Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Minimally 3-restricted edge connected graphs*

Qinghai Liu, Yanmei Hong, Zhao Zhang*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

ARTICLE INFO

Article history: Received 12 December 2007 Received in revised form 13 June 2008 Accepted 31 July 2008

Keywords: Fault tolerance Restricted edge connectivity

Available online 27 August 2008

1. Introduction

ABSTRACT

For a connected graph G = (V, E), an edge set $S \subset E$ is a 3-restricted edge cut if G - S is disconnected and every component of G - S has order at least three. The cardinality of a minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by $\lambda_3(G)$. A graph G is called minimally 3-restricted edge connected if $\lambda_3(G - e) < \lambda_3(G)$ for each edge $e \in E$. A graph G is λ_3 -optimal if $\lambda_3(G) = \xi_3(G)$, where $\xi_3(G) = \max\{\omega(U) : U \subset V(G), G[U]$ is connected, $|U| = 3\}$, $\omega(U)$ is the number of edges between U and $V \setminus U$, and G[U] is the subgraph of G induced by vertex set U. We show in this paper that a minimally 3-restricted edge connected graph is always λ_3 -optimal except the 3-cube.

© 2008 Elsevier B.V. All rights reserved.

ATHEMATICS

A network can be conveniently modeled as a graph G = (V, E). A classic measure of the fault tolerance of a network is the edge connectivity $\lambda(G)$. In general, the larger $\lambda(G)$ is, the more reliable the network is [2]. A more refined measure known as restricted edge connectivity was proposed by Esfahanian and Hakimi [5], which was further generalized to *k*-restricted edge connectivity by Fábrega and Fiol [6] (called *k*-extra edge connectivity in their paper).

Let *G* be a connected graph. An edge set $S \subset E(G)$ is said to be a *k*-restricted edge cut of *G* if G - S is disconnected and each component of G - S has at least *k* vertices. The minimum cardinality of a *k*-restricted edge cut is called the *k*-restricted edge connectivity of *G*, denoting by $\lambda_k(G)$. A *k*-restricted edge cut *S* with $|S| = \lambda_k(G)$ is called a λ_k -cut. Not all graphs have λ_k -cuts [4,5,12,21]. Those which do have λ_k -cuts are called λ_k -connected graphs. According to current studies on *k*-restricted edge connectivity [10,11,13,17], it seems that the larger $\lambda_k(G)$ is, the more reliable the network is. In [21], Zhang and Yuan proved that $\lambda_k(G) \leq \xi_k(G)$ holds for any integer $k \leq \delta(G) + 1$ except for a class of graphs (such a graph is constructed from a set of complete subgraphs K_δ by adding a new vertex *u* and connect *u* to every other vertex), where $\delta(G)$ is the minimum degree of *G* and $\xi_k(G) = \min\{\omega(U) : U \subset V(G), G[U]$ is connected, $|U| = k\}, \omega(U)$ is the number of edges between *U* and $V \setminus U$, and G[U] is the subgraph of *G* induced by *U*. A graph *G* is called λ_k -optimal if $\lambda_k(G) = \xi_k(G)$. There is much research on sufficient conditions for a graph to be λ_k -optimal, such as symmetric conditions [11,13,17,18], degree conditions [14,15, 19], and girth-diameter conditions [1,6,16,20]. For more information on this topic, we refer the readers to the nice survey paper by Hellwig and Volkmann [7].

In this paper, we give another type of sufficient condition called a minimally restricted edge connected condition. A graph *G* is a minimally *k*-restricted edge connected graph (minimally λ_k -graph for short) if $\lambda_k(G - e) < \lambda_k(G)$ (and thus $\lambda_k(G - e) = \lambda_k(G) - 1$) for each edge $e \in E(G)$. It is implied in the definition that $\lambda_k(G - e)$ exists for each edge *e*. If *e* is a pending edge, then G - e does not have λ_k -cut for $k \ge 2$. So, we always assume $\delta(G) \ge 2$ when *G* is a minimally λ_k -graph for some $k \ge 2$. A minimally λ_1 -graph is exactly a minimally edge connected graph, which has been shown to be λ -optimal ([9] Exercise 49). In [8], the authors have proved that every minimally λ_2 -graph is λ_2 -optimal. In this paper, we show that every minimally λ_3 -graph is always λ_3 -optimal except the 3-cube.

* Corresponding author. Tel.: +86 13899960204; fax: +86 991 8585505. *E-mail address:* zhzhao@xju.edu.cn (Z. Zhang).

[🌣] This research is supported by NSFC (60603003), the Key Project of Chinese Ministry of Education (208161) and XJEDU.

