The shortest distance among points in general position

Géza Tóth ${ }^{1}$
Courant Institute, New York University, New York, NY 10003, USA

Submitted 1 August 1995; accepted 8 December 1995

Abstract

We prove that among n points in the plane in general position, the shortest distance can occur at most $(2+3 / 7) n$ times. We also give a construction where the shortest distance occurs more than $(2+5 / 16) n-10\lfloor\sqrt{n}\rfloor$ times. © 1997 Elsevier Science B.V.

1. Introduction

The following well known result of Harborth [5] settles a conjecture of Reutter [7] (see also [6]).
Theorem 1 (Harborth). Let $f(n)$ denote the maximum number of times the minimum distance can occur among n points in the plane. Then

$$
f(n)=\lfloor 3 n-\sqrt{12 n-3}\rfloor .
$$

The extremal configuration for Theorem 1 is a hexagonal piece of a regular triangular lattice.
Definition. A set of n points is said to be in general position if no three of them are on the same line.
Peter Brass [3] raised the following question: at most how many times can the minimum distance occur among n points in general position.

Theorem 2. Let $g(n)$ denote the maximum number of times the minimum distance can occur among n points in general position in the plane. Then

$$
\left(2+\frac{5}{16}\right) n-10\lfloor\sqrt{n}\rfloor<g(n) \leqslant\left(2+\frac{3}{7}\right) n
$$

[^0]
2. Proof of Theorem 2

1. First we prove that $g(n) \leqslant(2+3 / 7) n$.

Let P be a set of n points in the plane in general position. Suppose without loss of generality that the smallest distance occurring among these points is 1 . Consider the graph $G(P)$ whose vertices are the points of P and two vertices are connected iff their distance is 1 .

For any $O \in P$ let $d(O)$ denote the degree of O in $G(P)$. Clearly, $d(O) \leqslant 5$. We prove that any point of degree 5 has a neighbor of degree at most 4 , except of one special case.

In the sequel, let O be fixed, $d(O)=5$, let $A_{1}, A_{2}, \ldots, A_{5}$ denote its neighbors listed in clockwise order.

We will have two cases according to the subgraph G_{O} of $G(P)$ induced by O and its five neighbors.
Case 1. At least one of the neighbors of O, say, A_{5}, has degree 1 in G_{O}.
Case 2. All five neighbors of O have degree at least two in G_{O}.
Since the points are in general position, $G(P)$ cannot have the graph shown in Fig. 1(0) as a subgraph. Thus, in Case 2, G_{O} is isomorphic to the graph shown in Fig. 1(2).

Case 1. We prove by contradiction that A_{5} has degree at most four.
Suppose $d\left(A_{5}\right)=5$. The neighbors of A_{5} are O, B_{1}, B_{2}, B_{3} and B_{4}. Since 1 is the smallest distance, $\angle B_{i} A_{5} B_{i+1} \geqslant \pi / 3, \angle A_{i} A_{5} A_{i+1} \geqslant \pi / 3(i=1,2,3)$, so $\angle A_{1} O A_{4} \geqslant \pi$. But $\left|B_{1} A_{4}\right| \geqslant 1$, $\left|B_{4} A_{1}\right| \geqslant 1$, so $\angle A_{4} O A_{1} \geqslant \angle B_{1} A_{5} B_{4} \geqslant \pi$.

Hence, $\angle A_{1} O A_{4}=\pi$, a contradiction, because then A_{1}, O and A_{4} are on the same line (Fig. 2).
Case 2 has two subcases.
Case 2.a. G_{O} is the graph shown in Fig. 1(2), A_{4} and A_{5} have only one common neighbor, O. See Fig. 3(a).

Forbidden subgraph

(0)

Case 1

(1)
(Case 2

(2)

Fig. 1.

Fig. 2.

Fig. 3.

