# Minimally 3-restricted edge connected graphs* 

Qinghai Liu, Yanmei Hong, Zhao Zhang*<br>College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

## ARTICLE INFO

Article history:
Received 12 December 2007
Received in revised form 13 June 2008
Accepted 31 July 2008
Available online 27 August 2008

## Keywords:

Fault tolerance
Restricted edge connectivity


#### Abstract

For a connected graph $G=(V, E)$, an edge set $S \subset E$ is a 3-restricted edge cut if $G-S$ is disconnected and every component of $G-S$ has order at least three. The cardinality of a minimum 3-restricted edge cut of $G$ is the 3 -restricted edge connectivity of $G$, denoted by $\lambda_{3}(G)$. A graph $G$ is called minimally 3-restricted edge connected if $\lambda_{3}(G-e)<\lambda_{3}(G)$ for each edge $e \in E$. A graph $G$ is $\lambda_{3}$-optimal if $\lambda_{3}(G)=\xi_{3}(G)$, where $\xi_{3}(G)=\max \{\omega(U): U \subset$ $V(G), G[U]$ is connected, $|U|=3\}, \omega(U)$ is the number of edges between $U$ and $V \backslash U$, and $G[U]$ is the subgraph of $G$ induced by vertex set $U$. We show in this paper that a minimally 3 -restricted edge connected graph is always $\lambda_{3}$-optimal except the 3-cube.


© 2008 Elsevier B.V. All rights reserved.

## 1. Introduction

A network can be conveniently modeled as a graph $G=(V, E)$. A classic measure of the fault tolerance of a network is the edge connectivity $\lambda(G)$. In general, the larger $\lambda(G)$ is, the more reliable the network is [2]. A more refined measure known as restricted edge connectivity was proposed by Esfahanian and Hakimi [5], which was further generalized to $k$-restricted edge connectivity by Fábrega and Fiol [6] (called $k$-extra edge connectivity in their paper).

Let $G$ be a connected graph. An edge set $S \subset E(G)$ is said to be a $k$-restricted edge cut of $G$ if $G-S$ is disconnected and each component of $G-S$ has at least $k$ vertices. The minimum cardinality of a $k$-restricted edge cut is called the $k$-restricted edge connectivity of $G$, denoting by $\lambda_{k}(G)$. A $k$-restricted edge cut $S$ with $|S|=\lambda_{k}(G)$ is called a $\lambda_{k}$-cut. Not all graphs have $\lambda_{k}$-cuts $[4,5,12,21]$. Those which do have $\lambda_{k}$-cuts are called $\lambda_{k}$-connected graphs. According to current studies on $k$-restricted edge connectivity [10,11,13,17], it seems that the larger $\lambda_{k}(G)$ is, the more reliable the network is. In [21], Zhang and Yuan proved that $\lambda_{k}(G) \leqslant \xi_{k}(G)$ holds for any integer $k \leqslant \delta(G)+1$ except for a class of graphs (such a graph is constructed from a set of complete subgraphs $K_{\delta}$ by adding a new vertex $u$ and connect $u$ to every other vertex), where $\delta(G)$ is the minimum degree of $G$ and $\xi_{k}(G)=\min \{\omega(U): U \subset V(G), \mathrm{G}[\mathrm{U}]$ is connected, $|U|=k\}, \omega(U)$ is the number of edges between $U$ and $V \backslash U$, and $G[U]$ is the subgraph of $G$ induced by $U$. A graph $G$ is called $\lambda_{k}$-optimal if $\lambda_{k}(G)=\xi_{k}(G)$. There is much research on sufficient conditions for a graph to be $\lambda_{k}$-optimal, such as symmetric conditions [11,13,17,18], degree conditions [14,15, 19], and girth-diameter conditions [1,6,16,20]. For more information on this topic, we refer the readers to the nice survey paper by Hellwig and Volkmann [7].

In this paper, we give another type of sufficient condition called a minimally restricted edge connected condition. A graph $G$ is a minimally $k$-restricted edge connected graph (minimally $\lambda_{k}$-graph for short) if $\lambda_{k}(G-e)<\lambda_{k}(G)$ (and thus $\left.\lambda_{k}(G-e)=\lambda_{k}(G)-1\right)$ for each edge $e \in E(G)$. It is implied in the definition that $\lambda_{k}(G-e)$ exists for each edge $e$. If $e$ is a pending edge, then $G-e$ does not have $\lambda_{k}$-cut for $k \geqslant 2$. So, we always assume $\delta(G) \geqslant 2$ when $G$ is a minimally $\lambda_{k}$-graph for some $k \geqslant 2$. A minimally $\lambda_{1}$-graph is exactly a minimally edge connected graph, which has been shown to be $\lambda$-optimal ([9] Exercise 49). In [8], the authors have proved that every minimally $\lambda_{2}$-graph is $\lambda_{2}$-optimal. In this paper, we show that every minimally $\lambda_{3}$-graph is always $\lambda_{3}$-optimal except the 3 -cube.

[^0]
## 2. Preliminaries and terminologies

Let $G=(V, E)$ be a graph. For two disjoint vertex sets $U_{1}, U_{2} \subset V(G)$, denote by [ $\left.U_{1}, U_{2}\right]_{G}$ the set of edges of $G$ with one end in $U_{1}$ and the other end in $U_{2}, G[U]$ is the subgraph of $G$ induced by vertex set $U \subset V(G), \bar{U}=V(G) \backslash U$ is the complement of $U, \omega_{G}(U)=\left|[U, \bar{U}]_{G}\right|$ is the number of edges between $U$ and $\bar{U}$. When the graph under consideration is obvious, we omit the subscript $G$. Write $d_{A}(U)=|[U, A \backslash U]|, d_{A}(u)=d_{A}(\{u\})$. Sometimes, we use a graph itself to represent its vertex set. For example, $\omega(C)$ is used instead of $\omega(V(C))$, where $C$ is a subgraph of $G$; for an edge $e=u v, d_{A}(e)$ is used instead of $d_{A}(\{u, v\})$, etc.