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.07.009

2. Preliminaries and terminologies

Let G = (V, E) be a graph. For two disjoint vertex sets $U_1, U_2 \subset V(G)$, denote by $[U_1, U_2]_G$ the set of edges of G with one end in U_1 and the other end in U_2 , G[U] is the subgraph of G induced by vertex set $U \subset V(G)$, $\overline{U} = V(G) \setminus U$ is the complement of U, $\omega_G(U) = |[U, \overline{U}]_G|$ is the number of edges between U and \overline{U} . When the graph under consideration is obvious, we omit the subscript G. Write $d_A(U) = |[U, A \setminus U]|, d_A(u) = d_A(\{u\})$. Sometimes, we use a graph itself to represent its vertex set. For example, $\omega(C)$ is used instead of $\omega(V(C))$, where C is a subgraph of G; for an edge $e = uv, d_A(e)$ is used instead of $d_A(\{u, v\})$, etc.

A λ_3 -fragment is a subset U of V(G) with $[U, \overline{U}]$ being a λ_3 -cut. If U is a λ_3 -fragment, then so is \overline{U} , and both G[U] and $G[\overline{U}]$ are connected. A λ_3 -fragment with minimum order is called a λ_3 -atom. The order of a λ_3 -atom is denoted by $\alpha_3(G)$. Clearly, $\alpha_3(G) \leq |V(G)|/2$.

A graph *H* is λ_3 -*independent* if each component of *H* has at most two vertices. A connected graph of order at most two is λ_3 -*trivial*. A graph is called λ_3 -*non-trivial* if it has a component which contains at least three vertices.

The following two observations will be used frequently without mentioning them explicitly. The first is that if two connected subgraphs G_1 and G_2 have nonempty intersection, then $G_1 \cup G_2$ is also connected. The second is that for a vertex set *F* of a connected graph *G* and a component *C* of G - F, if G[F] is connected, then so is G - C.

For terminologies not given here, we refer to [3] for reference.

3. Main result

First, it should be noted that if $\alpha_3(G) = 3$, then *G* is λ_3 -optimal. In fact, Bonsma et al. [4] have proved that $\lambda_3(G) \le \xi_3(G)$ holds for any λ_3 -connected graph *G*. On the other hand, considering a λ_3 -atom *A* of *G*, we have $\lambda_3(G) = \omega(A) \ge \xi_3(G)$. So, $\lambda_3(G) = \xi_3(G)$. In view of this observation, to derive our main theorem, it suffices to show that $\alpha_3(G) = 3$. In the following, we prove that if *G* is a minimally 3-restricted edge connected graph with $\alpha_3(G) \ge 4$, then *G* is isomorphic to 3-cube.

Lemma 1. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$, *F* be a subset of *G* with $G[\overline{F}]$ being connected. If one of the following conditions is satisfied:

(a) $\omega(F) < \lambda_3(G)$, or (b) $\omega(F) = \lambda_3(G)$ and $|F| < \alpha_3(G)$,

then G[F] is λ_3 -independent.

Proof. Suppose *F* has a λ_3 -non-trivial component *C*. Since $G[\overline{C}]$ is connected, we have $\omega(F) \ge \omega(C) \ge \lambda_3(G)$, which is clearly a contradiction to condition (a). If condition (b) occurs, then $\omega(F) = \omega(C) = \lambda_3(G)$. Hence V(C) is a λ_3 -fragment. But then $|F| \ge |C| \ge \alpha_3(G)$, contradicting $|F| < \alpha_3(G)$. \Box

Lemma 2. Let G be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, A be a λ_3 -atom of G, and B be a λ_3 -fragment of G.

- (a) If a subset U of A is such that G[U] is connected and $G[A \setminus U]$ has a λ_3 -non-trivial component, then $d_A(U) > d_{\overline{A}}(U)$.
- (b) If a subset U of B is such that G[U] is connected and $G[B \setminus U]$ has a λ_3 -non-trivial component, then $d_B(U) \ge d_{\overline{R}}(U)$.
- (c) $\delta(G[A]) \ge 2$.

Proof. (a). Suppose $d_A(U) \leq d_{\overline{A}}(U)$. Then $\omega(A \setminus U) = \omega(A) + d_A(U) - d_{\overline{A}}(U) \leq \omega(A) = \lambda_3(G)$. By noting that $|A \setminus U| < |A| = \alpha_3(G)$, it follows from Lemma 1 that $G[A \setminus U]$ is λ_3 -independent, a contradiction.

