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Abstract

G. Andrews proved that if n is a prime number then the coefficients ak and ak+n of the product
(q, q)∞/(qn, qn)∞ = ∑

k akq
k have the same sign, see [G. Andrews, On a conjecture of Peter Borwein,

J. Symbolic Comput. 20 (1995) 487–501]. We generalize this result in several directions. Our results are
based on the observation that many products can be written as alternating sums of characters of Virasoro
modules.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the past several decades with the appearance and rapid development of Conformal Field
Theory, the Virasoro modules enjoyed ample attention from mathematicians and physicists.

In this paper we study the following question.

Question. Which finite (alternating) sum of characters of Virasoro modules occurring in a mini-
mal series can be written in the form∏

i∈I−(1 − qi)
∏

i∈I+(1 + qi)∏
j∈J−(1 − qj )

∏
j∈J+(1 + qj )

,

where I±, J± are some sets of natural numbers?
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This question is motivated by a number of applications to combinatorics and mathematical
physics.

• The character of any single Virasoro module occurring in (2,2r + 1) minimal series is fac-
torizable. The same character can be written in a so-called fermionic form and we obtain the
celebrated Rogers–Ramanujan–Gordon–Andrews identities, see [2].

• For any 1 < s < p′, the sums and differences of characters of (1, s) and (p − 1, s) modules
in (p,p′) minimal series, where p ∈ {3,4}, are factorizable. For the case of the sum we also
have a fermionic formula and therefore an identity of Rogers–Ramanujan–Gordon–Andrews
type, see [7].

• A sum of three Virasoro characters from (2,9) minimal series equals the product (q, q)∞/

(q3, q3)∞. It immediately implies that if (q, q)∞/(q3, q3)∞ = ∑
k akq

k and if ak and ak+3
are non-zero then they have the same sign. The famous Borwein conjecture is a finitization
of this fact: it asserts that if coefficients a

(N)
k and a

(N)
k+3 of the product

∏N
j=0(1 − q3j+1)(1 −

q3j+2) = ∑
k a

(N)
k qk are non-zero then they have the same sign, see [1].

• The number 1 can be written in several ways as an alternating sum of characters of Virasoro
modules from (2,2r + 1) minimal series. Each such equality gives a family of non-trivial
partition identities, see [8].

• Factorized form of graded characters of Virasoro modules is crucial for studying form factors
of integrable deformations of Conformal Field Theory, see [6].

• Writing a sum of graded characters of Virasoro modules in a product form leads to identities
involving sums of products of graded characters of Virasoro modules.

We present two large families of products which are equal to finite alternating sums of Vira-
soro characters. In particular, these families contain all the known examples of such phenomena.

We prove our formulae by an application of the triple Jacobi identity and of the quintuple
identity to the Rocha-Caridi formula for the characters of Virasoro modules.

In the case of the triple Jacobi identity we prove the following formula:

(q
B(a′−c)

2 , q
B(a′+c)

2 , qBa′ ;qBa′
)∞

(qn;qn)∞

= q
(p−p′)2−(cB)2

8Ba′
∑

0<r<p/b, r≡1 (mod 2),

0<s<p′/b′, ps≡bc (mod a′)

(−1)tr,s χ
(p,p′)
rb,sb′

(
qn

)
, (1.1)

where

tr,s = p′r/b′ − ps/b + c

2
.

Here p,p′ are two relatively prime positive integers, and a′, b, b′, c are positive integers such that
2b divides p, a′b′ divides p′, a′ > c and c is odd. The numbers B and n are given by B = bb′,
n = pp′

2a′bb′ . The right-hand side of our formula contains an alternating sum of n different Virasoro
characters from (p,p′) minimal series.

A few cases of such formula are known. The cases of n = 1,2 can be found in [5,7]. The case
of b = b′ = B = 1, a′ = 3n, n = c can be found in [8] (in this case the left-hand side clearly
equals to 1).
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If n is even (that is if p is divisible by 4), the signs in the formula can be written in a different
way. Namely, for the case of even n we also have:

(q
B(a′−c)

2 ,−q
B(a′+c)

2 ,−qBa′ ;−qBa′
)∞

(qn;qn)∞

= q
(p−p′)2−(cB)2

8Ba′
∑

0<r<p/b, r≡1 (mod 2),

0<s<p′/b′, ps≡bc (mod a′)

(−1)
tr,s (tr,s+1)

2 χ
(p,p′)
rb,sb′

(
qn

)
.

if a′ − c is divisible by 4, and

(−q
B(a′−c)

2 , q
B(a′+c)

2 ,−qBa′ ;−qBa′
)∞

(qn;qn)∞

= q
(p−p′)2−(cB)2

8Ba′
∑

0<r<p/b, r≡1 (mod 2),

0<s<p′/b′, ps≡bc (mod a′)

(−1)
tr,s (tr,s−1)

2 χ
(p,p′)
rb,sb′

(
qn

)
.

if a′ − c is not divisible by 4. Some cases of these formulae with n = 2 are contained in [5,7].
The above formulae can be used to obtain identities of Rogers–Ramanujan–Gordon–Andrews

type by equating the product side with any known expression for Virasoro characters in the
right-hand side. In particular, we expect that the known fermionic expressions for the Virasoro
characters appearing in our formula (see e.g. [3,4,11]) can be summed up to a fermionic form.
We do not discuss fermionic formulae in this paper.

Another set of identities is obtained by multiplying or dividing the product forms for different
cases of the above formula. Such identities involve sums of products of Virasoro characters, see
Remark 3.15.