A $\lambda_{3}$-fragment is a subset $U$ of $V(G)$ with $[U, \bar{U}]$ being a $\lambda_{3}$-cut. If $U$ is a $\lambda_{3}$-fragment, then so is $\bar{U}$, and both $G[U]$ and $G[\bar{U}]$ are connected. A $\lambda_{3}$-fragment with minimum order is called a $\lambda_{3}$-atom. The order of a $\lambda_{3}$-atom is denoted by $\alpha_{3}(G)$. Clearly, $\alpha_{3}(G) \leqslant|V(G)| / 2$.

A graph $H$ is $\lambda_{3}$-independent if each component of $H$ has at most two vertices. A connected graph of order at most two is $\lambda_{3}$-trivial. A graph is called $\lambda_{3}$-non-trivial if it has a component which contains at least three vertices.

The following two observations will be used frequently without mentioning them explicitly. The first is that if two connected subgraphs $G_{1}$ and $G_{2}$ have nonempty intersection, then $G_{1} \cup G_{2}$ is also connected. The second is that for a vertex set $F$ of a connected graph $G$ and a component $C$ of $G-F$, if $G[F]$ is connected, then so is $G-C$.

For terminologies not given here, we refer to [3] for reference.

## 3. Main result

First, it should be noted that if $\alpha_{3}(G)=3$, then $G$ is $\lambda_{3}$-optimal. In fact, Bonsma et al. [4] have proved that $\lambda_{3}(G) \leqslant \xi_{3}(G)$ holds for any $\lambda_{3}$-connected graph $G$. On the other hand, considering a $\lambda_{3}$-atom $A$ of $G$, we have $\lambda_{3}(G)=\omega(A) \geqslant \xi_{3}(G)$. So, $\lambda_{3}(G)=\xi_{3}(G)$. In view of this observation, to derive our main theorem, it suffices to show that $\alpha_{3}(G)=3$. In the following, we prove that if $G$ is a minimally 3-restricted edge connected graph with $\alpha_{3}(G) \geqslant 4$, then $G$ is isomorphic to 3-cube.

Lemma 1. Let $G$ be a $\lambda_{3}$-connected graph with $\delta(G) \geqslant 2, F$ be a subset of $G$ with $G[\bar{F}]$ being connected. If one of the following conditions is satisfied:
(a) $\omega(F)<\lambda_{3}(G)$, or
(b) $\omega(F)=\lambda_{3}(G)$ and $|F|<\alpha_{3}(G)$,
then $G[F]$ is $\lambda_{3}$-independent.
Proof. Suppose $F$ has a $\lambda_{3}$-non-trivial component $C$. Since $G[\bar{C}]$ is connected, we have $\omega(F) \geqslant \omega(C) \geqslant \lambda_{3}(G)$, which is clearly a contradiction to condition (a). If condition (b) occurs, then $\omega(F)=\omega(C)=\lambda_{3}(G)$. Hence $V(C)$ is a $\lambda_{3}$-fragment. But then $|F| \geqslant|C| \geqslant \alpha_{3}(G)$, contradicting $|F|<\alpha_{3}(G)$.

Lemma 2. Let $G$ be a $\lambda_{3}$-connected graph with $\delta(G) \geqslant 2$ and $\alpha_{3}(G) \geqslant 4, A$ be a $\lambda_{3}$-atom of $G$, and $B$ be a $\lambda_{3}$-fragment of $G$.
(a) If a subset $U$ of $A$ is such that $G[U]$ is connected and $G[A \backslash U]$ has a $\lambda_{3}$-non-trivial component, then $d_{A}(U)>d_{\bar{A}}(U)$.
(b) If a subset $U$ of $B$ is such that $G[U]$ is connected and $G[B \backslash U]$ has a $\lambda_{3}$-non-trivial component, then $d_{B}(U) \geqslant d_{\bar{B}}(U)$.
(c) $\delta(G[A]) \geqslant 2$.

Proof. (a). Suppose $d_{A}(U) \leqslant d_{\bar{A}}(U)$. Then $\omega(A \backslash U)=\omega(A)+d_{A}(U)-d_{\bar{A}}(U) \leqslant \omega(A)=\lambda_{3}(G)$. By noting that $|A \backslash U|<|A|=\alpha_{3}(G)$, it follows from Lemma 1 that $G[A \backslash U]$ is $\lambda_{3}$-independent, a contradiction.
(b). The proof of $(\mathrm{b})$ is similar to that of $(\mathrm{a})$; note that under the assumption $d_{B}(U)<d_{\bar{B}}(U)$, it can be deduced that $\omega(B \backslash U)<\lambda_{3}(G)$.
(c) is a consequence of (a). In fact, for each vertex $x \in A$, if $A-x$ is $\lambda_{3}$-independent, then $d_{A}(x) \geqslant 2$ since $|A| \geqslant 4$. If $A-x$ contains a $\lambda_{3}$-non-trivial component, taking $U=\{x\}$ in (a), we have $d_{A}(x)>d_{\bar{A}}(x)$. Then it follows from $d_{A}(x)>\frac{1}{2} \cdot\left(d_{A}(x)+d_{\bar{A}}^{-}(x)\right)=\frac{1}{2} \cdot d_{G}(x) \geqslant 1$ that $d_{A}(x) \geqslant 2$.
Similar to Lemma 2, we can prove the following lemma. The key observation to the proof, as well as some proofs after it, is that for any edge $e \in E(G)$, if $\lambda_{3}(G-e)<\lambda_{3}(G)$, then any $\lambda_{3}$-fragment of $G-e$ contains exactly one end of $e$, and is a $\lambda_{3}$-fragment of $G$. Note that the observation is true when $G$ is minimally 3-restricted edge connected.