Suppose that all neighbors of O have degree five.
Let B_{1} be the neighbor of A_{1} preceding A_{2} in the clockwise order; let B_{2} and B_{3} be neighbors of A_{2}; let B_{4} be the neighbor of A_{3} following A_{2} in the clockwise order. Extend the triangle $A_{3} A_{4} O$ to a rhombus by adding the point B_{5}. Let B_{6} be the neighbor of A_{4} preceding A_{5} in clockwise order, B_{7} be the neighbor of A_{5} following A_{4} in the clockwise order. Finally, extend the triangle $A_{5} A_{1} O$ to a rhombus by adding the point B_{8}.
$\left|B_{1} B_{2}\right|, \quad\left|B_{3} B_{4}\right|$ and $\left|B_{6} B_{7}\right| \geqslant 1$, so $\angle B_{1} A_{1} A_{2}+\angle A_{1} A_{2} B_{2}, \angle B_{3} A_{2} A_{3}+\angle A_{2} A_{3} B_{4}$ and $\angle B_{6} A_{4} A_{5}+\angle A_{4} A_{5} B_{7} \geqslant \pi$. By easy calculations we get

$$
\angle B_{8} A_{1} B_{1}+\angle B_{2} A_{2} B_{3}+\angle B_{4} A_{3} B_{5}+\angle B_{5} A_{4} B_{6}+\angle B_{7} A_{5} B_{8} \leqslant 3 \pi
$$

But if all A_{i} had degree 5 , then $\angle B_{8} A_{1} B_{1}, \angle B_{4} A_{3} B_{5}, \angle B_{5} A_{4} B_{6}$ and $\angle B_{7} A_{5} B_{8} \geqslant$ $2 \pi / 3, \angle B_{2} A_{2} B_{3} \geqslant \pi / 3$, thus,

$$
\angle B_{8} A_{1} B_{1}+\angle B_{2} A_{2} B_{3}+\angle B_{4} A_{3} B_{5}+\angle B_{5} A_{4} B_{6}+\angle B_{7} A_{5} B_{8} \geqslant 3 \pi
$$

Consequently,

$$
\angle B_{8} A_{1} B_{1}+\angle B_{2} A_{2} B_{3}+\angle B_{4} A_{3} B_{5}+\angle B_{5} A_{4} B_{6}+\angle B_{7} A_{5} B_{8}=3 \pi
$$

$\angle B_{8} A_{1} B_{1}, \angle B_{4} A_{3} B_{5}, \angle B_{5} A_{4} B_{6}$ and $\angle B_{7} A_{5} B_{8}=2 \pi / 3, \angle B_{2} A_{2} B_{3}=\pi / 3, \angle B_{1} A_{1} A_{2}+$ $\angle A_{1} A_{2} B_{2}, \angle B_{3} A_{2} A_{3}+\angle A_{2} A_{3} B_{4}$ and $\angle B_{6} A_{4} A_{5}+\angle A_{4} A_{5} B_{7}=\pi$, but then $\left|B_{1} B_{2}\right|,\left|B_{3} B_{4}\right|$ and $\left|B_{6} B_{7}\right|=1$.

It follows, that $B_{2} A_{2}\left\|O A_{4}, A_{2} O\right\| A_{4} B_{6}$ and since all these four segments are of length $1, B_{2}, O$ and B_{6} are on the same line, a contradiction.

Up to this point we know that if O is of types 1 or 2 .a, then it has a neighbor of degree at most 4 .
Definition. Two vertices of $G(P), A$ and B are called special second neighbors if there are two other vertices, C and D, such that $A C, A D, C D, C B$ and $D B$ are all edges of $G(P)$, i.e., $|A C|,|A D|,|C D|,|C B|$ and $|D B|=1$.

Case 2.b. G_{O} is the graph shown in Fig. 1(2), A_{4} and A_{5} have two common neighbors, O and B_{7} (so O and B_{7} are special second neighbors). See Fig. 3(b).

Suppose that all neighbors of O have degree five, and the degree of B_{7}, the special second neighbor of O, is also five.