- (b). The proof of (b) is similar to that of (a); note that under the assumption $d_B(U) < d_{\overline{B}}(U)$, it can be deduced that $\omega(B \setminus U) < \lambda_3(G)$.
- (c) is a consequence of (a). In fact, for each vertex $x \in A$, if A x is λ_3 -independent, then $d_A(x) \ge 2$ since $|A| \ge 4$. If A - x contains a λ_3 -non-trivial component, taking $U = \{x\}$ in (a), we have $d_A(x) > d_{\overline{A}}(x)$. Then it follows from $d_A(x) > \frac{1}{2} \cdot (d_A(x) + d_{\overline{A}}(x)) = \frac{1}{2} \cdot d_G(x) \ge 1$ that $d_A(x) \ge 2$. \Box

Similar to Lemma 2, we can prove the following lemma. The key observation to the proof, as well as some proofs after it, is that for any edge $e \in E(G)$, if $\lambda_3(G - e) < \lambda_3(G)$, then any λ_3 -fragment of G - e contains exactly one end of e, and is a λ_3 -fragment of G. Note that the observation is true when G is minimally 3-restricted edge connected.

Lemma 3. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, e = uv be an edge of *G*, $\lambda_3(G - e) < \lambda_3(G)$, *A* be a λ_3 -atom of *G* - *e* with $u \in A$ and $v \notin A$.

- (a) If a subset U of A is such that G[U] is connected, G[A] U has a λ_3 -non-trivial component, and e is not incident with U, then $d_A(U) > d_{\overline{A}}(U)$.
- (b) $d_{G[A]}(x) \ge 2$ for each $x \ne u \in A$.

Lemma 4. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, *A* be a λ_3 -atom of *G*, *B* be a λ_3 -fragment of *G*, $A \cap B \neq \emptyset$. Then for any component *C* of *G*[$A \cap B$], either *G*[A] – *C* or *G*[B] – *C* is λ_3 -independent. **Proof.** Suppose both G[A] - C and G[B] - C have λ_3 -non-trivial components. Then by taking U = V(C) in Lemma 2, we have

$$d_A(U) > d_{\overline{A}}(U) \ge d_{B\setminus A}(U) = d_B(U)$$

and

$$d_B(U) \ge d_{\overline{B}}(U) \ge d_{A \setminus B}(U) = d_A(U),$$

a contradiction. \Box

Similar to Lemma 4, by using Lemma 3 instead of Lemma 2, it can be proved that

Lemma 5. Let *G* be a λ_3 -connected graph with $\delta(G) \ge 2$ and $\alpha_3(G) \ge 4$, e = uv be an edge of *G*, $\lambda_3(G - e) < \lambda_e(G)$, *A* be a λ_3 -atom of *G* - *e* with $u \in A$ and $v \notin A$, *B* be a λ_3 -fragment of *G* such that $A \cap B \neq \emptyset$ and *e* is not incident with *B*. For any component *C* of *G*[$A \cap B$], either *G*[A] - *C* or *G*[B] - *C* is λ_3 -independent.

Lemma 6. Let G be a minimally λ_3 -graph with $\alpha_3(G) \ge 4$, A be a λ_3 -atom of G, e = uv be an edge of G[A], B be a λ_3 -atom of G - e. Then,

(a) $G[A \cap B]$, $G[A \setminus B]$ and $G[B \setminus A]$ are all connected;

(b) $|A \cap B| = 2$, $|A \setminus B| = 2$;

(c) G[A] is C_4 (4-cycle) or K_4 (complete graph on 4 vertices) or K_4^- (K_4 minus one edge);

(d) $G[\overline{A \cup B}]$ is connected;

(e) $|[A \cap B, \overline{A \cup B}]| = |[A \setminus B, B \setminus A]| = 0$, and $d_{\overline{A}}(x) = d_A(x) - 1$ for each $x \in A$.

Proof. By the observation before Lemma 3, we may suppose, without loss of generality, that $u \in B$ and $v \in \overline{B}$. Then $A \cap B \neq \emptyset$ and $A \setminus B \neq \emptyset$. Because of $|A| \leq \frac{1}{2} |V(G)|$ and $|B| \leq \frac{1}{2} |V(G)|$, we have $|\overline{A \cup B}| = |V(G)| - |A| - |B| + |A \cap B| \geq |A \cap B|$. (a). Suppose $G[A \cap B]$ has two components C_1, C_2 . If one of C_1 and C_2 , say C_2 , has at least two vertices, then by the

(a). Suppose $G[A \cap B]$ has two components C_1 , C_2 . If one of C_1 and C_2 , say C_2 , has at least two vertices, then by the connectedness of G[A] and G[B], both $G[A] - C_1$ and $G[B] - C_1$ have λ_3 -non-trivial components containing C_2 , contradicting Lemma 4. Next, suppose $V(C_1) = \{x\}$, $V(C_2) = \{y\}$, and $y \neq u$. By Lemma 2(c), we have $d_A(y) \ge 2$. By Lemma 3(b), we have $d_B(y) \ge 2$. So both $G[A] - C_1$ and $G[B] - C_1$ have λ_3 -non-trivial components, again a contradiction. So, $G[A \cap B]$ is connected.