Lemma 3. Let $G$ be a $\lambda_{3}$-connected graph with $\delta(G) \geqslant 2$ and $\alpha_{3}(G) \geqslant 4, e=u v$ be an edge of $G, \lambda_{3}(G-e)<\lambda_{3}(G)$, $A$ be a $\lambda_{3}$-atom of $G-e$ with $u \in A$ and $v \notin A$.
(a) If a subset $U$ of $A$ is such that $G[U]$ is connected, $G[A]-U$ has a $\lambda_{3}$-non-trivial component, and $e$ is not incident with $U$, then $d_{A}(U)>d_{\bar{A}}(U)$.
(b) $d_{G[A]}(x) \geqslant 2$ for each $x(\neq u) \in A$.

Lemma 4. Let $G$ be a $\lambda_{3}$-connected graph with $\delta(G) \geqslant 2$ and $\alpha_{3}(G) \geqslant 4, A$ be a $\lambda_{3}$-atom of $G, B$ be a $\lambda_{3}$-fragment of $G, A \cap B \neq \emptyset$. Then for any component $C$ of $G[A \cap B]$, either $G[A]-C$ or $G[B]-C$ is $\lambda_{3}$-independent.

Proof. Suppose both $G[A]-C$ and $G[B]-C$ have $\lambda_{3}$-non-trivial components. Then by taking $U=V(C)$ in Lemma 2 , we have

$$
d_{A}(U)>d_{\bar{A}}(U) \geqslant d_{B \backslash A}(U)=d_{B}(U)
$$

and

$$
d_{B}(U) \geqslant d_{\bar{B}}(U) \geqslant d_{A \backslash B}(U)=d_{A}(U),
$$

a contradiction.
Similar to Lemma 4, by using Lemma 3 instead of Lemma 2, it can be proved that
Lemma 5. Let $G$ be a $\lambda_{3}$-connected graph with $\delta(G) \geqslant 2$ and $\alpha_{3}(G) \geqslant 4, e=u v$ be an edge of $G, \lambda_{3}(G-e)<\lambda_{e}(G)$, $A$ be a $\lambda_{3}$-atom of $G-e$ with $u \in A$ and $v \notin A, B$ be a $\lambda_{3}$-fragment of $G$ such that $A \cap B \neq \emptyset$ and $e$ is not incident with $B$. For any component $C$ of $G[A \cap B]$, either $G[A]-C$ or $G[B]-C$ is $\lambda_{3}$-independent.

Lemma 6. Let $G$ be a minimally $\lambda_{3}$-graph with $\alpha_{3}(G) \geqslant 4, A$ be a $\lambda_{3}$-atom of $G, e=u v$ be an edge of $G[A]$, $B$ be a $\lambda_{3}$-atom of $G-e$. Then,
(a) $G[A \cap B], G[A \backslash B]$ and $G[B \backslash A]$ are all connected;
(b) $|A \cap B|=2,|A \backslash B|=2$;
(c) $G[A]$ is $C_{4}$ (4-cycle) or $K_{4}$ (complete graph on 4 vertices) or $K_{4}^{-}$( $K_{4}$ minus one edge);
(d) $G[\overline{A \cup B}]$ is connected;
(e) $|[A \cap B, \overline{A \cup B}]|=|[A \backslash B, B \backslash A]|=0$, and $d_{\bar{A}}(x)=d_{A}(x)-1$ for each $x \in A$.

Proof. By the observation before Lemma 3, we may suppose, without loss of generality, that $u \in B$ and $v \in \bar{B}$. Then $A \cap B \neq \emptyset$ and $A \backslash B \neq \emptyset$. Because of $|A| \leqslant \frac{1}{2}|V(G)|$ and $|B| \leqslant \frac{1}{2}|V(G)|$, we have $|\overline{A \cup B}|=|V(G)|-|A|-|B|+|A \cap B| \geqslant|A \cap B|$.
(a). Suppose $G[A \cap B]$ has two components $C_{1}, C_{2}$. If one of $C_{1}$ and $C_{2}$, say $C_{2}$, has at least two vertices, then by the connectedness of $G[A]$ and $G[B]$, both $G[A]-C_{1}$ and $G[B]-C_{1}$ have $\lambda_{3}$-non-trivial components containing $C_{2}$, contradicting Lemma 4. Next, suppose $V\left(C_{1}\right)=\{x\}, V\left(C_{2}\right)=\{y\}$, and $y \neq u$. By Lemma 2(c), we have $d_{A}(y) \geqslant 2$. By Lemma 3(b), we have $d_{B}(y) \geqslant 2$. So both $G[A]-C_{1}$ and $G[B]-C_{1}$ have $\lambda_{3}$-non-trivial components, again a contradiction. So, $G[A \cap B]$ is connected.