We use our formulae to study signs of coefficients of products. Write the left-hand side of
(1.1) as a formal power series

∑∞
j=0 φjq

j . We conjecture that φj and φj+n always have the
same sign and prove it in several cases, see Theorem 3.5. The case a′ = 3, B = c = 1 and prime
n was proved in [1] in relation to the Borwein conjecture.

In some cases (e.g. when B = 1 and all odd prime divisors of n divide a′) for each j there
is only one term on the right-hand side of (1.1) which has a non-trivial coefficient of qj , and it
follows that φj and φj+n do have the same sign. In more complicated cases, one can hope to
make use of some fermionic expressions for Virasoro characters to perform the subtraction. We
use this idea to prove our conjecture for the case of prime n and odd B .

The formulae and results in the case of the quintuple identity are similar, see formulae (3.4)–
(3.7) and Theorem 3.12.

Our paper is structured as follows. We recall basic facts about Virasoro modules in Section 2.
Sections 3.1 and 3.2 contain statements of the main results in the cases of the triple and quintuple
products respectively. The proofs are collected in Section 4.

2. Minimal models

Let Vir be the Virasoro algebra with the standard C-basis {Ln}n∈Z and C, satisfying

[Lm,Ln] = (m − n)Lm+n + C
m

(
m2 − 1

)
δm+n,0, [C,Ln] = 0.
12
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Let (p,p′) be a pair of relatively prime integers greater than 1. There exists a family of irreducible

Vir-modules M
(p,p′)
r,s where 1 � r � p − 1, 1 � s � p′ − 1 on which C acts as the scalar

Cp,p′ = 1 − 6(p − p′)2

4pp′ .

The module M
(p,p′)
r,s is Q-graded with respect to the degree operator L0 and the corresponding

formal character χ
(p,p′)
r,s (q) := Tr(qL0) is given by the following bosonic formula, see [9]:

χ
(p,p′)
r,s (q) := qΔ

(p,p′)
r,s

(q)∞

(∑
j∈Z

qpp′j2+(p′r−ps)j −
∑
j∈Z

qpp′j2+(p′r+ps)j+rs

)
.

Here (q)∞ = ∏∞
j=1(1 − qj ) and the conformal dimension Δ

(p,p′)
r,s is given by

Δr,s = (p′r − sp)2 − (p′ − p)2

4pp′ .

It is convenient to write χ
(p,p′)
r,s (q) in the following form:

χ
(p,p′)
r,s (q) = q

− (p′−p)2

4pp′

(q)∞

(∑
j∈Z

q
(2pp′j+p′r−ps)2

4pp′ −
∑
j∈Z

q
(2pp′j+p′r+ps)2

4pp′
)

. (2.1)

From formula (2.1) one immediately observes that

χ
(p,p′)
r,s (q) = χ

(p,p′)
p−r,p′−s

(q). (2.2)

The normalized character χ̄
(p,p′)
r,s given by

χ̄
(p,p′)
r,s (q) := q−Δ

(p,p′)
r,s χ

(p,p′)
r,s (q) = 1 + o(1)

is a formal power series in q with non-negative coefficients. (In fact the only zero coefficient is

the coefficient of q in χ̄
(p,p′)
1,1 = χ̄

(p,p′)
p−1,p′−1.)

3. Main results

For integers a, b, we write a ⊥ b if a, b are relatively prime.
Let p,p′ be relatively prime integers greater than 1. Let a, a′, b, b′ be natural numbers and c

a non-negative integer such that a′ > c, ab divides p, a′b′ divides p′.
We call numbers b, b′ the scaling factors, numbers a, a′ the moduli and number c the common

residue. We obviously have ab ⊥ a′b′.
We define

B := bb′, n := pp′

aa′bb′ .

We use the notation (u1, . . . , uk;v)∞ := ∏∞
i=0

∏k
j=1(1 − ujv

i).
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3.1. Triple products

In this section we assume that c is odd and set

a = 2.

Then p′, c, a′, b′ are all odd, p/b is even.
We call a pair of integers (r, s) 2-contributing of the first type if

0 < r < p/b, 0 < s < p′/b′, p′r/b′ − ps/b + c

2aa′ ∈ Z.

We call a pair of integers (r, s) 2-contributing of the second type if

0 < r < p/b, 0 < s < p′/b′, p′r/b′ + ps/b − c

2aa′ ∈ Z.

We denote the set of all 2-contributing pairs of type j by A(2)
j , j = 1,2. We call pair of integers

(r, s) 2-contributing if (r, s) is either 2-contributing of the first type or 2-contributing of the
second type. We denote the set of all 2-contributing pairs by A(2).

Lemma 3.1. We have A(2)
1 ∩A(2)

2 = ∅.

If 0 < r < r + a < p/b, then (r, s) ∈A(2)
j if and only if (r + a, s) ∈ A(2)

3−j .

If 0 < s < s + a′ < p′/b′ and p is even then (r, s) ∈A(2)
j if and only if (r, s + a′) ∈ A(2)

j .

If 0 < s < s + a′ < p′/b′ and p is odd then (r, s) ∈A(2)
j if and only if (r, s + a′) ∈A(2)

3−j .