Suppose $G[A \setminus B]$ is not connected. Then a contradiction can be obtained by using Lemma 4 to A and \overline{B} (note that \overline{B} is also a λ_3 -fragment). In fact, the case that $G[A \setminus B]$ has a component with at least two vertices can be analyzed similar to the above paragraph. In the case that $A \setminus B$ is an independent set with at least two vertices, we have $|A \cap B| \ge 2$ since $\delta(G[A]) \ge 2$. By the connectedness of $G[A \cap B]$, we see that for any vertex $y \in A \setminus B$, G[A] - y is λ_3 -non-trivial. If there is a vertex $y \in A \setminus B$ with degree one in $G[\overline{B}]$, then $G[\overline{B}] - y$ is λ_3 -non-trivial. If there exists a vertex $x \in A \setminus B$ with $d_{G[\overline{B}]}(x) \ge 2$, let y be another vertex in $A \setminus B$. Then $G[\overline{B}] - y$ has a λ_3 -non-trivial component containing x. Taking $C = \{y\}$ in Lemma 4 and using \overline{B} to take the place of B, we arrive at a contradiction.

Similar to the above deduction, by using Lemmas 3 and 5 instead of Lemmas 2 and 4, it can be proved that $G[B \setminus A]$ is also connected.

(b). First suppose $|A \cap B| = 1$. By $|B| \ge |A| \ge 4$, we have $|B \setminus A| \ge |A \setminus B| \ge 3$. By (a), $G[B \setminus A]$ and $G[A \setminus B]$ are both λ_3 -non-trivial, which contradicts Lemma 4(taking $U = A \cap B$ there).

Next suppose $|A \cap B| \ge 3$. By (a), $G[A \cap B]$ is λ_3 -non-trivial. By the connectedness of $G[\overline{A}]$ and $G[\overline{B}]$, we see that $G[\overline{A \cap B}] = G[\overline{A \cup B}]$ is also connected. Taking $F = A \cap B$ in Lemma 1, by noting that $|F| = |A \cap B| < |A| = \alpha_3(G)$, we have $\omega(A \cap B) > \lambda_3(G)$. Combining this with $\omega(A) = \omega(B) = \lambda_3(G)$ and the following well known submodular inequality,

$$\omega(A \cap B) + \omega(A \cup B) \leq \omega(A) + \omega(B),$$

we have $\omega(\overline{A \cup B}) = \omega(A \cup B) < \lambda_3(G)$. Taking $F = \overline{A \cup B}$ in Lemma 1, we see that $G[\overline{A \cup B}]$ is λ_3 -independent, that is, $G[\overline{A \cup B}]$ is composed of some singletons and complete graphs of order two.

We claim that for each component *C* of $G[\overline{A \cup B}]$, $d_A(C) = d_B(C)$ and $d_{A \cap B}(C) = 0$. It should be noted that *C* is connected to both $A \setminus B$ and $B \setminus A$, since $G[\overline{A}]$ and $G[\overline{B}]$ are connected. First suppose *C* is a singleton *x*. Since $|\overline{A \cup B}| \ge |A \cap B| \ge 3$ and $G[B \setminus A]$ is connected, we see that $G[\overline{A}] - x$ has a connected subgraph of order at least 3. Applying Lemma 2(b) to the λ_3 -fragment \overline{A} and the vertex set {*x*}, we have $d_{\overline{A}}(x) \ge d_A(x)$. Hence

$$d_A(x) \leq d_{\overline{A}}(x) = d_{B\setminus A}(x) = d_B(x) - d_{A\cap B}(x).$$

Similarly,

$$d_B(x) \leq d_{\overline{B}}(x) = d_{A \setminus B}(x) = d_A(x) - d_{B \cap A}(x).$$

It follows that $d_A(x) = d_B(x)$ and $d_{A \cap B}(x) = 0$. Next suppose *C* is an edge $e = v_1 v_2$. If $|\overline{A \cup B}| = 3$ and $|A \setminus B| = 1$, then $G[\overline{A \cup B}]$ is composed of *e* and a singleton *y*. Set $A' = (A \setminus B) \cup \{v_1, v_2\}$. Then both G[A'] and $G[\overline{A'}]$ are connected subgraphs of order at least 3. Since $d_{A \setminus B}(y) = d_{B \setminus A}(y)$, we have $\omega(A') = \omega(\overline{A'}) = \omega(B \cup \{y\}) = \omega(B) + d_{A \setminus B}(y) - d_{B \setminus A}(y) = \omega(B) = \lambda_3(G)$.

