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Abstract

Let η = (η(t))t∈T be a sample continuous max-infinitely random field on a locally compact metric
space T . For a closed subset S ⊂ T , we denote by ηS the restriction of η to S. We consider β(S1, S2),
the absolute regularity coefficient between ηS1 and ηS2 , where S1, S2 are two disjoint closed subsets of T .
Our main result is a simple upper bound for β(S1, S2) involving the exponent measure µ of η: we prove
that β(S1, S2) ≤ 2


P[η ≮S1

f, η ≮S2
f ] µ(d f ), where f ≮S g means that there exists s ∈ S such that

f (s) ≥ g(s).

If η is a simple max-stable random field, the upper bound is related to the so-called extremal coefficients:
for countable disjoint sets S1 and S2, we obtain β(S1, S2) ≤ 4


(s1,s2)∈S1×S2

(2 − θ(s1, s2)), where
θ(s1, s2) is the pair extremal coefficient.

As an application, we show that these new estimates entail a central limit theorem for stationary
max-infinitely divisible random fields on Zd . In the stationary max-stable case, we derive the asymptotic
normality of three simple estimators of the pair extremal coefficient.
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1. Introduction

Max-stable random fields turn out to be fundamental models for spatial extremes since they
arise as the limit of rescaled maxima. More precisely, consider the component-wise maxima

ηn(t) = max
1≤i≤n

ξi (t), t ∈ T,

of independent copies ξi , i ≥ 1, of a random field ξ = (ξ(t))t∈T . If the random field ηn =

(ηn(t))t∈T converges in distribution, as n → ∞, under suitable affine normalization, then its
limit η = {η(t)}t∈T is necessarily max-stable. Therefore, max-stable random fields play a central
role in the extreme value theory, just like Gaussian random fields do in the classical statistical
theory based on the central limit theorem.

Max-stable processes have been studied extensively in the past decades and many of their
properties are well-understood. For example, the structure of their finite dimensional distributions
is well known and insightful Poisson point process or spectral representations are available. Also
the theory has been extended to max-infinitely divisible (max-i.d.) processes. See for example
the seminal works by Resnick [20], de Haan [9,10], de Haan and Pickands [13], Giné et al. [16],
Resnick and Roy [21] and many others. More details and further references can be found in the
monographs by Resnick [20] or de Haan and Ferreira [11].

The questions of mixing and ergodicity of max-stable random processes indexed by R or Z
have been addressed recently. First results by Weintraub [29] in the max-stable case have been
completed by Stoev [25], providing necessary and sufficient conditions for mixing of max-stable
processes based on their spectral representations. More recently, Kabluchko and Schlather [18]
have extended these results and obtain necessary and sufficient conditions for both mixing and
ergodicity of max-i.d. random processes. They define the dependence function of a stationary
max-i.d. random process η = (η(t))t∈Z by

τa(h) = log
P[η(0) ≤ a, η(h) ≤ a]

P[η(0) ≤ a]P[η(h) ≤ a]
, a > essinf η(0), h ∈ Z.

Then, it holds with ℓ = essinf η(0):

• η is mixing if and only if for all a > ℓ, τa(n) → 0 as n → +∞;
• η is ergodic if and only if for all a > ℓ, n−1n

h=1 τa(h) → 0 as n → +∞.

Ergodicity is strongly connected to the strong law of large numbers via the ergodic theorem. The
above results find natural applications in statistics to obtain strong consistency of several natural
estimators based on non-independent but ergodic observations.

Going a step further, we address in this paper the issue of estimating the strong mixing
coefficients of max-i.d. random fields. In some sense, ergodicity and mixing state that the
restrictions ηS1 and ηS2 to two subsets S1, S2 become almost independent when the distance
between S1 and S2 goes to infinity. Strong mixing coefficients make this statement quantitative:
we introduce two standard mixing coefficients α(S1, S2) and β(S1, S2) that measure how
much ηS1 and ηS2 differ from independence. The rate of decay of those coefficients as the
distance between S1 and S2 goes to infinity is a crucial point for the central limit theorem
(see Appendix A.3). As an application, we consider the asymptotic normality of three simple
estimators of the extremal coefficients of a stationary max-stable random field on Zd with
standard unit Fréchet margins.

Our approach differs from those of Stoev [25] based on spectral representations and of
Kabluchko and Schlather [18] based on exponent measures. It relies on the Poisson point process
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representation of max-i.d. random fields offered by Giné et al. [16] (see also Appendix A.1) and
on the notions of extremal and subextremal points recently introduced by the authors [14]. The
Palm theory for the Poisson point process and the Campbell–Slyvniak formula are also a key tool
(see Appendix A.2).