Theorem 3.2. We have the following identity of formal power series in q:

(q
B(a′−c)

2 , q
B(a′+c)

2 , qBa′ ;qBa′
)∞

(qn;qn)∞

= q
(p−p′)2−(cB)2

4Baa′
( ∑

(r,s)∈A(2)
1

χ
(p,p′)
rb,sb′

(
qn

) −
∑

(r,s)∈A(2)
2

χ
(p,p′)
rb,sb′

(
qn

))
. (3.1)

Theorem 3.2 is proved in Section 4.1.
The cases n = 1,2 of Theorem 3.2 can be found in [5], see also [7]. The case b = b′ = B = 1,

a′ = 3n, n = c of Theorem 3.2 can be found in [8].
We note that there are n summands on the left-hand side of (3.1), moreover, χ

(p,p′)
rb,sb′ is present

only if χ
(p,p′)
p−rb,p′−sb′ is not present, see Lemma 4.1. We also note that formula (3.1) remains the

same if c is changed to −c, the right-hand side for the obvious reason and the left-hand side
because of relation (2.2).

If n is even then there is a formula which differs from (3.1) only by the choice of signs.
For a 2-contributing pair (r, s) we define the integer tr,s by the formula

tr,s = (p′r/b′ − ps/b + c)/2.

The integer tr,s is even if (r, s) ∈ A(2)
1 and odd if (r, s) ∈A(2)

2 .

Theorem 3.3. Let n be even and let a′ ≡ c (mod 4). Then we have the following identity of formal
power series in q:
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(q
B(a′−c)

2 ,−q
B(a′+c)

2 ,−qBa′ ;−qBa′
)∞

(qn;qn)∞

= q
(p−p′)2−(cB)2

4Baa′
( ∑

(r,s)∈A(2)

(−1)
tr,s (tr,s+1)

2 χ
(p,p′)
rb,sb′

(
qn

))
. (3.2)

Let n be even and let a′ 	≡ c (mod 4). Then we have the following identity of formal power
series in q:

(−q
B(a′−c)

2 , q
B(a′+c)

2 ,−qBa′ ;−qBa′
)∞

(qn;qn)∞

= q
(p−p′)2−(cB)2

4Baa′
( ∑

(r,s)∈A(2)

(−1)
tr,s (tr,s−1)

2 χ
(p,p′)
rb,sb′

(
qn

))
. (3.3)

Theorem 3.3 is proved in Section 4.2.
Some cases with n = 2 of Theorem 3.3 can be found in [5], see also [7].
We apply Theorem 3.2 to study the signs of the coefficients of products.
Fix natural numbers a′,B, c,n such that a′ > c, a′c ⊥ 2. Define formal power series φ(q) by

the formula:

φ(q) = φa′,B,c,n(q) := (q
B(a′−c)

2 , q
B(a′+c)

2 , qBa′ ;qBa′
)∞

(qn;qn)∞
.

We note that φka′,B,kc,n(q) = φa′,kB,c,n(q) and φa′,kB,c,kn(q) = φa′,B,c,n(q
k). Therefore with-

out loss of generality we assume a′ ⊥ c and B ⊥ n.
We write

φ(q) =
∞∑

j=0

φjq
j .

Conjecture 3.4. We have φjφ
(i)
j+n � 0 for all j ∈ Z�0.

If n = 1 then all factors in the numerator of φ(q) cancel with factors in the denominator and
therefore all coefficients φj are clearly positive.

By Theorem 3.2, we can always write φ(q) as a sum of Virasoro characters (usually in several
ways). This fact can be used to prove several cases of Conjecture 3.4.

Theorem 3.5. Conjecture 3.4 holds in each of the following cases:

(1) all odd prime divisors of n divide a′;
(2) n is a prime number, B is odd.

Theorem 3.5 is proved in Section 4.3. Theorem 3.5 in the case of a′ = 3, c = 1, B = 1 and
prime n is proved in [1].

Remark 3.6. It follows immediately from Theorem 3.2 that coefficient φj is zero unless
there exists a 2-contributing pair (r, s) such that ((p′rb − psb′)2 − (cB)2)/(4Baa′) − j is
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divisible by n. Equivalently, coefficient φj is zero unless there exists an integer m such that
mB(a′m + c)/2 − j is divisible by n, see Section 4.1.

Remark 3.7. The results similar to Theorem 3.5 also hold for the products appearing in the
left-hand sides of formulae (3.2) and (3.3).

3.2. Quintuple products

We set

a = 3.

Then p′, a′, b′ are not divisible by 3, p is divisible by 3.
We call a pair of integers (r, s) 3-contributing of the first type if

0 < r < p/b, 0 < s < p′/b′, p′r/b′ − ps/b − a′ + 3c

2aa′ ∈ Z.

We call a pair of integers (r, s) 3-contributing of the second type

0 < r < p/b, 0 < s < p′/b′, p′r/b′ + ps/b + a′ − 3c

2aa′ ∈ Z.

We denote the set of all 3-contributing pairs of type j by A(3)
j , j = 1,2. We call pair of integers

(r, s) 3-contributing if (r, s) is either 3-contributing of the first type or 3-contributing of the
second type. We denote the set of all 3-contributing pairs by A(3).

Lemma 3.8. We have A(3)
1 ∩A(3)

2 = ∅.

If 0 < r < r + 2a < p/b, then (r, s) ∈ A(3)
j if and only if (r + 2a, s) ∈A(3)

j .

If 0 < s < s + 2a′ < p′/b′, then (r, s) ∈A(3)
j if and only if (r, s + 2a′) ∈A(3)

j .