So A' is a λ_3 -fragment. But then $\alpha_3(G) \leq |A'| = 3$, contradicting the assumption that $\alpha_3(G) \geq 4$. So, $|\overline{A \cup B}| \geq 4$ or $|A \setminus B| \geq 2$ (hence $|B \setminus A| \geq 2$). Taking the place of x by e in the proof for C being a singleton, we have $d_A(e) = d_B(e)$ and $d_{A \cap B}(e) = 0$. The claim is proved.

As a consequence of the claim, for any vertex set *U* which is the union of the vertex sets of some components in $G[\overline{A \cup B}]$, we have $d_{A \setminus B}(U) = d_{B \setminus A}(U)$ and $d_{A \cap B}(U) = 0$.

Let *U* be the vertex set of one or two components of $G[\overline{A \cup B}]$ such that |U| = 2. Set $A' = (A \setminus B) \cup U$. Then $3 \leq |A'| < |A|$ and both G[A'] and $G[\overline{A'}]$ are connected. Since $\omega(A') = \omega(\overline{A'}) = \omega(B) + d_{A \setminus B}(\overline{A \cup B} \setminus U) - d_{B \setminus A}(\overline{A \cup B} \setminus U) = \omega(B) = \lambda_3(G)$, we see that A' is a λ_3 -fragment of *G* with less vertices than *A*, a contradiction.

Hence $|A \cap B| = 2$. It follows that $|A \setminus B| = |A| - |A \cap B| \ge 2$. If $|A \setminus B| \ge 3$, then $|B \setminus A| \ge 3$. By (a), both $G[A \setminus B]$ and $G[B \setminus A]$ are λ_3 -non-trivial, contradicting Lemma 4. So, $|A \setminus B| = 2$, and (b) is proved.

(c) follows from (a), (b) and Lemma 2(c).

Suppose $A \setminus B = \{a, d\}$ and $A \cap B = \{b, c\}$. Then $ad, bc \in E(G)$.

Claim 1. For each edge $e = xy \in E(G[A])$, $d_A(e) \ge d_{\overline{A}}(e)$, equality holds if and only if $d_{\overline{A}}(x) = d_A(x) - 1$ and $d_{\overline{A}}(y) = d_A(y) - 1$.

Taking $U = \{x\}$ in Lemma 2(a), we have $d_A(x) > d_{\overline{A}}(x)$. Hence $d_{\overline{A}}(x) \leq d_A(x) - 1 = d_{A \setminus \{x,y\}}(x)$. Similarly, $d_{\overline{A}}(y) \leq d_A(y) - 1 = d_{A \setminus \{x,y\}}(y)$. Then the claim follows from

$$d_A(xy) = d_{A \setminus \{x,y\}}(x) + d_{A \setminus \{x,y\}}(y) \ge d_{\overline{A}}(x) + d_{\overline{A}}(y) = d_{\overline{A}}(xy).$$

Claim 2. $d_{A\setminus B}(bc) = d_{B\setminus A}(bc), d_{\overline{A\cup B}}(bc) = 0, d_{\overline{A}}(b) = d_A(b) - 1 \text{ and } d_{\overline{A}}(c) = d_A(c) - 1.$

By Claim 1, we have

$$d_{A\setminus B}(bc) = d_A(bc) \ge d_{\overline{A}}(bc) = d_{B\setminus A}(bc) + d_{\overline{A\cup B}}(bc).$$
(1)

If $|B \setminus A| = 2$, then *B* is also a λ_3 -atom of *G*, and similar to (1), we have

$$d_{B\setminus A}(bc) = d_B(bc) \ge d_{\overline{B}}(bc) = d_{A\setminus B}(bc) + d_{\overline{A\setminus B}}(bc).$$
⁽²⁾

If $|B \setminus A| \ge 3$, then by (a), $G[B \setminus A]$ is λ_3 -non-trivial. By Lemma 2(b), inequality (2) is still valid. Combining (1) and (2), we have the first and the second equality of the claim. As a consequence, equality holds for (1), and thus the third and the fourth equality of the claim follow from Claim 1.

(d). Suppose C_1 and C_2 are two components of $G[\overline{A \cup B}]$. Since $d_A(ad) \ge d_{\overline{A}}(ad)$ by Claim 1, we have

$$\omega(C_1) < \omega(A \cup B) = \omega(A \cup B) = \omega(B) + d_{\overline{A \cup B}}(ad) - d_{A \cup B}(ad)$$

= $\omega(B) + (d_{\overline{A}}(ad) - d_{B \setminus A}(ad)) - (d_{B \setminus A}(ad) + d_A(ad))$
= $\omega(B) - d_A(ad) + d_{\overline{A}}(ad) - 2d_{B \setminus A}(ad)$
 $\leqslant \omega(B) = \lambda_3(G).$