The structure of the paper is the following: the framework and results are detailed in the next
section; Section 3 is devoted to the proofs and an Appendix gathers some more technical details.

2. Framework and results

Let (Ω , F , P) be a probability space and T be a locally compact metric space. We denote
by C(T ) = C(T, [0, +∞)) the space of nonnegative continuous functions endowed with the
topology of uniform convergence on compact sets and by C its Borel σ -field. A measure is said
to be locally finite if it assigns finite measure to compact sets. Let µ be a locally finite Borel
measure on C0(T ) = C(T ) \ {0} satisfying

µ

{ f ∈ C0(T ); sup

K
f > ε}


< ∞ for all compact K ⊂ T and ε > 0, (1)

and Φ a Poisson point process on C0(T ) with intensity µ. More rigorously, we should consider
Φ as a random point measure rather than as a random set of points, since there may be points
with multiplicities. It is however standard to consider Φ as a random set of points with possible
repetitions.

We consider the random process

η(t) = max{φ(t), φ ∈ Φ}, t ∈ T,

with the convention that the maximum of the empty set is equal to 0. Condition (1) ensures that
the random process η is continuous on T (see [16] and Appendix A.1). Another property is worth
noting: η is max-infinitely divisible. This means that for all n ≥ 1, there exist independent and
identically distributed continuous random fields (ηi,n)1≤i≤n such that

η
L
= ∨

n
i=1 ηi,n,

where ∨ stands for pointwise maximum and
L
= for equality in distribution. Note that the max-

infinite divisibility of η is a simple consequence of the superposition theorem for Poisson point
processes. Furthermore, for all t ∈ T , the essential infimum of the random variable η(t) is
equal to 0. As shown by Giné et al. [16], up to simple transformations, essentially all max-
i.d. continuous random processes on T can be obtained in this way (see Appendix A.1). The
measure µ is called the exponent measure associated to the max-i.d. process η. It should
be stressed that Giné et al. [16] deal with upper semi-continuous functions. For the sake
of simplicity, we consider in this paper only continuous processes, even if the main results
(Theorems 2.1 and 2.2) can be extended almost directly to cover the case of upper semi-
continuous processes.

We now introduce the so-called α- and β-mixing coefficients. For more details on strong
mixing conditions, the reader should refer to the recent survey by Bradley [3] or to the
monographs [15,22,4–6,8]. For S ⊂ T a closed subset, we denote by FS the σ -field generated by
the random variables {η(s), s ∈ S} and by PS the distribution of the restriction ηS in the set C(S)

of nonnegative continuous functions on S endowed with its Borel σ -field CS . Let S1, S2 ⊂ T
be disjoint closed subsets. The α-mixing coefficient introduced by Rosenblatt [23] between the
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σ -fields FS1 and FS2 is defined by

α(S1, S2) = sup

|P(A ∩ B) − P(A)P(B)|; A ∈ FS1 , B ∈ FS2


.

The β-mixing coefficient (or absolute regularity coefficient, see [28]) between the σ -fields FS1

and FS2 is given by

β(S1, S2) = sup

|PS1∪S2(C) − PS1 ⊗ PS2(C)|; C ∈ CS1∪S2


. (2)

Since S1 and S2 are disjoint closed subsets, C(S1 ∪S2) is naturally identified with C(S1)×C(S2).
We denote by ∥ · ∥var the total variation of a signed measure. Equivalent definitions of the
β-mixing coefficient are

β(S1, S2) = ∥PS1∪S2 − PS1 ⊗ PS2∥var

=
1
2

sup


I

i=1

J
j=1

|P(Ai ∩ B j ) − P(Ai )P(B j )|



where the supremum is taken over all partitions {A1, . . . , AI } and {B1, . . . , BJ } of Ω with the
Ai ’s in FS1 and the B j ’s in FS2 . The following inequality is worth noting

α(S1, S2) ≤
1
2
β(S1, S2). (3)

Our main result is the following.

Theorem 2.1. Let η be a continuous max-i.d. process on T with exponent measure µ satisfying
(1). Then, for all disjoint closed subsets S1, S2 ⊂ T ,

β(S1, S2) ≤ 2


C0

P[ f ≮S1
η, f ≮S2

η] µ(d f ).

In the particular case when S1 and S2 are finite or countable (which naturally arise for example
if T = Zd ), we can provide an upper bound for the mixing coefficient β(S1, S2) involving only
the 2-dimensional marginal distributions of the process η.