Theorem 3.9. We have the identity of formal power series in q:

(qBc, qB(2a′−c), q2Ba′ ;q2Ba′
)∞(q2B(a′+c), q2B(a′−c);q4Ba′

)∞
(qn;qn)∞

= q
(p−p′)2−(a′−3c)2B2

4Baa′
( ∑

(r,s)∈A(3)
1

χ
(p,p′)
rb,sb′

(
qn

) −
∑

(r,s)∈A(3)
2

χ
(p,p′)
rb,sb′

(
qn

))
. (3.4)

Theorem 3.9 is proved in Section 4.4. The cases n = 1,2 of Theorem 3.9 can be found in [5],
see also [7].

We note that there are n summands on the left-hand side of formula (3.4), moreover, χ
(p,p′)
rb,sb′

is present only if χ
(p,p′)
p−rb,p′−sb′ is not present, see Lemma 4.4.

If n is even then we have formulae which differ from (3.4) only by the choice of signs.
For a 3-contributing pair (r, s) define the integer fr,s as follows. If (r, s) is a 3-contributing

pair of the first kind we set

fr,s = p′r/b′ − ps − a′ + 3c

′ .

2aa
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If (r, s) is a 3-contributing pair of the second kind we set

fr,s = p′r/b′ + ps − a′ + 3c

2aa′ .

Theorem 3.10. Let p′/b′ be even or let p/b be even and c odd. We have the identity of formal
power series in q:

(−qBc,−qB(2a′−c), q2Ba′ ;q2Ba′
)∞(q2B(a′+c), q2B(a′−c);q4Ba′

)∞
(qn;qn)∞

= q
(p−p′)2−(a′−3c)2B2

4Baa′
( ∑

(r,s)∈A(3)
1

(−1)fr,s χ
(p,p′)
rb,sb′

(
qn

) −
∑

(r,s)∈A(3)
2

(−1)fr,s χ
(p,p′)
rb,sb′

(
qn

))
.

(3.5)

Let p′/b′ be divisible by 4 or let p/b and c be divisible by 4. We have the identity of formal
power series in q:

(qBc,−qB(2a′−c),−q2Ba′ ;−q2Ba′
)∞(−q2B(a′+c),−q2B(a′−c);q4Ba′

)∞
(qn;qn)∞

= q
(p−p′)2−(a′−3c)2B2

4Baa′
( ∑

(r,s)∈A(3)
1

(−1)
fr,s (fr,s−1)

2 χ
(p,p′)
rb,sb′

(
qn

)

−
∑

(r,s)∈A(3)
2

(−1)
fr,s (fr,s−1)

2 χ
(p,p′)
rb,sb′

(
qn

))
. (3.6)

Let p′/b′ be divisible by 4 or let p/b and c + 2 be divisible by 4. We have the identity of
formal power series in q:

(−qBc, qB(2a′−c),−q2Ba′ ;−q2Ba′
)∞(−q2B(a′+c),−q2B(a′−c);q4Ba′

)∞
(qn;qn)∞

= q
(p−p′)2−(a′−3c)2B2

4Baa′
( ∑

(r,s)∈A(3)
1

(−1)
fr,s (fr,s+1)

2 χ
(p,p′)
rb,sb′

(
qn

)

−
∑

(r,s)∈A(3)
2

(−1)
fr,s (fr,s+1)

2 χ
(p,p′)
rb,sb′

(
qn

))
. (3.7)

Theorem 3.10 is proved in Section 4.5.
We apply Theorem 3.9 to study the signs of the coefficients of products.
Fix natural numbers a′,B, c,n such that a′ > c, a′ ⊥ 3. Define the formal power series ψ(q)

by the formula:

ψ(q) = ψa′,B,c,n(q) := (qBc, qB(2a′−c), q2Ba′ ;q2Ba′
)∞(q2B(a′+c), q2B(a′−c);q4Ba′

)∞
(qn;qn)∞

.

We note that ψka′,B,kc,n(q) = ψa′,kB,c,n(q) and ψa′,kB,c,kn(q) = ψa′,B,c,n(q
k). Therefore with-

out loss of generality we assume a′ ⊥ c and B ⊥ n.
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We write

ψ(q) =
∞∑

j=0

ψjq
j .

Conjecture 3.11. We have ψjψj+n � 0 for all j ∈ Z�0.

If n = 1 then all factors in the numerator of ψ(q) cancel with factors in the denominator and
therefore all coefficients ψj are clearly positive. Thus Conjecture 3.4 is obviously true when
n = 1.

Note that by Theorem 3.2, we can always write ψ(q) as a sum of Virasoro characters (usually
in several ways). This fact can be used to prove some cases of Conjecture 3.11.

Theorem 3.12. Conjecture 3.11 is true if all prime divisors of n different from 3 divide a′.

Theorem 3.12 is proved in Section 4.6.

Remark 3.13. The results similar to Theorem 3.12 also hold for the products appearing in the
left-hand sides of formulae (3.5)–(3.7).

Remark 3.14. It follows immediately from Theorem 3.9 that coefficient ψj is zero unless there
exists a 3-contributing pair (r, s) such that ((p′rb − psb′)2 − (a − 3c)2B2)/(4Baa′) − j is
divisible by n. Equivalently, coefficient ψj is zero unless there exists an integer m such that
mB(3a′m + a′ − 3c) − j is divisible by n, see Section 4.4.

Remark 3.15. The products appearing in the right-hand sides of our formulae satisfy some ob-
vious relations. For example for odd a′ and c, a′ > c, we have

φa′,1,c,1(q)

(a′−1)/2∏
j=1, j 	=(c+1)/2

φa′,1,2j−1,a′(q) = 1.