By Lemma 1, C_1 is λ_3 -independent, and thus $|V(C_1)| \leq 2$. Since $G[B \setminus A]$ is connected, $|B \setminus A| \geq 2$, and C_2 is connected to $B \setminus A$, we see that $G[\overline{A}] - C_1$ has a λ_3 -non-trivial component. By Lemma 2(b) and Claim 2, we have

$$d_A(C_1) \leq d_{\overline{A}}(C_1) = d_{B \setminus A}(C_1) = d_B(C_1).$$

Similarly,

$$d_B(C_1) \leq d_{\overline{B}}(C_1) = d_{A \setminus B}(C_1) = d_A(C_1).$$

It follows that $d_B(C_1) = d_A(C_1)$. Set $A' = (A \setminus B) \cup C_1$. Then both G[A'] and $G[\overline{A'}]$ are connected. By Claim 2, we have $\omega(A') = \omega(A \setminus B) + d_B(C_1) - d_{A \setminus B}(C_1) = \omega(A \setminus B) + d_B(C_1) - d_{A \setminus B}(bc) - d_{B \setminus A}(bc) = \omega(A) = \lambda_3(G)$. Hence A' is a λ_3 -fragment of G. since $|A'| \leq |A|$, we see that A' is also a λ_3 -atom of G. Applying Claim 1 to A' and A respectively, we have

$$d_{A'}(ad) \geq d_{\overline{A'}}(ad) \geq d_A(ad) + d_{C_2}(ad) > d_A(ad),$$

and

 $d_A(ad) \ge d_{\overline{A}}(ad) \ge d_{C_1}(ad) = d_{A'}(ad),$

a contradiction. So, $G[\overline{A \cup B}]$ is connected.

(e). Noting that in proving Claim 2, it suffices for *B* to be a λ_3 -fragment (it needs not to be a λ_3 -atom of G - e). Hence, by taking the place of *B* by \overline{B} , we have $d_{B\setminus A}(ad) = 0$, and $d_{\overline{A}}(a) = d_A(a) - 1$, $d_{\overline{A}}(d) = d_A(d) - 1$. Together with Claim 2, the results follow immediately. \Box

Theorem 1. The only minimally λ_3 -connected graph which is not λ_3 -optimal is the 3-cube.

Fig. 1. An illustration for the proof of Theorem 1.

Proof. Suppose *G* is a minimally λ_3 -connected graph which is not λ_3 -optimal. Then $\alpha_3(G) \ge 4$. Let *A* be a λ_3 -atom of *G*, e = uv be an edge of *G*[*A*], and *B* be a λ_3 -atom of *G* - *e*. Then Lemma 6 is applicable to *A* and *B*. Suppose $A \cap B = \{b, c\}$, $A \setminus B = \{a, d\}$. Then *ad*, $bc \in E(G)$. By Lemma 6(c), we may assume, without loss of generality, that *ab*, $cd \in E(G)$. By Lemma 6(e), $d_{\overline{A}}(x) = d_A(x) - 1$ for each $x \in \{a, b, c, d\}$. Hence

$$\lambda_3(G) = \omega(A) = d_{\overline{A}}(a) + d_{\overline{A}}(b) + d_{\overline{A}}(c) + d_{\overline{A}}(d)$$

= $d_A(a) + d_A(d) - 2 + d_A(b) + d_A(c) - 2$
= $d_A(ad) + d_A(bc)$
= $2|[ad, bc]|.$

Let *D* be a λ_3 -atom of G - bc. Then Lemma 6 is also applicable to *A* and *D*. Suppose, without loss of generality, that $A \cap D = \{c, d\}$. Set $F_1 = (B \setminus A) \setminus D$, $F_2 = (B \setminus A) \cap D$, $F_3 = (\overline{A \cup B}) \cap D$, $F_4 = (\overline{A \cup B}) \setminus D$ (see Fig. 1). By Lemma 6(e), we have

$$|[\{a, d\}, F_1 \cup F_2]| = |[\{b, c\}, F_3 \cup F_4]| = |[\{a, b\}, F_2 \cup F_3]| = |[\{c, d\}, F_1 \cup F_4]| = 0.$$
(3)

It follows that $|[a, F_1 \cup F_2 \cup F_3]| = 0$, and thus $|[a, F_4]| = |[a, \overline{A}]| = d_{\overline{A}}(a) = d_A(a) - 1 \ge \delta(G[A]) - 1 \ge 1$. By the same argument, we have

$$\begin{aligned} |[a, F_4]| &= d_{\overline{A}}(a) \ge 1, \qquad |[b, F_1]| = d_{\overline{A}}(b) \ge 1, \\ |[d, F_3]| &= d_{\overline{A}}(d) \ge 1, \qquad |[c, F_2]| = d_{\overline{A}}(c) \ge 1. \end{aligned}$$

$$\tag{4}$$

As a consequence,

$$[A, A] = [a, F_4] \cup [b, F_1] \cup [c, F_2] \cup [d, F_3],$$

and none of F_1 , F_2 , F_3 , F_4 is empty. Since the four subgraphs $G[F_1 \cup F_2] = G[B \setminus A]$, $G[F_2 \cup F_3] = G[D \setminus A]$, $G[F_1 \cup F_4] = G[\overline{A \cup D}]$ and $G[F_3 \cup F_4] = G[\overline{A \cup B}]$ are all connected, we have

