d, F3], (5)

and none of F1, F2, F3, F4 is empty. Since the four subgraphs G[F1∪F2] = G[B\A], G[F2∪F3] = G[D\A], G[F1∪F4] = G[A ∪ D]
and G[F3 ∪ F4] = G[A ∪ B] are all connected, we have

|[F1, F2]| > 1, |[F2, F3]| > 1, |[F1, F4]| > 1, |[F3, F4]| > 1. (6)

By equality (3), we have

ω(B) = |[bc, ad]| + |[F1 ∪ F2, F3 ∪ F4]|,
ω(D) = |[dc, ab]| + |[F2 ∪ F3, F1 ∪ F4]|.

(7)

Because of Lemma 6(c), we consider the following three cases.
Case 1. G[A] ∼= C4.
In this case, λ3(G) = 2|[ad, bc]| = 4. Then equalities hold in (4). By the equalities (7) and the inequalities (6), we have

ω(B) > 4 and ω(D) > 4. (8)

Since ω(B) = ω(D) = λ3(G) = 4, all inequalities in (8) become equalities. In particular, |[F1, F2]| = |[F1, F4]| = 1
and |[F1, F3]| = 0. Combining these with |[F1, A]| = |[b, F1]| = 1, we have ω(F1) = 3 < λ3(G). Then by Lemma 1,
G[F1] is λ3-independent. Since G[F1 ∪ F2] is connected and |[F1, F2]| = 1, we see that G[F1] is connected. Thus |F1| 6 2.
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If |F1| = 2, then G[F ] is λ3-non-trivial, where F = F1 ∪ {b}. On the other hand, by noting that |F | = 3 < α3(G) and
ω(F) = ω(F1) − |[b, F1]| + dA(b) = 3 − 1 + 2 = 4 = λ3(G), it follows from Lemma 1 that G[F ] is λ3-independent, a
contradiction. So |F1| = 1. Similarly, it can be deduced that |F2| = |F3| = |F4| = 1. Then G is a 3-cube.
Case 2. G[A] ∼= K−4 .
In this case, λ3(G) = 2|[ad, bc]| = 6. We assume, without loss of generality, that bd ∈ E(G). By equality (7) and

ω(B) = ω(D) = λ3(G) = 6, we have

|[F1, F3 ∪ F4]| + |[F2, F3 ∪ F4]| = |[F1 ∪ F2, F3 ∪ F4]| = 3, (9)

and

|[F2 ∪ F3, F1]| + |[F2 ∪ F3, F4]| = |[F2 ∪ F3, F1 ∪ F4]| = 3. (10)

By (6) and (9), one of |[F1, F3 ∪ F4]| and |[F2, F3 ∪ F4]| is 1. Suppose, without loss of generality, that |[F1, F3 ∪ F4]| = 1. Then
|[F1, F4]| ≤ 1. By (6) and (10), |[F1, F2 ∪ F3]| 6 2. By equality (5) and Lemma 6(e), |[b, F1]| = dA(b) = dA(b) − 1 = 2.
Hence ω(F1) = |[b, F1]| + |[F1, F2 ∪ F3]| + |[F1, F4]| 6 5 < λ3(G). By Lemma 1, G[F1] is λ3-independent. Since G[F1 ∪ F4] is
connected and |[F1, F4]| = 1, we see that G[F1] is connected and thus |F1| 6 2. Combining this with |[b, F1]| = 2, we have
|F1| = 2. Set F = F1 ∪ {b}. Then both G[F ] and G[F ] are connected. By noting that |F | = 3 < α3(G) and

ω(F) = ω(F1)+ dA(b)− |[b, F1]| 6 5+ 3− 2 = 6 = λ3(G),

it follows from Lemma 1 that G[F ] is λ3-independent, a contradiction.
Case 3. G[A] ∼= K4.
In this case, λ3(G) = 2|[ad, bc]| = 8. For each vertex x ∈ A, we have dA(x) = dA(x) − 1 = 2 by Lemma 6(e). It follows

from (5) that |[a, F4]| = |[b, F1]| = |[c, F2]| = |[d, F3]| = 2. Similar to the deduction of (9) and (10), we have

|[F1, F3 ∪ F4]| + |[F2, F3 ∪ F4]| = |[F2, F1 ∪ F4]| + |[F3, F1 ∪ F4]| = 4.

Then |[F1, F3 ∪ F4]| 6 3. Suppose, without loss of generality, that |[F2, F1 ∪ F4]| 6 2. Then |[F2, F1]| 6 2. If |[F1, F3 ∪ F4]| = 3,
then |[F2, F3 ∪ F4]| = 1. Set F = F2 ∪ {c}. Then

ω(F) = dA(c)+ |[F2, F1]| + |[F2, F3 ∪ F4]| 6 3+ 2+ 1 = 6 < λ3(G).

By Lemma 1, F is λ3-independent. On the other hand, since |[c, F2]| = 2, we see that G[F ] contains a λ3-non-trivial
component, a contradiction. If |[F1, F3 ∪ F4]| 6 2, set F = F1 ∪ {b}. Then

ω(F) = dA(b)+ |[F1, F2]| + |[F1, F3 ∪ F4]| 6 3+ 2+ 2 = 7 < λ3(G).

Similar to the above, we arrive at a contradiction. �
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