Theorems 3.2 and 3.9 can be used to replace φa′,B,c,n and ψa′,B,c,n in this and similar formulae
via alternating sums of Virasoro characters. That leads to identities which involve alternating
sums of products of Virasoro characters.

4. Proofs

4.1. Proof of Theorem 3.2

The Jacobi triple product identity (see for example (2.2.10) in [2]) reads:
(
v,u,u−1v;v)

∞ =
∑
j∈Z

(−1)juj vj (j−1)/2.

Substituting

v = qBa′
, u = qB(a′+c)/2, (4.1)
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and changing the summation index j to −j we obtain the following formula for the right-hand
side of (3.1):

(qB(a′−c)/2, qB(a′+c)/2, qBa′ ;qBa′
)∞

(qn;qn)∞
=

∑
j∈Z

(−1)j qjB(a′j+c)/2

(qn;qn)∞
.

Substituting further j = 2nk + m, where k ∈ Z, m ∈ {0, . . . ,2n − 1}, we obtain:

∑
j∈Z

(−1)j qjB(a′j+c)/2

(qn;qn)∞
=

2n−1∑
m=0

(−1)mqmB(a′m+c)/2
∑
k∈Z

qnkB(2a′nk+2a′m+c)

(qn;qn)∞
. (4.2)

After substituting Rocha-Caridi formula (2.1) for the Virasoro characters in the left-hand side
of formula (3.1), we obtain n positive and n negative terms of the form qxj

∑
k∈Z

qnk(pp′k+yj )/

(qn;qn)∞ with some xj , yj . We claim that after a linear change of the summation index these
terms match the 2n terms in the right-hand side of (4.2).

Lemma 4.1. The pair (r, s) is 2-contributing if and only if 0 < r < p/b, 0 < s < p′/b′, r is odd,
ps ≡ bc (mod a′).

There are exactly n 2-contributing pairs.
If (r, s) is a 2-contributing pair then (p/b − r,p′/b′ − s) is not a 2-contributing pair.
If (r, s) is a 2-contributing pair then both (p′r/b′ − ps/b + c) and (p′r/b′ + ps/b − c) are

divisible by 2a′.

Proof. If (r, s) is a 2-contributing pair then we clearly have that r is odd and ps/b ≡ c (mod a′).
If r is odd and ps/b ≡ c (mod a′), then clearly (p′r/b′ −pr/b + c)/(2a′) and (p′r/b′ +pr/b −
c)/(2a′) are integers. The sum of these two integers equals to p′r/(a′b′) which is odd. Therefore
exactly one of the numbers (p′r/b′ − pr/b + c)/(2aa′) and (p′r/b′ + pr/b − c)/(2aa′) is an
integer and (r, s) is a 2-contributing pair.

Note that p and a′ are relatively prime and therefore p(ka′ + 1), p(ka′ + 2), . . . ,
p((k+1)a′ −1) are all different and non-zero modulo a′. Therefore exactly one of these numbers
has the same residue as bc modulo a′. It follows that we have p′/(a′b′) choices for s and simi-
larly we have p/(ab) independent choices for r . Thus we have pp′/(aa′B) = n 2-contributing
pairs.

If (r, s) is a 2-contributing pair then ps/b ≡ c (mod a′) and therefore p(p′/b′ − s)/b ≡
−c (mod a′). Since a′ is odd, c and −c have different residues and the pair (p/b − r,p′/b′ − s)

is not 2-contributing.
The numbers p′r/b′ ± ps/b ± c are even integers for all choices of pluses and minuses. Also

ps/b − c and p′r/b′ are both divisible by a′. Since a′ is odd, the last statement of the lemma
follows. �

For a 2-contributing pair (r, s), define integers mr,s and m̄r,s as follows. Set xr,s = 1 if
p′r/b′ − ps/b + c > 0 and xr,s = 0 if p′r/b′ − ps/b − c � 0. Then define

mr,s = 2nxr,s − (p′r/b′ − ps/b + c)/(2a′),
m̄r,s = (p′r/b′ + ps/b − c)/(2a′). (4.3)

We clearly have 0 � mr,s � 2n − 1, 0 � m̄r,s � 2n − 1.
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Lemma 4.2. The 2n numbers {mr,s, m̄r,s} are all distinct.

Proof. If mr1,s1 = mr2,s2 then

(p′r1/b
′ − ps1/b) − (p′r2/b

′ − ps2/b) = p′(r1 − r2)/b
′ − p(s1 − s2)/b

is divisible by 4a′n = 2pp′/B . The divisibility by p/b gives r1 = r2 and the divisibility by p′/b′
gives s1 = s2.

If m̄r1,s1 = m̄r2,s2 then

(p′r1/b
′ + ps1/b) − (p′r2/b

′ + ps2/b) = p′(r1 − r2)/b
′ + p(s1 − s2)/b

is zero and hence it is divisible by 2pp′/B . Therefore r1 = r2 and s1 = s2.
If mr1,s1 = m̄r2,s2 then

(p′r1/b
′ − ps1/b) + (p′r2/b

′ + ps2/b) = p′(r1 + r2)/b
′ − p(s1 − s2)/b

is divisible by 2pp′/B . The divisibility by p/b and by p′/b′ implies s1 = s2 and r1 + r2 = p/b.
It leads to a conclusion that 2pp′/B divides pp′/B which is a contradiction. �
Lemma 4.3. We have

(−1)mr,s = (−1)(p
′r/b′−ps/b+c)/2, m̄r,s = −(−1)(p

′r/b′−ps/b+c)/2.