Suppose $G[A \backslash B]$ is not connected. Then a contradiction can be obtained by using Lemma 4 to $A$ and $\bar{B}$ (note that $\bar{B}$ is also a $\lambda_{3}$-fragment). In fact, the case that $G[A \backslash B]$ has a component with at least two vertices can be analyzed similar to the above paragraph. In the case that $A \backslash B$ is an independent set with at least two vertices, we have $|A \cap B| \geqslant 2$ since $\delta(G[A]) \geqslant 2$. By the connectedness of $G[A \cap B]$, we see that for any vertex $y \in A \backslash B, G[A]-y$ is $\lambda_{3}$-non-trivial. If there is a vertex $y \in A \backslash B$ with degree one in $G[\bar{B}]$, then $G[\bar{B}]-y$ is $\lambda_{3}$-non-trivial. If there exists a vertex $x \in A \backslash B$ with $d_{G[\bar{B}]}(x) \geqslant 2$, let $y$ be another vertex in $A \backslash B$. Then $G[\bar{B}]-y$ has a $\lambda_{3}$-non-trivial component containing $x$. Taking $C=\{y\}$ in Lemma 4 and using $\bar{B}$ to take the place of $B$, we arrive at a contradiction.

Similar to the above deduction, by using Lemmas 3 and 5 instead of Lemmas 2 and 4, it can be proved that $G[B \backslash A]$ is also connected.
(b). First suppose $|A \cap B|=1$. By $|B| \geqslant|A| \geqslant 4$, we have $|B \backslash A| \geqslant|A \backslash B| \geqslant 3$. By (a), $G[B \backslash A]$ and $G[A \backslash B]$ are both $\lambda_{3}$-non-trivial, which contradicts Lemma 4(taking $U=A \cap B$ there).

Next suppose $|A \cap B| \geqslant 3$. By (a), $G[A \cap B]$ is $\lambda_{3}$-non-trivial. By the connectedness of $G[\bar{A}]$ and $G[\bar{B}]$, we see that $G[\overline{A \cap B}]=G[\bar{A} \cup \bar{B}]$ is also connected. Taking $F=A \cap B$ in Lemma 1, by noting that $|F|=|A \cap B|<|A|=\alpha_{3}(G)$, we have $\omega(A \cap B)>\lambda_{3}(G)$. Combining this with $\omega(A)=\omega(B)=\lambda_{3}(G)$ and the following well known submodular inequality,

$$
\omega(A \cap B)+\omega(A \cup B) \leqslant \omega(A)+\omega(B)
$$

we have $\omega(\overline{A \cup B})=\omega(A \cup B)<\lambda_{3}(G)$. Taking $F=\overline{A \cup B}$ in Lemma 1, we see that $G[\overline{A \cup B}]$ is $\lambda_{3}$-independent, that is, $G[\overline{A \cup B}]$ is composed of some singletons and complete graphs of order two.

We claim that for each component $C$ of $G[\overline{A \cup B}], d_{A}(C)=d_{B}(C)$ and $d_{A \cap B}(C)=0$. It should be noted that $C$ is connected to both $A \backslash B$ and $B \backslash A$, since $G[\bar{A}]$ and $G[\bar{B}]$ are connected. First suppose $C$ is a singleton $x$. Since $|\overline{A \cup B}| \geqslant|A \cap B| \geqslant 3$ and $G[B \backslash A]$ is connected, we see that $G[\bar{A}]-x$ has a connected subgraph of order at least 3. Applying Lemma 2(b) to the $\lambda_{3}$-fragment $\bar{A}$ and the vertex set $\{x\}$, we have $d_{\bar{A}}(x) \geqslant d_{A}(x)$. Hence

$$
d_{A}(x) \leqslant d_{\bar{A}}(x)=d_{B \backslash A}(x)=d_{B}(x)-d_{A \cap B}(x) .
$$

Similarly,

$$
d_{B}(x) \leqslant d_{\bar{B}}(x)=d_{A \backslash B}(x)=d_{A}(x)-d_{B \cap A}(x) .
$$

It follows that $d_{A}(x)=d_{B}(x)$ and $d_{A \cap B}(x)=0$. Next suppose $C$ is an edge $e=v_{1} v_{2}$. If $|\overline{A \cup B}|=3$ and $|A \backslash B|=1$, then $G[\overline{A \cup B}]$ is composed of $e$ and a singleton $y$. Set $A^{\prime}=(A \backslash B) \cup\left\{v_{1}, v_{2}\right\}$. Then both $G\left[A^{\prime}\right]$ and $G\left[\overline{A^{\prime}}\right]$ are connected subgraphs of order at least 3. Since $d_{A \backslash B}(y)=d_{B \backslash A}(y)$, we have $\omega\left(A^{\prime}\right)=\omega\left(\overline{A^{\prime}}\right)=\omega(B \cup\{y\})=\omega(B)+d_{A \backslash B}(y)-d_{B \backslash A}(y)=\omega(B)=\lambda_{3}(G)$.

So $A^{\prime}$ is a $\lambda_{3}$-fragment. But then $\alpha_{3}(G) \leqslant\left|A^{\prime}\right|=3$, contradicting the assumption that $\alpha_{3}(G) \geqslant 4$. So, $|\overline{A \cup B}| \geqslant 4$ or $|A \backslash B| \geqslant 2$ (hence $|B \backslash A| \geqslant 2$ ). Taking the place of $x$ by $e$ in the proof for $C$ being a singleton, we have $d_{A}(e)=d_{B}(e)$ and $d_{A \cap B}(e)=0$. The claim is proved.

As a consequence of the claim, for any vertex set $U$ which is the union of the vertex sets of some components in $G[\overline{A \cup B}]$, we have $d_{A \backslash B}(U)=d_{B \backslash A}(U)$ and $d_{A \cap B}(U)=0$.