For (s1, s2) ∈ T 2, let µs1,s2 be the exponent measure of the max-i.d. random vector
(η(s1), η(s2)) defined on [0, +∞)2 by

µs1,s2(A) = µ

{ f ∈ C0(T ); ( f (s1), f (s2)) ∈ A}


, A ⊂ [0, +∞)2 Borel set.

Corollary 2.1. If S1 and S2 are finite or countable disjoint closed subsets of T ,

β(S1, S2) ≤ 2


s1∈S1


s2∈S2


P[η(s1) ≤ y1, η(s2) ≤ y2] µs1,s2(dy1dy2).

Next, we focus on simple max-stable random fields, where the phrase simple means that the
marginals are standardized to the standard unit Fréchet distribution,

P[η(t) ≤ y] = exp[−y−1
]1{y>0}, y ∈ R, t ∈ T .
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In this framework, an insight into the dependence structure is given by the extremal coefficients
θ(S), S ⊂ T compact, defined by the relation

P[sup
s∈S

η(s) ≤ y] = exp[−θ(S)y−1
], y > 0. (4)

Theorem 2.2. Let η be a continuous simple max-stable random field on T .
For all compact S ⊂ T , the quantity

C(S) = E[sup{η(s)−1
; s ∈ S}] (5)

is finite and furthermore:

• For all disjoint compact subsets S1, S2 ⊂ T ,

β(S1, S2) ≤ 2

C(S1) + C(S2)


θ(S1) + θ(S2) − θ(S1 ∪ S2)


.

• For (S1,i )i∈I and (S2, j ) j∈J countable families of compact subsets of T such that S1 =

∪i∈I S1,i and S2 = ∪ j∈J S2, j are disjoint,

β(S1, S2) ≤ 2

i∈I


j∈J


C(S1,i ) + C(S2, j )


θ(S1,i ) + θ(S2, j ) − θ(S1,i ∪ S2, j )


.

In the particular case when S1 and S2 are finite or countable, the mixing coefficient β(S1, S2)

can be bounded from above in terms of the extremal coefficient function

θ(s1, s2) = θ({s1, s2}), s1, s2 ∈ T .

We recall the following basic properties: it always holds θ(s1, s2) ∈ [1, 2]; θ(s1, s2) = 2 iff
η(s1) and η(s2) are independent; θ(s1, s2) = 1 iff η(s1) = η(s2). Thus the extremal coefficient
function gives some insight into the 2-dimensional dependence structure of the max-stable field
η, although it does not characterize it completely.

Corollary 2.2. Suppose η is a continuous simple max-stable random field on T . If S1 and S2 are
finite or countable disjoint closed subsets of T , then

β(S1, S2) ≤ 4


s1∈S1


s2∈S2

[2 − θ(s1, s2)].

Remark 2.1. It should be stressed that the proof of Theorem 2.2 relies on the following
inequality: if η is a max-stable process with exponent measure µ, then for all disjoint compact
subsets S1, S2 ⊂ T

C0

P[ f ≮S1
η, f ≮S2

η] µ(d f ) ≤


C(S1) + C(S2)


θ(S1) + θ(S2) − θ(S1 ∪ S2)


.

In view of Theorem 2.1, this inequality entails the first point of Theorem 2.2. When S1 = {s1}

and S2 = {s2}, we obtain
P[η(s1) ≤ y1, η(s2) ≤ y2] µs1,s2(dy1dy2) ≤ 2[2 − θ(s1, s2)].

This is used in the proof of Corollary 2.2.



C. Dombry, F. Eyi-Minko / Stochastic Processes and their Applications 122 (2012) 3790–3811 3795

As noted in the introduction, our main motivation for considering the strong mixing properties
of max-i.d. random fields is to obtain central limit theorems (CLTs) for stationary max-
i.d. random fields. In this direction, we focus on stationary random fields on T = Zd and our
analysis relies on Bolthausen’s CLT [2] (see Appendix A.3).

We denote by |h| = max1≤i≤d |hi | the norm of h ∈ Zd and by |S| the number of elements of
a subset S ⊂ Zd . The boundary ∂S of S is the set of elements h ∈ S such that there is h′

∉ S
with d(h, h′) = 1.