In particular

(−1)mr,s = −(−1)m̄r,s = 1 if (r, s) ∈A(2)
1 ,

−(−1)mr,s = (−1)m̄r,s = 1 if (r, s) ∈A(2)
2 .

Proof. The first equation follows from the definition since a′ is odd.
Since p/b is even and c is odd, we have

(−1)m̄r,s = (−1)(p
′r/b′+ps/b−c)/2 = (−1)(p

′r/b′−ps/b+c)/2+(ps/b−c)

= −(−1)(p
′r/b′−ps/b+c)/2.

The rest of the lemma is obvious. �
Finally, for a 2-contributing pair (r, s) we have

(−1)
p′r/b′−ps/b+c

2 q
(p−p′)2−(cB)2

8Ba′ q
−n

(p−p′)2
4pp′ ∑

k∈Z

q
n

4pp′ (2pp′k+p′rb−psb′)2

= (−1)mr,s
∑
k∈Z

q
n

4pp′ ((2pp′(−k−xr,s )+2pp′xr,s−2a′Bmr,s−cB)2−(cB)2)

= (−1)mr,s qmr,sB(a′mr,s+c)/2
∑
k∈Z

qnkB(2a′nk+2a′mr,s+c).

Similarly:

−(−1)
p′r/b′−ps/b+c

2 q
(p−p′)2−(cB)2

8Ba′ q
−n

(p−p′)2
4pp′ ∑

k∈Z

q
n

4pp′ (2pp′k+p′rb+psb′)2

= (−1)m̄r,s qm̄r,sB(a′m̄r,s+c)/2
∑
k∈Z

qnkB(2a′nk+2a′m̄r,s+c).

Theorem 3.2 is proved.
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4.2. Proof of Theorem 3.3

The proof of Theorem 3.3 is similar to the proof of Theorem 3.2. The only difference is in
signs.

To prove formula (3.2), we change the substitution (4.1) to

v = −qBa′
, u = −qB(a′+c)/2,

and observe that since n is even, a′ is odd,

mr,s(mr,s − 1)

2
− m̄r,s(m̄r,s − 1)

2
= (mr,s − m̄r,s)(mr,s + m̄r,s − 1)

2
has the same parity as

(p′r/b′)(ps/b − c − a′)
2

.

This number is odd because a′ + c is even but not divisible by 4, p/b is divisible by 4 and p′r/b
is odd. This observation replaces Lemma 4.3.

To prove formula (3.3), we change the substitution (4.1) to

v = −qBa′
, u = qB(a′+c)/2,

and observe that since n is even, a′ is odd,

mr,s(mr,s + 1)

2
− m̄r,s(m̄r,s + 1)

2
= (mr,s − m̄r,s)(mr,s + m̄r,s + 1)

2
has the same parity as

(p′r/b′)(ps/b − c + a′)
2

.

This number is odd because a′ − c is even but not divisible by 4, p/b is divisible by 4 and p′r/b
is odd. This observation replaces Lemma 4.3.

4.3. Proof of Theorem 3.5

Let all odd prime divisors of n divide a′.
Consider 2n numbers {Bm(a′m + c)/2, m = 0,1, . . . ,2n − 1}. We claim that for each j ∈

{0, . . . , n − 1}, exactly two of these 2n numbers have residue j modulo n.
Consider the following equation for x ∈ {0,1, . . . ,2n − 1}:

Bm0(a
′m0 + c)

2
≡ Bx(a′x + c)

2
(mod n). (4.4)

To establish our claim, it is sufficient to show that for any m0 ∈ {0,1, . . . ,2n − 1}, Eq. (4.4) has
exactly two solutions.

Since B ⊥ n, we cancel B on both sides and obtain that (x−m0)(a
′(x+m0)+c)/2 is divisible

by n. Write n = 2dk, where k is odd. Then from our assumptions we have k ⊥ (a′(x + m0) + c)

and it follows that k divides x − m0. Therefore x has the form x = m0 + kl for some integer l

satisfying −m0/k � l < (2n − m0)/k.
If x −m0 is even then (a′(x +m0)+ c) is odd and it follows that x −m0 is divisible by 2n and

therefore x = m0. If x − m0 is odd then (a′(x + m0) + c) is divisible by 2d+1. But since a′k is
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odd, the 2d+1 numbers {a′((m0 + kl) + m0) + c, −m0/k � l < (2n − m0)/k} all have different
residues modulo 2d+1. Therefore exactly one of them is divisible by 2d+1.

Our claim is proved.
If d > 0 then B is odd and we choose p = 2d+1. In such a case we have b = 1, b′ = B ,

p′ = ka′B . If d = 0 and B = 2d̃ k̃ with odd k̃ then we choose p = 2d̃+1. In such a case we have
b = 2d̃ , b′ = k̃, p′ = k̃a′n.

Use Theorem 3.2 to write φ(q) as a sum of n Virasoro characters. It follows that for each
j ∈ Z�0 we have exactly one term in the left-hand side of (3.1) which contains qj and moreover,
this term is the same for j and j +n. Indeed, each Virasoro character corresponds to two terms in
(4.2) and as we have shown, exactly two terms in (4.2) contribute to qj with a given j modulo n.