 $|[F_1, F_2]| \ge 1, \qquad |[F_2, F_3]| \ge 1, \qquad |[F_1, F_4]| \ge 1, \qquad |[F_3, F_4]| \ge 1.$ (6)

By equality (3), we have

$$\omega(B) = |[bc, ad]| + |[F_1 \cup F_2, F_3 \cup F_4]|,
\omega(D) = |[dc, ab]| + |[F_2 \cup F_3, F_1 \cup F_4]|.$$
(7)

Because of Lemma 6(c), we consider the following three cases.

Case 1. $G[A] \cong C_4$.

In this case, $\lambda_3(G) = 2|[ad, bc]| = 4$. Then equalities hold in (4). By the equalities (7) and the inequalities (6), we have

$$\omega(B) \ge 4 \quad \text{and} \quad \omega(D) \ge 4. \tag{8}$$

Since $\omega(B) = \omega(D) = \lambda_3(G) = 4$, all inequalities in (8) become equalities. In particular, $|[F_1, F_2]| = |[F_1, F_4]| = 1$ and $|[F_1, F_3]| = 0$. Combining these with $|[F_1, A]| = |[b, F_1]| = 1$, we have $\omega(F_1) = 3 < \lambda_3(G)$. Then by Lemma 1, $G[F_1]$ is λ_3 -independent. Since $G[F_1 \cup F_2]$ is connected and $|[F_1, F_2]| = 1$, we see that $G[F_1]$ is connected. Thus $|F_1| \leq 2$.

(5)

If $|F_1| = 2$, then G[F] is λ_3 -non-trivial, where $F = F_1 \cup \{b\}$. On the other hand, by noting that $|F| = 3 < \alpha_3(G)$ and $\omega(F) = \omega(F_1) - |[b, F_1]| + d_A(b) = 3 - 1 + 2 = 4 = \lambda_3(G)$, it follows from Lemma 1 that G[F] is λ_3 -independent, a contradiction. So $|F_1| = 1$. Similarly, it can be deduced that $|F_2| = |F_3| = |F_4| = 1$. Then *G* is a 3-cube.

Case 2. $G[A] \cong K_4^-$.

In this case, $\lambda_3(G) = 2|[ad, bc]| = 6$. We assume, without loss of generality, that $bd \in E(G)$. By equality (7) and $\omega(B) = \omega(D) = \lambda_3(G) = 6$, we have

$$|[F_1, F_3 \cup F_4]| + |[F_2, F_3 \cup F_4]| = |[F_1 \cup F_2, F_3 \cup F_4]| = 3,$$
(9)

and

$$|[F_2 \cup F_3, F_1]| + |[F_2 \cup F_3, F_4]| = |[F_2 \cup F_3, F_1 \cup F_4]| = 3.$$
(10)

By (6) and (9), one of $|[F_1, F_3 \cup F_4]|$ and $|[F_2, F_3 \cup F_4]|$ is 1. Suppose, without loss of generality, that $|[F_1, F_3 \cup F_4]| = 1$. Then $|[F_1, F_4]| \leq 1$. By (6) and (10), $|[F_1, F_2 \cup F_3]| \leq 2$. By equality (5) and Lemma 6(e), $|[b, F_1]| = d_{\overline{A}}(b) = d_A(b) - 1 = 2$. Hence $\omega(F_1) = |[b, F_1]| + |[F_1, F_2 \cup F_3]| + |[F_1, F_4]| \leq 5 < \lambda_3(G)$. By Lemma 1, $G[F_1]$ is λ_3 -independent. Since $G[F_1 \cup F_4]$ is connected and $|[F_1, F_4]| = 1$, we see that $G[F_1]$ is connected and thus $|F_1| \leq 2$. Combining this with $|[b, F_1]| = 2$, we have $|F_1| = 2$. Set $F = F_1 \cup \{b\}$. Then both G[F] and $G[\overline{F}]$ are connected. By noting that $|F| = 3 < \alpha_3(G)$ and

$$\omega(F) = \omega(F_1) + d_A(b) - |[b, F_1]| \le 5 + 3 - 2 = 6 = \lambda_3(G),$$

it follows from Lemma 1 that G[F] is λ_3 -independent, a contradiction.