A random field X = (X (t))t∈Zd is said to be stationary if the law of (X (t + s))t∈Zd does not
depend on s ∈ Zd . We say that a square integrable stationary random field X satisfies the CLT if
the following two conditions are satisfied:

(i) the series σ 2
=


t∈Zd Cov[X (0), X (t)] converges absolutely;
(ii) for all sequences Λn of finite subsets of Zd , which increase to Zd and such that

limn→∞ |∂Λn|/|Λn| = 0, the sequence |Λn|
−1/2

t∈Λn
(X (t) − E[X (t)]) converges in law

to the normal distribution with mean 0 and variance σ 2 as n → ∞.

Please note that we do not require the limit variance σ 2 to be positive; the case σ 2
= 0

corresponds to a degenerated CLT where the limit distribution is the Dirac mass at zero.
Bolthausen’s CLT for stationary mixing random fields together with our estimates of mixing
coefficients of max-i.d. random fields yields the following theorem.

Theorem 2.3. Suppose η is a stationary max-i.d. random field on Zd with exponent measure µ

and let

γ (h) =


P[η(0) ≤ y1, η(h) ≤ y2] µ0,h(dy1dy2), h ∈ Zd .

Let g : Rp
→ R be a measurable function and t1, . . . , tp ∈ Zd such that

E[g(η(t1), . . . , η(tp))
2+δ

] < ∞ for some δ > 0,

and assume that
|h|≥m

γ (h) = o(m−d) and
∞

m=1

md−1 sup
|h|≥m

γ (h)δ/(2+δ) < ∞. (6)

Then the stationary random field X defined by

X (t) = g(η(t1 + t), . . . , η(tp + t)), t ∈ Zd

satisfies the CLT.

Condition (6) requires that γ goes fast enough to 0 at infinity. It is met for example if

γ (h) ≤ C · |h|
−b for some b > d max(2, (2 + δ)/δ) and C > 0. (7)

If η is simple max-stable, it follows from the proof of Theorem 2.2 and Corollary 2.2 that

γ (h) ≤ 2(2 − θ(0, h)),

with θ the extremal coefficient function.
As an application of Theorem 2.3, we consider the estimation of the extremal coefficient for

a stationary simple max-stable random field on Zd . For h ∈ Zd , we note θ(h) = θ(0, h). Eq. (4)
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implies

θ(h) = −y log p(h, y) with p(h, y) = P(η(0) ≤ y, η(h) ≤ y), y > 0,

suggesting the simple estimator

θ̂ (1)
n (h) = −y log p̂n(h, y) with p̂n(h, y) = |Λn|

−1

t∈Λn

1{η(t)≤y,η(t+h)≤y} (8)

where Λn is a sequence of finite subsets increasing to Zd such that |∂Λn|/|Λn| → 0 as
n → ∞. The fact that the naive estimator θ̂

(1)
n (h) depends on the threshold level y > 0 is

not satisfactory. Alternatively, one may consider the following procedures. Smith [24] noticed
that min(η(0)−1, η(h)−1) has an exponential distribution with mean θ(h)−1 and proposed the
estimator

θ̂ (2)
n (h) =

|Λn|
t∈Λn

min(η(t)−1, η(t + h)−1)
.

Cooley et al. [7] introduced the F-madogram defined by

νF (h) = E[|F(η(0)) − F(η(h))|] with F(y) = exp(−1/y)1{y>0}

and showed that it satisfies

νF (h) =
1
2

θ(h) − 1
θ(h) + 1

or equivalently θ(h) =
1 + 2νF (h)

1 − 2νF (h)
.

This suggests the estimator

θ̂ (3)
n (h) =

|Λn| + 2


t∈Λn

|F(η(t)) − F(η(t + h))|

|Λn| − 2


t∈Λn

|F(η(t)) − F(η(t + h))|
.

The following proposition states the asymptotic normality of these estimators.

Proposition 2.1. Suppose that η is a stationary simple max-stable random field on Zd with
extremal coefficient function satisfying

2 − θ(h) ≤ C · |h|
−b for some b > 2d and C > 0. (9)

Then, the estimators θ̂
(i)
n (h), i = 1, 2, 3 are asymptotically normal:

|Λn|
1/2θ̂ (i)

n (h) − θ(h)


H⇒ N (0, σ 2
i ) as n → ∞

with limit variances

σ 2
1 = y2


t∈Zd


exp[(2θ(h) − θ({0, h, t, t + h}))y−1

] − 1

,

σ 2
2 = θ(h)4


t∈Zd

Cov

min(η(0)−1, η(h)−1), min(η(t)−1, η(t + h)−1)


,

σ 2
3 = (θ(h) + 1)4


t∈Zd

Cov

|F(η(0)) − F(η(h))|, |F(η(t)) − F(η(t + h))|


.
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Interestingly, the function y → σ 2
1 is strictly convex, has limit +∞ as y → 0+ or +∞ and

hence it admits a unique minimizer y⋆ corresponding to an asymptotically optimal truncation
level for the estimator θ̂

(1)
n . Unfortunately, the limit variances σ 2

2 and σ 2
3 are not so explicit so

that a comparison between the three is difficult.
We illustrate our results on two classes of stationary max-stable random fields on Rd .

