DISCRETE

MATHEMATICS
Discrete Mathematics 257 (2002) 173-175
www.elsevier.com/locate/disc

Note
 The Ramsey size number of dipaths

David Reimer
Department of Mathematics and Statistics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628-0718, USA

Received 13 July 2001; accepted 10 December 2001

Abstract

Let H be a finite graph. The Ramsey size number of $H, \hat{r}(H, H)$, is the minimum number of edges required to construct a graph such that when its edges are 2-colored it contains a monochromatic subgraph, H. In this paper we prove that the Ramsey size number of a directed path is quadratic. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ramsey size number; Dipath; Graph theory

1. Introduction

Let G, R and B be finite graphs. The notation $G \rightarrow(R, B)$ implies when each of the edges of G are arbitrarily colored red or blue, we can always find a red copy of R or a blue copy of B in graph G. It is natural to ask how large does G have to be in order to have this property? The Ramsey size number, $\hat{r}(R, B)$, and the Ramsey number, $r(R, B)$, represent the minimum size G must be, measured in edges and vertices, respectively, if it has the property $G \rightarrow(R, B)$. Specifically,

$$
\begin{aligned}
& \hat{r}(R, B) \equiv\left\{\min _{G}(|E(G)|: G \rightarrow(R, B))\right\}, \\
& r(R, B) \equiv\left\{\min _{G}(|V(G)|: G \rightarrow(R, B))\right\} .
\end{aligned}
$$

Let P_{n} and $\overrightarrow{P_{n}}$ be the path and dipath of length n, respectively. It is well known that $O\left(r\left(P_{n}, P_{n}\right)\right)$ is linear [2]. This implies that $O\left(\hat{r}\left(\overrightarrow{P_{n}}, \overrightarrow{P_{n}}\right)\right) \leqslant n^{2}$. This follows because if

[^0]$|V(G)| \leqslant c n$, for some constant c, then
$$
|E(G)| \leqslant\binom{ c n}{2}
$$
which is order n^{2}. In 1983 Beck [1] proved that $O\left(\hat{r}\left(P_{n}, P_{n}\right)\right)$ is also linear, which in turn implies $O\left(\hat{r}\left(\overrightarrow{P_{n}}, \overrightarrow{P_{n}}\right)\right) \geqslant n$. In this paper we will show that the behavior of Ramsey size numbers for directed paths is radically different than that of undirected graphs even for graphs as simple as $\overrightarrow{P_{n}}$, the directed path with n edges. Specifically:

Theorem 1. $\frac{(n-5 / 2)^{2}}{2} \leqslant \hat{r}\left(\overrightarrow{P_{n}}, \overrightarrow{P_{n}}\right)$.

2. Proof of the theorem

To prove the lower bound we will construct an edge-coloring algorithm, which restricts the size of monochromatic paths.

Lemma 2. Any graph G with m edges can have its vertices partitioned into $k \equiv\lceil\sqrt{m / 2}\rceil$ stable sets and a remainder set with not more than $\sqrt{2 m}$ vertices.

Proof. Let G be a graph with m edges. Create disjoint sets S_{1} through S_{k} by placing as many vertices of G as possible into the sets while maintaining the stability of each S_{i}. Let R be the set of unused vertices. Clearly, for R to be minimal, each vertex of R must have an edge to each S_{i}. So G has at least $|R| k$ edges giving

$$
m \geqslant|R|\lceil\sqrt{m / 2}\rceil
$$

and therefore

$$
|R| \leqslant \frac{m}{\lceil\sqrt{m / 2}\rceil} \leqslant \sqrt{2 m}
$$

Lemma 3. Any directed graph G with m edges can be two colored such that its largest monochromatic path has at most $\sqrt{2 m}+5 / 2$ vertices.

Proof. Let G be a directed graph and apply the previous lemma. Arbitrarily partition the vertices of R into two sets S_{k+1} and S_{k+2} such that $\left|S_{k+1}\right|=\lceil|R| / 2\rceil$ and $\left|S_{k+2}\right|=\lfloor|R| / 2\rfloor$. Let (v, w) denote the directed edge going from v to w. Color the edges of G as follows:

$$
\begin{aligned}
& (v, w) \in \operatorname{Red} \quad \text { if } \begin{cases}v \in S_{i}, & w \in S_{j} \text { where } i<j, \\
v \in S_{i}, w \in S_{j} \text { where } i=j=k+1,\end{cases} \\
& (v, w) \in \text { Blue } \quad \text { if } \begin{cases}v \in S_{i}, w \in S_{j} \text { where } i>j, \\
v \in S_{i}, & w \in S_{j} \text { where } i=j=k+2\end{cases}
\end{aligned}
$$

Consider red dipath, $\overrightarrow{P_{n}}$, in G colored as above. As we follow the dipath, the index of the set, S_{i} containing the current vertex of the dipath is nondecreasing and can only remain constant in S_{k+1}. Therefore, \vec{P}_{n} can contain only one vertex of each S_{i} where $i \neq k+1$. So

$$
\left|V\left(P_{n}\right)\right| \leqslant\left|\left\{S_{i}\right\}_{i \neq k+1}\right|+\left|S_{k+1}\right| .
$$

Because the length, L, of path $\overrightarrow{P_{n}}$ is one less than the number of vertices we get

$$
L \leqslant k+1+\left\lceil\frac{|R|}{2}\right\rceil \leqslant\left\lceil\sqrt{\frac{m}{2}}\right\rceil+\frac{|R|}{2}+\frac{3}{2} \leqslant \sqrt{2 m}+\frac{5}{2} .
$$

Similarly, blue dipaths are bounded by the same length.
When the above algorithm is applied to graphs where

$$
|E(G)|<\frac{(n-5 / 2)^{2}}{2}
$$

it produces a coloring where the length of monochromatic dipaths is less than n, hence proving the main theorem.

References

[1] J. Beck, On Ramsey number of paths, trees and circuits, Internat. J. Graph Theory 7 (1983) 115-129. [2] R. Graham, B. Rothschild, J. Spencer, Ramsey Theory, Wiley, New York, 1980.

[^0]: E-mail address: dreimer@tcnj.edu (D. Reimer).