Let $U$ be the vertex set of one or two components of $G[\overline{\overline{A \cup B}}]$ such that $|U|=2$. Set $A^{\prime}=(A \backslash B) \cup U$. Then $3 \leqslant\left|A^{\prime}\right|<|A|$ and both $G\left[A^{\prime}\right]$ and $G\left[\overline{A^{\prime}}\right]$ are connected. Since $\omega\left(A^{\prime}\right)=\omega\left(\overline{A^{\prime}}\right)=\omega(B)+d_{A \backslash B}(\overline{A \cup B} \backslash U)-d_{B \backslash A}(\overline{A \cup B} \backslash U)=\omega(B)=\lambda_{3}(G)$, we see that $A^{\prime}$ is a $\lambda_{3}$-fragment of $G$ with less vertices than $A$, a contradiction.

Hence $|A \cap B|=2$. It follows that $|A \backslash B|=|A|-|A \cap B| \geqslant 2$. If $|A \backslash B| \geqslant 3$, then $|B \backslash A| \geqslant 3$. By (a), both $G[A \backslash B]$ and $G[B \backslash A]$ are $\lambda_{3}$-non-trivial, contradicting Lemma 4. So, $|A \backslash B|=2$, and (b) is proved.
(c) follows from (a), (b) and Lemma 2(c).

Suppose $A \backslash B=\{a, d\}$ and $A \cap B=\{b, c\}$. Then $a d, b c \in E(G)$.
Claim 1. For each edge $e=x y \in E(G[A]), d_{A}(e) \geqslant d_{\bar{A}}(e)$, equality holds if and only if $d_{\bar{A}}(x)=d_{A}(x)-1$ and $d_{\bar{A}}(y)=d_{A}(y)-1$. Taking $U=\{x\}$ in Lemma 2(a), we have $d_{A}(x)>d_{\bar{A}}(x)$. Hence $d_{\bar{A}}(x) \leqslant d_{A}(x)-1=d_{A \backslash\{x, y\}}(x)$. Similarly, $d_{\bar{A}}(y) \leqslant d_{A}(y)-1=$ $d_{A \backslash\{x, y\}}(y)$. Then the claim follows from

$$
d_{A}(x y)=d_{A \backslash\{x, y\}}(x)+d_{A \backslash\{x, y\}}(y) \geqslant d_{\bar{A}}(x)+d_{\bar{A}}(y)=d_{\bar{A}}(x y)
$$

$\operatorname{Claim}$ 2. $d_{A \backslash B}(b c)=d_{B \backslash A}(b c), d_{\overline{A \cup B}}(b c)=0, d_{\bar{A}}(b)=d_{A}(b)-1$ and $d_{\bar{A}}(c)=d_{A}(c)-1$.
By Claim 1, we have

$$
\begin{equation*}
d_{A \backslash B}(b c)=d_{A}(b c) \geqslant d_{\bar{A}}(b c)=d_{B \backslash A}(b c)+d_{\overline{A \cup B}}(b c) . \tag{1}
\end{equation*}
$$

If $|B \backslash A|=2$, then $B$ is also a $\lambda_{3}$-atom of $G$, and similar to (1), we have

$$
\begin{equation*}
d_{B \backslash A}(b c)=d_{B}(b c) \geqslant d_{\bar{B}}(b c)=d_{A \backslash B}(b c)+d_{\overline{A \cup B}}(b c) \tag{2}
\end{equation*}
$$

If $|B \backslash A| \geqslant 3$, then by (a), $G[B \backslash A]$ is $\lambda_{3}$-non-trivial. By Lemma 2(b), inequality (2) is still valid. Combining (1) and (2), we have the first and the second equality of the claim. As a consequence, equality holds for (1), and thus the third and the fourth equality of the claim follow from Claim 1.
(d). Suppose $C_{1}$ and $C_{2}$ are two components of $G[\overline{A \cup B}]$. Since $d_{A}(a d) \geqslant d_{\bar{A}}(a d)$ by Claim 1, we have

$$
\begin{aligned}
\omega\left(C_{1}\right)<\omega(\overline{A \cup B}) & =\omega(A \cup B)=\omega(B)+d_{\overline{A \cup B}}(a d)-d_{A \cup B}(a d) \\
& =\omega(B)+\left(d_{\bar{A}}(a d)-d_{B \backslash A}(a d)\right)-\left(d_{B \backslash A}(a d)+d_{A}(a d)\right) \\
& =\omega(B)-d_{A}(a d)+d_{\bar{A}}(a d)-2 d_{B \backslash A}(a d) \\
& \leqslant \omega(B)=\lambda_{3}(G) .
\end{aligned}
$$

By Lemma 1, $C_{1}$ is $\lambda_{3}$-independent, and thus $\left|V\left(C_{1}\right)\right| \leqslant 2$. Since $G[B \backslash A]$ is connected, $|B \backslash A| \geqslant 2$, and $C_{2}$ is connected to $B \backslash A$, we see that $G[\bar{A}]-C_{1}$ has a $\lambda_{3}$-non-trivial component. By Lemma 2(b) and Claim 2, we have

$$
d_{A}\left(C_{1}\right) \leqslant d_{\bar{A}}\left(C_{1}\right)=d_{B \backslash A}\left(C_{1}\right)=d_{B}\left(C_{1}\right)
$$

Similarly,

$$
d_{B}\left(C_{1}\right) \leqslant d_{\bar{B}}\left(C_{1}\right)=d_{A \backslash B}\left(C_{1}\right)=d_{A}\left(C_{1}\right) .
$$