Example 2.1. We consider the Brown–Resnick simple max-stable model (see [19]). Let (Wi )i≥1
be independent copies of a sample continuous stationary increments Gaussian random field
W = (W (t))t∈Rd with zero mean and variance σ 2(t). Independently, let (Zi )i≥1 be the
nonincreasing enumeration of the points of a Poisson point process (0, +∞) with intensity
z−2dz. The associated Brown–Resnick max-stable random field is defined by

η(t) =

∞
i=1

Zi exp[Wi (t) − σ 2(t)/2], t ∈ Rd .

It is known that η is a stationary simple max-stable random field whose law depends only on the
negative semi-definite function V , called the variogram of W , and defined by

V (h) = E[(W (t + h) − W (t))2
], h ∈ Rd .

In this case, the extremal coefficient function is given by

θ(s1, s2) = 2Ψ(


V (s2 − s1)/2), s1, s2 ∈ Rd ,

where Ψ denotes the cdf of the standard normal law. Using the tail equivalent

1 − Ψ(x) ∼
e−x2/2

x
√

2π
as x → +∞,

we see that Eq. (9) holds as soon as

lim inf
h→∞

V (h)
log |h|

> 2
√

d.

This completes the necessary and sufficient conditions for ergodicity or mixing of Brown–
Resnick processes given by Kabluchko and Schlather [18].

Example 2.2. Our second class of example is the moving maximum process by de Haan and
Pereira [12]. Let f : Rd

→ [0, +∞) be a continuous density function such that
Rd

f (x) dx = 1 and


Rd
sup
|h|≤1

f (x + h) dx < ∞.

Let


∞

i=1 δ(Zi ,Ui ) be a Poisson random measure on (0, +∞)×Rd with intensity z−2dzdu. Then
the random field

η(t) =

∞
i=1

Zi f (t − Ui ), t ∈ Rd ,

is a stationary sample continuous simple max-stable random field. The corresponding extremal
coefficient function is given by

θ(s1, s2) =


Rd

max( f (s1 − x), f (s2 − x)) dx, s1, s2 ∈ Rd .



3798 C. Dombry, F. Eyi-Minko / Stochastic Processes and their Applications 122 (2012) 3790–3811

Some computations reveal that Eq. (9) holds true as soon as

lim sup
h→∞

log f (h)

log |h|
< −κd

with κ1 = 3 and κd = 2(d + 1) for d ≥ 2.

3. Proofs

3.1. Strong mixing properties of extremal point processes

In the sequel, we shall write shortly C0 = C0(T ). We denote by Mp(C0) the set of locally
finite point measures N on C0 endowed with the σ -algebra generated by the family of mappings
{N → N (A), A ⊂ C0 Borel set}. We introduce here the notion of S-extremal points that will
play a key role in this work. We use the following notations: if f1, f2 are two functions defined
(at least) on S, we note

f1 =S f2 if and only if ∀s ∈ S, f1(s) = f2(s),

f1 <S f2 if and only if ∀s ∈ S, f1(s) < f2(s),

f 1 ≮S f2 if and only if ∃s ∈ S, f1(s) ≥ f2(s).

A point φ ∈ Φ is said to be S-subextremal if φ <S η, it is said S-extremal otherwise, i.e. if there
exists s ∈ S such that φ(s) = η(s). In words, a S-subextremal point has no contribution to the
maximum η on S.

Definition 3.1. Define the S-extremal random point process Φ+

S and the S-subextremal random
point process Φ−

S by

Φ+

S = {φ ∈ Φ; φ ≮S η} and Φ−

S = {φ ∈ Φ; φ <S η}.

The fact that Φ+

S and Φ−

S are well defined point processes, i.e. that they satisfy some mea-
surability properties, is proved in [14, Appendix A.3]. Clearly, the restriction ηS depends on Φ+

S
only:

η(s) = max{φ(s); φ ∈ Φ+

S }, s ∈ S.