The points $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5} are defined as in Case 2.a. Let B_{6} be the neighbor of A_{4} preceding B_{7} in the clockwise order; let B_{8} be the neighbor of A_{5} following B_{7} in the clockwise order. Extend the triangle $A_{5} O A_{1}$ to a rhombus by adding the point B_{9}. Finally, let C_{1} be the neighbor of B_{7} following A_{4} in the clockwise order, and let C_{2} be the neighbor of B_{7} preceding A_{5} in the clockwise order. Observe that $B_{6} \neq C_{1}$ and $B_{8} \neq C_{2}$.

Since $\left|B_{6} C_{1}\right|,\left|C_{2} B_{8}\right|,\left|B_{1} B_{2}\right|$ and $\left|B_{3} B_{4}\right| \geqslant 1$, we have that $\angle A_{4} B_{7} C_{1}+\angle B_{6} A_{4} B_{7}, \angle C_{2} B_{7} A_{5}+$ $\angle B_{7} A_{5} B_{8}, \angle B_{1} A_{1} A_{2}+\angle A_{1} A_{2} B_{2}$ and $\angle B_{3} A_{2} A_{3}+\angle A_{2} A_{3} B_{4} \geqslant \pi$.

So, by simple calculations,

$$
\angle C_{1} B_{7} C_{2}+\angle B_{8} A_{5} B_{9}+\angle B_{9} A_{1} B_{1}+\angle B_{2} A_{2} B_{3}+\angle B_{4} A_{3} B_{5}+\angle B_{5} A_{4} B_{6} \leqslant 3 \pi
$$

By the assumption that all A_{i} and B_{7} has degree five, $\angle B_{8} A_{5} B_{9}, \angle B_{2} A_{2} B_{3}$ and $\angle B_{5} A_{4} B_{6} \geqslant$ $\pi / 3, \angle C_{1} B_{7} C_{2}, \angle B_{9} A_{1} B_{1}$ and $\angle B_{4} A_{3} B_{5} \geqslant 2 \pi / 3$, therefore,

$$
\angle C_{1} B_{7} C_{2}+\angle B_{8} A_{5} B_{9}+\angle B_{9} A_{1} B_{1}+\angle B_{2} A_{2} B_{3}+\angle B_{4} A_{3} B_{5}+\angle B_{5} A_{4} B_{6} \geqslant 3 \pi
$$

Again we obtain a regular configuration: $\angle B_{8} A_{5} B_{9}, \angle B_{2} A_{2} B_{3}, \angle B_{5} A_{4} B_{6}=\pi / 3, \angle C_{1} B_{7} C_{2}$, $\angle B_{9} A_{1} B_{1}, \angle B_{4} A_{3} B_{5}=2 \pi / 3,\left|B_{6} C_{1}\right|,\left|C_{2} B_{8}\right|,\left|B_{1} B_{2}\right|$ and $\left|B_{3} B_{4}\right|=1$.

It follows, that $B_{1} A_{1} \| O A_{4}$ and $A_{1} O \| A_{4} B_{6}$, and that all of them are unit segments. Therefore, B_{1}, O and B_{6} are on the same line, contradiction.

To sum up, if a vertex of $G(P)$ had degree 5 , one of its neighbors or special second neighbors has degree at most 4 .

Assign each 5-degree vertex of $G(P)$ to one of its neighbors or special second neighbors of degree at most 4. Since the points are in general position, any vertex has at most two special second neighbors. So to each vertex of degree at most 4 , there will be assigned at most six vertices-four neighbors and two special second neighbors. Therefore, the average degree of the vertices of $G(P)$ is at most $(6 \cdot 5+4) / 7=34 / 7$, i.e., $G(P)$ has at most $17 n / 7=n(2+3 / 7)$ edges.
2. Next we prove by a construction that $g(n) \geqslant(2+5 / 16) n-10\lfloor\sqrt{n}\rfloor$.

Let a be a unit vector.
Definition. For any vector x, let $\arg (x)$ denote the counterclockwise angle from a to x.
Let $\varepsilon>0$ small; b, c and d be unit vectors, $\arg (b)=-\pi / 6+\varepsilon, \arg (c)=\pi / 3, \arg (d)=\pi / 2+\varepsilon$. Let p and q be positive integers. Finally, let $u_{1}, u_{2}, \ldots, u_{p-1}$ and $v_{1}, v_{2}, \ldots, v_{q-1}$ be unit vectors, $u_{2 i+1}=a, u_{4 i+2}=b, v_{2 i+1}=c, v_{4 i+2}=d, 0>\arg \left(u_{4 i}\right)>-\pi / 6+\varepsilon, \pi / 3<\arg \left(v_{4 i}\right)<\pi / 2+\varepsilon$.