It follows that $d_{B}\left(C_{1}\right)=d_{A}\left(C_{1}\right)$. Set $A^{\prime}=(A \backslash B) \cup C_{1}$. Then both $G\left[A^{\prime}\right]$ and $G\left[\overline{A^{\prime}}\right]$ are connected. By Claim 2, we have $\omega\left(A^{\prime}\right)=\omega(A \backslash B)+d_{B}\left(C_{1}\right)-d_{A \backslash B}\left(C_{1}\right)=\omega(A \backslash B)+d_{B}\left(C_{1}\right)-d_{A}\left(C_{1}\right)=\omega(A \backslash B)=\omega(A)+d_{A \backslash B}(b c)-d_{B \backslash A}(b c)=\omega(A)=\lambda_{3}(G)$. Hence $A^{\prime}$ is a $\lambda_{3}$-fragment of $G$. since $\left|A^{\prime}\right| \leqslant|A|$, we see that $A^{\prime}$ is also a $\lambda_{3}$-atom of $G$. Applying Claim 1 to $A^{\prime}$ and $A$ respectively, we have

$$
d_{A^{\prime}}(a d) \geqslant d_{\overline{A^{\prime}}}(a d) \geqslant d_{A}(a d)+d_{C_{2}}(a d)>d_{A}(a d)
$$

and

$$
d_{A}(a d) \geqslant d_{\bar{A}}(a d) \geqslant d_{C_{1}}(a d)=d_{A^{\prime}}(a d)
$$

a contradiction. So, $G[\overline{A \cup B}]$ is connected.
(e). Noting that in proving Claim 2, it suffices for $B$ to be a $\lambda_{3}$-fragment (it needs not to be a $\lambda_{3}$-atom of $G-e$ ). Hence, by taking the place of $B$ by $\bar{B}$, we have $d_{B \backslash A}(a d)=0$, and $d_{\bar{A}}(a)=d_{A}(a)-1, d_{\bar{A}}(d)=d_{A}(d)-1$. Together with Claim 2 , the results follow immediately.

Theorem 1. The only minimally $\lambda_{3}$-connected graph which is not $\lambda_{3}$-optimal is the 3-cube.


Fig. 1. An illustration for the proof of Theorem 1.
Proof. Suppose $G$ is a minimally $\lambda_{3}$-connected graph which is not $\lambda_{3}$-optimal. Then $\alpha_{3}(G) \geqslant 4$. Let $A$ be a $\lambda_{3}$-atom of $G$, $e=u v$ be an edge of $G[A]$, and $B$ be a $\lambda_{3}$-atom of $G-e$. Then Lemma 6 is applicable to $A$ and $B$. Suppose $A \cap B=\{b, c\}$, $A \backslash B=\{a, d\}$. Then $a d, b c \in E(G)$. By Lemma 6(c), we may assume, without loss of generality, that $a b, c d \in E(G)$.

By Lemma 6(e), $d_{\bar{A}}(x)=d_{A}(x)-1$ for each $x \in\{a, b, c, d\}$. Hence

$$
\begin{aligned}
\lambda_{3}(G)=\omega(A) & =d_{\bar{A}}(a)+d_{\bar{A}}(b)+d_{\bar{A}}(c)+d_{\bar{A}}(d) \\
& =d_{A}(a)+d_{A}(d)-2+d_{A}(b)+d_{A}(c)-2 \\
& =d_{A}(a d)+d_{A}(b c) \\
& =2|[a d, b c]| .
\end{aligned}
$$

Let $D$ be a $\lambda_{3}$-atom of $G-b c$. Then Lemma 6 is also applicable to $A$ and $D$. Suppose, without loss of generality, that $A \cap D=\{c, d\}$. Set $F_{1}=(B \backslash A) \backslash D, F_{2}=(B \backslash A) \cap D, F_{3}=(\overline{A \cup B}) \cap D, F_{4}=(\overline{A \cup B}) \backslash D$ (see Fig. 1).

By Lemma 6(e), we have

$$
\begin{equation*}
\left|\left[\{a, d\}, F_{1} \cup F_{2}\right]\right|=\left|\left[\{b, c\}, F_{3} \cup F_{4}\right]\right|=\left|\left[\{a, b\}, F_{2} \cup F_{3}\right]\right|=\left|\left[\{c, d\}, F_{1} \cup F_{4}\right]\right|=0 . \tag{3}
\end{equation*}
$$

It follows that $\left|\left[a, F_{1} \cup F_{2} \cup F_{3}\right]\right|=0$, and thus $\left|\left[a, F_{4}\right]\right|=|[a, \bar{A}]|=d_{\bar{A}}(a)=d_{A}(a)-1 \geqslant \delta(G[A])-1 \geqslant 1$. By the same argument, we have

$$
\begin{array}{ll}
\left|\left[a, F_{4}\right]\right|=d_{\bar{A}}(a) \geqslant 1, \quad\left|\left[b, F_{1}\right]\right|=d_{\bar{A}}(b) \geqslant 1,  \tag{4}\\
\left|\left[d, F_{3}\right]\right|=d_{\bar{A}}(d) \geqslant 1, \quad\left|\left[c, F_{2}\right]\right|=d_{\bar{A}}(c) \geqslant 1 .
\end{array}
$$