Case 3. $G[A] \cong K_4$.

In this case, $\lambda_3(G) = 2|[ad, bc]| = 8$. For each vertex $x \in A$, we have $d_{\overline{A}}(x) = d_A(x) - 1 = 2$ by Lemma 6(e). It follows from (5) that $|[a, F_4]| = |[b, F_1]| = |[c, F_2]| = |[d, F_3]| = 2$. Similar to the deduction of (9) and (10), we have

$$|[F_1, F_3 \cup F_4]| + |[F_2, F_3 \cup F_4]| = |[F_2, F_1 \cup F_4]| + |[F_3, F_1 \cup F_4]| = 4$$

Then $|[F_1, F_3 \cup F_4]| \leq 3$. Suppose, without loss of generality, that $|[F_2, F_1 \cup F_4]| \leq 2$. Then $|[F_2, F_1]| \leq 2$. If $|[F_1, F_3 \cup F_4]| = 3$, then $|[F_2, F_3 \cup F_4]| = 1$. Set $F = F_2 \cup \{c\}$. Then

$$\omega(F) = d_A(c) + |[F_2, F_1]| + |[F_2, F_3 \cup F_4]| \le 3 + 2 + 1 = 6 < \lambda_3(G).$$

By Lemma 1, *F* is λ_3 -independent. On the other hand, since $|[c, F_2]| = 2$, we see that *G*[*F*] contains a λ_3 -non-trivial component, a contradiction. If $|[F_1, F_3 \cup F_4]| \leq 2$, set $F = F_1 \cup \{b\}$. Then

$$\omega(F) = d_A(b) + |[F_1, F_2]| + |[F_1, F_3 \cup F_4]| \le 3 + 2 + 2 = 7 < \lambda_3(G).$$

Similar to the above, we arrive at a contradiction. \Box

References

- [1] C. Balbuena, P. Garcia-Vázquez, X. Marcote, Sufficient conditions for λ' -optimality in graphs with girth g, J. Graph Theory 52 (2006) 73–86.
- [2] D. Bauer, F. Boesch, C. Suffel, R. Van Syke, On the validity of a reduction of reliable network design to a graph extremal problem, IEEE Trans. Circuits Syst. 34 (1989) 1579–1581.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [4] P. Bonsma, N. Ueffing, L. Volkmann, Edge-cuts leaving components of order at least three, Discrete Math. 256 (2002) 431–439.
- [5] A.H. Esfahanian, S.L. Hakini, On computing a conditional edge connectivity of a graph, Inform. Process. Lett. 27 (1988) 195–199.
- [6] J. Fábrega, M.A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math. 127 (1994) 163–170.
- [7] A. Hellwig, L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008) 3265–3296.
- [8] Y. Hong, Q. Liu, Z. Zhang, Minimally restricted edge connected graphs, Appl. Math. Lett. (2007) doi:10.1016/j.aml.2007.09.004.
- [9] L. Lovász, Combinatorial Problems and Exercises, North-Holland Publishing Company, 1979.
- [10] J.X. Meng, Y.H. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193.
- [11] J.X. Meng, Optimally super-edge-connected transitive graphs, Discrete Math. 260 (2003) 239–248.
- [12] J.P. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005) 365-371.
- [13] M. Wang, Q. Li, Conditional edge conectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002) 205-214.
- [14] Ying-Qian Wang, Qiao Li, Super-edge-connectivity properties of graphs with diameter 2, J. Shanghai Jiaotong Univ. 33 (6) (1999) 646–649 (in Chinese).
- [15] Ying-Qian Wang, Qiao Li, Sufficient conditions for a graph to be maximally restricted edge-connected, J. Shanghai Jiaotong Univ. 35 (8) (2001) 1253-1255 (in Chinese).
- [16] Ying-Qian Wang, Li Qiao, A sufficient condition for the equality between the restricted edge-connectivity and minimum edge-degree of graphs, Appl. Math. J. Chinese Univ. 16A (3) (2001) 269–275 (in Chinese).
- [17] J.M. Xu, K.L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (2002) 291–298.
- [18] Z. Zhang, J.X. Meng, Restricted edge connectivity of edge transitive graphs, Ars Combinatoria LXXVIII (2006) 297–308.
- [19] Z. Zhang, J.J. Yuan, Degree conditions for restricted-edge-connectivity and isoperimetric-edge-connectivity to be optimal, Discrete Math. 307 (2007) 293–298.
- [20] Z. Zhang, Q.H. liu, Sufficient conditions for a graph to be λ_k -optimal with given girth and diameter (submitted for publication).
- [21] Z. Zhang, J.J. Yuan, A proof of an inequality concerning *k*-restricted edge connectivity, Discrete Math. 304 (2005) 128–134.