The first statement of the theorem is proved.
Let now n be an odd prime number and let B be odd. (Cf. [1, Proof of Theorem 1].)
Choose p = 2. We have p′ = a′nB , b = 1, b′ = B .
Consider Eq. (4.4). We claim that there are at most 4 solutions. Indeed (x − m0)(a

′x +
a′m0 + c) is divisible by n. Since n is prime then either x − m0 or a′x + a′m0 + c is divisi-
ble by n. In each case we obtain at most two values of x.

Therefore for each j ∈ Z�0 we have at most two terms in the left-hand side of (3.1) which
contain qj . But the difference of two (2,p′) Virasoro characters is known to have all coefficients
of the same sign. It follows for example from the fermionic representation of (2,p′) characters
used in the Rogers–Ramanujan–Gordon–Andrews identities (see (7.3.7) in [2]).

4.4. Proof of Theorem 3.9

The proof of Theorem 3.9 is similar to that of Theorem 3.2. The main difference is the use of
the quintuple product identity as opposed to the triple product identity.

The quintuple product identity (see [10]) reads:(
v,u,u−1v;v)

∞
(
u2v,u−2v;v2)

∞ =
∑
j∈Z

(
u−3j − u3j+1)vj (3j+1)/2.

Substituting

v = q2Ba′
, u = qBc, (4.5)

we obtain the following formula for the right-hand side of (3.4):

(qBc, qB(2a′−c), q2Ba′ ;q2Ba′
)∞(q2B(a′+c), q2B(a′−c);q4Ba′

)∞
(qn;qn)∞

=
∑
j∈Z

qjB(3a′j+a′−3c) − qjB(3a′j+a′+3c)+Bc

(qn;qn)∞
.

Substituting further j = nk + m, where k ∈ Z and m ∈ {0,1, . . . , n − 1}, we obtain:

∑
j∈Z

qjB(3a′j+a′−3c) − qjB(3a′j+a′+3c)+Bc

(qn;qn)∞

=
n−1∑(

qmB(3a′m+a′−3c)
∑ qnkB(3a′nk+6a′m+a′−3c)

(qn;qn)∞

m=0 k∈Z
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− qmB(3a′m+a′+3c)+Bc
∑
k∈Z

qnkB(3a′nk+6a′m+a′+3c)

(qn;qn)∞

)
. (4.6)

After substituting the Rocha-Caridi formula (2.1) for the Virasoro characters in the
left-hand side of formula (3.4), we obtain n positive and n negative terms of the form
qxj

∑
k∈Z

qnk(pp′k+yj )/(qn;qn)∞ for some xj , yj . We claim that after a linear change of the
summation index these terms match the n positive and n negative terms in the right-hand side of
(4.6).

Lemma 4.4. There are exactly n 3-contributing pairs.
If (r, s) is a 3-contributing pair then (p/b − r,p′/b′ − s) is not a 3-contributing pair.
The pair (r, s) is a 3-contributing pair of type 1 if and only if p′r/b′ + ps/b − a′ − 3c is

divisible by 6a′.
The pair (r, s) is a 3-contributing pair of type 2 if and only if p′r/b′ − ps/b + a′ + 3c is

divisible by 6a′.

Proof. First, consider the case when p′/(a′b′) is odd.
Then we claim that for any non-negative integers k1, k2 such that 3k1 < p/b and a′k2 <

p′/b′ there is exactly one 3-contributing pair (r, s) such that 3k1 � r < 3k1 + 3 and a′k2 � s <

a′k2 + a′.
Indeed there is exactly one pair (r1, s1) such that 3k1 � r1 < 3k1 + 3, a′k2 � s1 < a′k2 + a′

and p′r1/b
′ − ps1/b − a′ + 3c is divisible by 3a′. The numbers r1, s1 are unique solutions (in

the specified range) of equations p′r1/b
′ ≡ a′ (mod 3) and ps1/b ≡ 3c (mod a′).

Similarly there is exactly one pair (r2, s2) such that 3k1 � r2 < 3k1 + 3, a′k2 � s2 < a′k2 + a′
and p′r2/b

′ + ps2/b + a′ − 3c is divisible by 3a′.
We have s1 = s2. Since a′ ⊥ 3 we also have, r1 	= r2, r1 	= 3k1, r2 	= 3k1 and therefore

|r1 − r2| = 1. Recall that p′/(a′b′) is odd. It follows that exactly one of the two numbers
(p′r2/b

′ − ps2/b − a′ + 3c)/(3a′) and (p′r1/b
′ + ps1/b + a′ − 3c)/(3a′) is even and we have

exactly one 3-contributing pair.
Now, let p′/(a′b′) be even. Then we repeat the same argument. However, in this case, the

numbers (p′r2/b
′ − ps2/b − a′ + 3c)/(3a′) and (p′r1/b

′ + ps1/b + a′ − 3c)/(3a′) have the
same parity. But this parity is changed when k2 is replaced by k2 + 1. Therefore for half of the
possible values of k2 we have two 3-contributing pairs and there are no contributing pairs for the
other half.

Let (r, s) be a 3-contributing pair of the first type, that is p′r/b′ − ps/b − a′ + 3c is divisible
by 6a′. Then p′r/b′ −ps/b+a′ −3c and p′r1/b

′ +ps1/b−a′ +3c are not divisible by 6a′. The
number 2pp′/B is divisible by 6a′. It follows that (p/b − r,p′/b′ − s) is not a 3-contributing
pair.