We choose the exact values of $\arg \left(u_{4 i}\right)$ and $\arg \left(v_{4 i}\right)$ later. Define a configuration $P_{p q}$ of $p q$ points, as follows:

$$
P_{p q}=\left\{p_{i j} \mid 0<i \leqslant p, 0<j \leqslant q\right\}
$$

where

$$
p_{i j}=v_{1}+\cdots+v_{i-1}+u_{1}+\cdots+u_{j-1}
$$

This configuration is similar to a deformed square lattice, where the "horizontal" edges are the vectors a, b or $u_{4 i}$, and the "vertical" edges are c, d or $v_{4 i}$. So the squares are deformed into rhombuses whose angles are between $\pi / 3$ and $2 \pi / 3$. Therefore the shortest distance between the points is the edge length of the rhombuses, which is 1 . Define the graph $G\left(P_{p q}\right)$ as before.

Fig. 4. Configuration $P_{4,4}$.
In this "lattice" of $p q$ points there are $p(q-1)$ "vertical" and $(p-1) q$ "horizontal" edges. Notice that $\angle a c=\pi / 3, \angle b d=2 \pi / 3$, so in the rhombuses where one of the sides is a the other one is c or one of the sides is b the other one is d, one of the diagonals is also of distance 1 . Since $u_{2 i+1}=a, v_{2 i+1}=c$, there are $\lfloor p / 2\rfloor \cdot\lfloor q / 2\rfloor$ rhombuses of sides a and c, and $\lfloor p / 4\rfloor \cdot\lfloor q / 4\rfloor$ rhombuses of sides b and d. Each of these rhombuses mean one additional edge in $G\left(P_{p q}\right)$, so for the edges of $G\left(P_{p q}\right)$ we have

$$
\begin{aligned}
\left|E\left(G\left(P_{p q}\right)\right)\right| & \geqslant p(q-1)+(p-1) q+\left\lfloor\frac{p}{2}\right\rfloor \cdot\left\lfloor\frac{q}{2}\right\rfloor+\left\lfloor\frac{p}{4}\right\rfloor \cdot\left\lfloor\frac{q}{4}\right\rfloor \\
& \geqslant 2 p q-p-q+\frac{p q}{4}-\frac{p}{2}-\frac{q}{2}+\frac{p q}{16}-\frac{p}{4}-\frac{q}{4}=\left(2+\frac{5}{16}\right) p q-\frac{7}{4}(p+q)
\end{aligned}
$$

Claim. For any positive integers p and q, we can choose the values of $\arg \left(u_{4 i}\right)$ and $\arg \left(v_{4 j}\right)$ such that $P_{p q}$ is in general position.

Proof. It is enough to prove the Claim in the case when both p and q are divisible by 4 , i.e., when $p=4 r$ and $q=4 s$.

We prove the Claim by induction on r and s. In the repeated pattern in Fig. 4, which is actually the configuration P_{44}, easy to see, that there are no three points on a line.

Suppose, we could choose the values $\arg \left(u_{4 i}\right)$ and $\arg \left(v_{4 j}\right)$ such that in the configuration $P_{4(r-1), 4 s}$ the points are in general position.