As a consequence,

$$
\begin{equation*}
[A, \bar{A}]=\left[a, F_{4}\right] \cup\left[b, F_{1}\right] \cup\left[c, F_{2}\right] \cup\left[d, F_{3}\right] \tag{5}
\end{equation*}
$$

and none of $F_{1}, F_{2}, F_{3}, F_{4}$ is empty. Since the four subgraphs $G\left[F_{1} \cup F_{2}\right]=G[B \backslash A], G\left[F_{2} \cup F_{3}\right]=G[D \backslash A], G\left[F_{1} \cup F_{4}\right]=G[\overline{A \cup D}]$ and $G\left[F_{3} \cup F_{4}\right]=G[\overline{A \cup B}]$ are all connected, we have

$$
\begin{equation*}
\left|\left[F_{1}, F_{2}\right]\right| \geqslant 1, \quad\left|\left[F_{2}, F_{3}\right]\right| \geqslant 1, \quad\left|\left[F_{1}, F_{4}\right]\right| \geqslant 1, \quad\left|\left[F_{3}, F_{4}\right]\right| \geqslant 1 \tag{6}
\end{equation*}
$$

By equality (3), we have

$$
\begin{align*}
& \omega(B)=|[b c, a d]|+\left|\left[F_{1} \cup F_{2}, F_{3} \cup F_{4}\right]\right|, \\
& \omega(D)=|[d c, a b]|+\left|\left[F_{2} \cup F_{3}, F_{1} \cup F_{4}\right]\right| . \tag{7}
\end{align*}
$$

Because of Lemma 6(c), we consider the following three cases.
Case 1. $G[A] \cong C_{4}$.
In this case, $\lambda_{3}(G)=2|[a d, b c]|=4$. Then equalities hold in (4). By the equalities (7) and the inequalities (6), we have

$$
\begin{equation*}
\omega(B) \geqslant 4 \quad \text { and } \quad \omega(D) \geqslant 4 \tag{8}
\end{equation*}
$$

Since $\omega(B)=\omega(D)=\lambda_{3}(G)=4$, all inequalities in (8) become equalities. In particular, $\left|\left[F_{1}, F_{2}\right]\right|=\left|\left[F_{1}, F_{4}\right]\right|=1$ and $\left|\left[F_{1}, F_{3}\right]\right|=0$. Combining these with $\left|\left[F_{1}, A\right]\right|=\left|\left[b, F_{1}\right]\right|=1$, we have $\omega\left(F_{1}\right)=3<\lambda_{3}(G)$. Then by Lemma 1 , $G\left[F_{1}\right]$ is $\lambda_{3}$-independent. Since $G\left[F_{1} \cup F_{2}\right]$ is connected and $\left|\left[F_{1}, F_{2}\right]\right|=1$, we see that $G\left[F_{1}\right]$ is connected. Thus $\left|F_{1}\right| \leqslant 2$.

If $\left|F_{1}\right|=2$, then $G[F]$ is $\lambda_{3}$-non-trivial, where $F=F_{1} \cup\{b\}$. On the other hand, by noting that $|F|=3<\alpha_{3}(G)$ and $\omega(F)=\omega\left(F_{1}\right)-\left|\left[b, F_{1}\right]\right|+d_{A}(b)=3-1+2=4=\lambda_{3}(G)$, it follows from Lemma 1 that $G[F]$ is $\lambda_{3}$-independent, a contradiction. So $\left|F_{1}\right|=1$. Similarly, it can be deduced that $\left|F_{2}\right|=\left|F_{3}\right|=\left|F_{4}\right|=1$. Then $G$ is a 3-cube.
Case 2. $G[A] \cong K_{4}^{-}$.
In this case, $\lambda_{3}(G)=2|[a d, b c]|=6$. We assume, without loss of generality, that $b d \in E(G)$. By equality (7) and $\omega(B)=\omega(D)=\lambda_{3}(G)=6$, we have

$$
\begin{equation*}
\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right|+\left|\left[F_{2}, F_{3} \cup F_{4}\right]\right|=\left|\left[F_{1} \cup F_{2}, F_{3} \cup F_{4}\right]\right|=3 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left[F_{2} \cup F_{3}, F_{1}\right]\right|+\left|\left[F_{2} \cup F_{3}, F_{4}\right]\right|=\left|\left[F_{2} \cup F_{3}, F_{1} \cup F_{4}\right]\right|=3 \tag{10}
\end{equation*}
$$

By (6) and (9), one of $\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right|$ and $\left|\left[F_{2}, F_{3} \cup F_{4}\right]\right|$ is 1 . Suppose, without loss of generality, that $\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right|=1$. Then $\left|\left[F_{1}, F_{4}\right]\right| \leq 1$. By (6) and (10), $\left|\left[F_{1}, F_{2} \cup F_{3}\right]\right| \leqslant 2$. By equality (5) and Lemma 6(e), $\left|\left[b, F_{1}\right]\right|=d_{A}(b)=d_{A}(b)-1=2$. Hence $\omega\left(F_{1}\right)=\left|\left[b, F_{1}\right]\right|+\left|\left[F_{1}, F_{2} \cup F_{3}\right]\right|+\left|\left[F_{1}, F_{4}\right]\right| \leqslant 5<\lambda_{3}(G)$. By Lemma 1, $G\left[F_{1}\right]$ is $\lambda_{3}$-independent. Since $G\left[F_{1} \cup F_{4}\right]$ is connected and $\left|\left[F_{1}, F_{4}\right]\right|=1$, we see that $G\left[F_{1}\right]$ is connected and thus $\left|F_{1}\right| \leqslant 2$. Combining this with $\left|\left[b, F_{1}\right]\right|=2$, we have $\left|F_{1}\right|=2$. Set $F=F_{1} \cup\{b\}$. Then both $G[F]$ and $G[\bar{F}]$ are connected. By noting that $|F|=3<\alpha_{3}(G)$ and