The case of a 3-contributing pair of the second type is done similarly.
If (r, s) is a 3-contributing pair of the first type then 2p′r/b′ −2a′ is divisible by 3. In addition

it is clearly divisible by 2a′ and therefore it is divisible by 6a′.
Similarly, if (r, s) is a 3-contributing pair of the second type then 2p′r/b′ + 2a′ is divisible

by 6a′.
The last two statements of the lemma follow. �
If (r, s) is a 3-contributing pair of type 1, we define integers xr,s , x̄r,s ,mr,s , m̄r,s by the equality

p′r/b′ − ps/b − a′ + 3c

′ = nxr,s + mr,s,

6a
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p′r/b′ + ps/b − a′ − 3c

6a′ = nx̄r,s + m̄r,s ,

and the requirement 0 � mr,s < n, 0 � m̄r,s < n.
If (r, s) is a 3-contributing pair of type 2, we define integers xr,s , x̄r,s ,mr,s, m̄r,s by the equality

−p′r/b′ + ps/b + a′ − 3c

6a′ = nxr,s + mr,s,

−p′r/b′ − ps/b + a′ + 3c

6a′ = nx̄r,s + m̄r,s ,

and the requirement 0 � mr,s < n, 0 � m̄r,s < n.

Lemma 4.5. The n numbers {mr,s} are all distinct. The n numbers {m̄r,s} are also all distinct.

Proof. If mr1,s1 = mr2,s2 then

(p′r1/b
′ − ps1/b) − (p′r2/b

′ − ps2/b) = p′(r1 − r2)/b
′ − p(s1 − s2)/b

is divisible by 2pp′/B or

(p′r1/b
′ − ps1/b) + (p′r2/b

′ + ps2/b) = p′(r1 + r2)/b
′ − p(s1 − s2)/b

is divisible by 2pp′/B .
In the former case the divisibility by p/b gives r1 = r2 and the divisibility by p′/b′ gives

s1 = s2. In the later case we similarly obtain s1 = s2 and r1 + r2 = p/b. It leads to a conclusion
that 2pp′/B divides pp′/B which is a contradiction.

The case m̄r1,s1 = m̄r2,s2 is done similarly. �
Finally, for a 3-contributing pair (r, s) of type 1 we have

q
(p−p′)2−B2(a′−3c)2

12Ba′ q
−n

(p−p′)2
4pp′ ∑

k∈Z

q
n

4pp′ (2pp′k+p′rb−psb′)2

=
∑
k∈Z

q
n

4pp′ ((2pp′(k−x̄r,s )+2pp′xr,s+6a′Bmr,s+(a′−3c)B)2−B2(a′−3c)2)

= qmr,sB(3a′mr,s+a′−3c)
∑
k∈Z

qnkB(3a′nk+6a′mr,s+a′−3c).

Similarly:

q
(p−p′)2−B2(a′−3c)2

12Ba′ q
−n

(p−p′)2
4pp′ ∑

k∈Z

q
n

4pp′ (2pp′k+p′rb+psb′)2

=
∑
k∈Z

q
n

4pp′ ((2pp′(k−xr,s )+2pp′xr,s+6a′Bm̄r,s+(a′+3c)B)2−B2(a′−3c)2)

= qm̄r,sB(3a′m̄r,s+a′+3c)+Bc
∑
k∈Z

qnkB(3a′nk+6a′m̄r,s+a′+3c).

The computation for a 3-contributing pair of type 2 is similar. Theorem 3.9 is proved.
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4.5. Proof of Theorem 3.10

The proof of Theorem 3.10 is similar to the proof of Theorem 3.9. The only difference is in
signs.

To prove formula (3.5), we change the substitution (4.5) to

v = q2Ba′
, u = −qBc,

and observe that mr,s + m̄r,s has the same parity as (p′r/b′ − a′)/a′. This number is clearly odd
if p′/(a′b′) is even. If p′/(a′b′) is odd and n is even then p/b is even, a′ is odd and if c is also
odd then r is even and therefore (p′r/b′ − a′)/a′ is odd.

To prove formula (3.6), we change the substitution (4.5) to

v = −q2Ba′
, u = qBc,

and observe that

mr,s(3mr,s + 1)

2
− m̄r,s(3m̄r,s + 1)

2
= (mr,s − m̄r,s)(3mr,s + 3m̄r,s + 1)

2

has the same parity as

1

2

p′r
a′b′

(ps/b − 3c)

a′ .

This number is even. Indeed, n is divisible by 4, hence if p′/(a′b′) is even then p′/(a′b′) is
divisible by 4, and if p′/(a′b′) is odd then p/b is divisible by 4.

To prove formula (3.7), we change the substitution (4.5) to

v = −q2Ba′
, u = −qBc,

and observe that

mr,s(3mr,s − 5)

2
− m̄r,s(3m̄r,s − 5)

2
= (mr,s − m̄r,s)(3mr,s + 3m̄r,s − 5)

2

has the same parity as

1

2

(3p′r − 2a′b′)
a′b′

(ps/b − 3c)

a′ .

This number is odd. Indeed if p/b is divisible by 4 and c is even then p′r is odd, and if p′/(a′b′)
is divisible by 4 then (ps/b − 3c)/a′ is odd.

4.6. Proof of Theorem 3.12

The proof of Theorem 3.12 is similar to that of Theorem 3.5.
Namely, we write n = 3dk where k ⊥ 3 and show that the n numbers Bm(3a′m + a′ − 3c),

m = 0, . . . , n − 1, are all different modulo n. It follows that the n terms of the left-hand side of
(3.4) all contribute to different coefficients and therefore there is no further subtraction.
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