Construct $P_{4 r, 4 s}$ by choosing the value of $\arg \left(u_{4(r-1)}\right)$.
For any value of $\arg \left(u_{4(r-1)}\right)$, the point set we try to add to $P_{4(r-1), 4 s}$ is

$$
R=\left\{p_{i j} \mid 4(r-1)<i \leqslant 4 r, 0<j \leqslant 4 s\right\}
$$

a translate of the configuration

$$
\left\{p_{i j} \mid 4(r-2)<i \leqslant 4(r-1), 0<j \leqslant 4 s\right\},
$$

which is in general position by assumption. The change of $\arg \left(u_{4(r-1)}\right)$ results a translation of R. If for a certain value of $\arg \left(u_{4(r-1)}\right)$ the configuration $P_{4 r, 4 s}$ happens to be not in general position, then either a line determined by the points $P_{4(r-1), 4 s}$ contains a point of R or, conversely, a line determined by the points of R contains a point of $P_{4(r-1), 4 s}$. But both events can occur for only finite many values
of $\arg \left(u_{4(r-1)}\right)$, therefore there is a value $0>\arg \left(u_{4(r-1)}\right)>-\pi / 6+\varepsilon$, such that the configuration $P_{4 r, 4 s}$ is in general position. By the same argument, we can step from $s-1$ to s. So for any pair r, s, there exists a configuration of points in general position, $P_{4 r, 4 s}$.

Finally, for any $n>3$, construct the configuration C_{n}.
Let $p-q=\lfloor\sqrt{n}\rfloor$. Take the configuration $P_{p q}$ of $\lfloor\sqrt{n}\rfloor^{2}$ points, put the remaining points far from this configuration so that the points are still in general position. The smallest distance among the points is 1 , and

$$
\begin{aligned}
\left|E\left(G\left(C_{n}\right)\right)\right| & \geqslant\left(2+\frac{5}{16}\right)\lfloor\sqrt{n}\rfloor^{2}-\frac{7}{2}\lfloor\sqrt{n}\rfloor \\
& \geqslant\left(2+\frac{5}{16}\right) n-\left(4+\frac{5}{8}\right)\lfloor\sqrt{n}\rfloor-2-\frac{5}{16}-\frac{7}{2}\lfloor\sqrt{n}\rfloor \\
& \geqslant\left(2+\frac{5}{16}\right) n-\left(8+\frac{1}{8}\right)\lfloor\sqrt{n}\rfloor-2-\frac{5}{16} \geqslant\left(2+\frac{5}{16}\right) n-10\lfloor\sqrt{n}\rfloor .
\end{aligned}
$$

Remarks. (1) It is not hard to see that for points in general position the upper bound cannot be achieved. That is, it is impossible, that there are six points of degree five assigned to each point of degree four.
(2) In the construction of C_{n} we put the remaining points far from the configuration $P_{p q}(p, q=$ $\lfloor\sqrt{n}\rfloor$). Placing them more carefully, we could create a few more unit distances, but this would improve the lower bound by $\mathrm{O}(\sqrt{n})$ only.

Acknowledgements

We would like to express our gratitude to Gyula Károlyi and János Pach for helpful discussions and for their help in writing this note.

References

[1] P. Brass, The maximum number of second smallest distances in finite planar graphs, Discrete Comput. Geom. 7 (1992) 371-379.
[2] P. Brass, Beweis einer Vermutung von Erdốs und Pach aus der kombinatorischen Geometrie, Ph.D. Thesis, Department of Discrete Mathematics, Technical University Braunschweig, Braunschweig, 1992.
[3] P. Brass, Personal communication.
[4] P. Erdős, Some combinatorial and metric problems in geometry, in: K. Böröczky and G. Fejes Tóth, eds., Intuitive Geometry, Colloq. Math. Soc. János Bolyai 48 (North-Holland, Amsterdam, 1987) 167-177.
[5] H. Harborth, Solution to problem 664A, Elem. Math. 29 (1974) 14-15.
[6] J. Pach and P. Agarwal, Combinatorial Geometry (Wiley, New York, 1995).
[7] D. Reutter, Problem 664A, Elem. Math. 27 (1972) 19.
[8] K. Vesztergombi, On the distribution of distances in finite sets in the plane, Discrete Math. 57 (1985) 129-146.

[^0]: ${ }^{1}$ Supported by NSF grant CCR-94-24398, OTKA-4269 and OTKA-14220.
 0925-7721/97/\$17.00© 1997 Elsevier Science B.V. All rights reserved. SSDI 0925-7721(95)00055-0