$$
\omega(F)=\omega\left(F_{1}\right)+d_{A}(b)-\left|\left[b, F_{1}\right]\right| \leqslant 5+3-2=6=\lambda_{3}(G)
$$

it follows from Lemma 1 that $G[F]$ is $\lambda_{3}$-independent, a contradiction.
Case 3. $G[A] \cong K_{4}$.
In this case, $\lambda_{3}(G)=2|[a d, b c]|=8$. For each vertex $x \in A$, we have $d_{\bar{A}}(x)=d_{A}(x)-1=2$ by Lemma $6(\mathrm{e})$. It follows from (5) that $\left|\left[a, F_{4}\right]\right|=\left|\left[b, F_{1}\right]\right|=\left|\left[c, F_{2}\right]\right|=\left|\left[d, F_{3}\right]\right|=2$. Similar to the deduction of (9) and (10), we have

$$
\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right|+\left|\left[F_{2}, F_{3} \cup F_{4}\right]\right|=\left|\left[F_{2}, F_{1} \cup F_{4}\right]\right|+\left|\left[F_{3}, F_{1} \cup F_{4}\right]\right|=4
$$

Then $\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right| \leqslant 3$. Suppose, without loss of generality, that $\left|\left[F_{2}, F_{1} \cup F_{4}\right]\right| \leqslant 2$. Then $\left|\left[F_{2}, F_{1}\right]\right| \leqslant 2$. If $\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right|=3$, then $\left|\left[F_{2}, F_{3} \cup F_{4}\right]\right|=1$. Set $F=F_{2} \cup\{c\}$. Then

$$
\omega(F)=d_{A}(c)+\left|\left[F_{2}, F_{1}\right]\right|+\left|\left[F_{2}, F_{3} \cup F_{4}\right]\right| \leqslant 3+2+1=6<\lambda_{3}(G)
$$

By Lemma $1, F$ is $\lambda_{3}$-independent. On the other hand, since $\left|\left[c, F_{2}\right]\right|=2$, we see that $G[F]$ contains a $\lambda_{3}$-non-trivial component, a contradiction. If $\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right| \leqslant 2$, set $F=F_{1} \cup\{b\}$. Then

$$
\omega(F)=d_{A}(b)+\left|\left[F_{1}, F_{2}\right]\right|+\left|\left[F_{1}, F_{3} \cup F_{4}\right]\right| \leqslant 3+2+2=7<\lambda_{3}(G)
$$

Similar to the above, we arrive at a contradiction.

## References

[1] C. Balbuena, P. Garcia-Vázquez, X. Marcote, Sufficient conditions for $\lambda^{\prime}$-optimality in graphs with girth $g$, J. Graph Theory 52 (2006) $73-86$.
[2] D. Bauer, F. Boesch, C. Suffel, R. Van Syke, On the validity of a reduction of reliable network design to a graph extremal problem, IEEE Trans. Circuits Syst. 34 (1989) 1579-1581.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[4] P. Bonsma, N. Ueffing, L. Volkmann, Edge-cuts leaving components of order at least three, Discrete Math. 256 (2002) 431-439.
[5] A.H. Esfahanian, S.L. Hakini, On computing a conditional edge connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
[6] J. Fábrega, M.A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math. 127 (1994) 163-170.
[7] A. Hellwig, L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008) $3265-3296$.
[8] Y. Hong, Q. Liu, Z. Zhang, Minimally restricted edge connected graphs, Appl. Math. Lett. (2007) doi:10.1016/j.aml.2007.09.004.
[9] L. Lovász, Combinatorial Problems and Exercises, North-Holland Publishing Company, 1979.
[10] J.X. Meng, Y.H. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002) 183-193.
[11] J.X. Meng, Optimally super-edge-connected transitive graphs, Discrete Math. 260 (2003) 239-248.
[12] J.P. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005) 365-371.
[13] M. Wang, Q. Li, Conditional edge conectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002) $205-214$.
[14] Ying-Qian Wang, Qiao Li, Super-edge-connectivity properties of graphs with diameter 2, J. Shanghai Jiaotong Univ. 33 (6) (1999) 646-649 (in Chinese).
[15] Ying-Qian Wang, Qiao Li, Sufficient conditions for a graph to be maximally restricted edge-connected, J. Shanghai Jiaotong Univ. 35 (8) (2001) 1253-1255 (in Chinese).
[16] Ying-Qian Wang, Li Qiao, A sufficient condition for the equality between the restricted edge-connectivity and minimum edge-degree of graphs, Appl. Math. J. Chinese Univ. 16A (3) (2001) 269-275 (in Chinese).
[17] J.M. Xu, K.L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (2002) 291-298.
[18] Z. Zhang, J.X. Meng, Restricted edge connectivity of edge transitive graphs, Ars Combinatoria LXXVIII (2006) 297-308.
[19] Z. Zhang, J.J. Yuan, Degree conditions for restricted-edge-connectivity and isoperimetric-edge-connectivity to be optimal, Discrete Math. 307 (2007) 293-298.
[20] Z. Zhang, Q.H. liu, Sufficient conditions for a graph to be $\lambda_{k}$-optimal with given girth and diameter (submitted for publication).
[21] Z. Zhang, J.J. Yuan, A proof of an inequality concerning $k$-restricted edge connectivity, Discrete Math. 304 (2005) 128-134.


[^0]:    th This research is supported by NSFC (60603003), the Key Project of Chinese Ministry of Education (208161) and XJEDU.

    * Corresponding author. Tel.: +86 13899960204; fax: +86 9918585505.

    E-mail address: zhzhao@xju.edu.cn (Z. Zhang).