This implies that the strong mixing coefficient β(S1, S2) defined by Eq. (2) can be upper bounded
by a similar β-mixing coefficient defined on the level of the extremal point process Φ+

S1
,Φ+

S2
. For

i = 1, 2, let PΦ+

Si
be the distribution of Φ+

Si
on the space of locally finite point measures on C0

and let P(Φ+

S1
,Φ+

S2
) be the joint distribution of (Φ+

S1
,Φ+

S2
). We define

β(Φ+

S1
,Φ+

S2
) = ∥P(Φ+

S1
,Φ+

S2
) − PΦ+

S1
⊗ PΦ+

S2
∥var. (10)

It holds

β(S1, S2) ≤ β(Φ+

S1
,Φ+

S2
). (11)

The following theorem provides a simple estimate for the β-mixing coefficient on the point pro-
cess level. It implies Theorem 2.1 straightforwardly and has a clearer interpretation.
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Theorem 3.1. • The following upper bound holds true:

β(Φ+

S1
,Φ+

S2
) ≤ 2 P[Φ+

S1
∩ Φ+

S2
≠ ∅] (12)

with

P[Φ+

S1
∩ Φ+

S2
≠ ∅] ≤


C0

P( f ≮S1
η, f ≮S2

η) µ(d f ). (13)

• If the point process Φ is simple (in particular in the max-stable case), the following lower
bound holds true:

β(Φ+

S1
,Φ+

S2
) ≥ P[Φ+

S1
∩ Φ+

S2
≠ ∅] (14)

Clearly, Eqs. (11)–(13) together imply Theorem 2.1.

Remark 3.1. The upper and lower bounds in Theorem 3.1 are of the same order, and hence
relatively sharp. It is not clear however how to bound β(S1, S2) from below and how sharp the
upper bound in Theorem 2.1 is.

3.2. Proof of Theorem 3.1

The upper bound for the mixing coefficient β(Φ+

S1
,Φ+

S2
) defined by Eq. (10) relies on a

standard coupling argument. There are indeed deep relationships between β-mixing and optimal
couplings and we will use the following result (see e.g. [22, Chapter 5]). Note that the lemma
holds true for any pairs of random variables, but for the sake of future reference, we state it for
extremal point processes.

Lemma 3.1. On a probability space (Ω , F , P), suppose that the random variables
(Φ+i

S1
,Φ+i

S2
), i = 1, 2 are such that:

(i) the distribution of (Φ+1
S1

,Φ+1
S2

) is P(Φ+

S1
,Φ+

S2
);

(ii) the distribution of (Φ+2
S1

,Φ+2
S2

) is PΦ+

S1
⊗ PΦ+

S2
.

Then,

β(Φ+

S1
,Φ+

S2
) ≤ P


(Φ+1

S1
,Φ+1

S2
) ≠ (Φ+2

S1
,Φ+2

S2
)

.

We say that the random variables (Φ+i
S1

,Φ+i
S2

), i = 1, 2 satisfying (i) and (ii) realize a coupling
between the distributions P(Φ+

S1
,Φ+

S2
) and PΦ+

S1
⊗ PΦ+

S2
.

In order to construct a suitable coupling, we need the following lemma describing the
dependence between Φ+

S and Φ−

S .

Lemma 3.2. Let S ⊂ T be a closed set. The conditional distribution of Φ−

S with respect to Φ+

S
is equal to the distribution of a Poisson point process with intensity 1{ f <S η}µ(d f ).

Proof of Lemma 3.2. Note that in the particular case when T is compact and Φ+

S is finite almost
surely, Lemma 3.2 follows from [14, Theorem 2.1 and Corollary 2.1]. For T non compact, the
proof needs to be modified in a non straightforward way.

Clearly, the event { f <S η} depends only on the restriction ηS and is hence measurable with
respect to the σ -field generated by Φ+

S . In order to prove the statement, let A1, . . . , Ak ⊂ C0 be
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disjoint compact sets and n1, . . . , nk ≥ 0. Let A = ∪
k
i=1 Ai and n =

k
i=1 ni . We compute the

conditional probability with respect to Φ+

S of the event

{Φ−

S (A1) = n1, . . . ,Φ−

S (Ak) = nk}.

This event is equal to {Φ−

S ∈ B} with B = {N ∈ Mp(C0); N (A1) = n1, . . . , N (Ak) = nk}.
We remark that it is realized if and only if there exists a n-tuple (φ1, . . . , φn) of atoms of Φ such
that:

– the atoms φ1, . . . , φn are S-subextremal;
–
n

j=1 δφ j ∈ B;

– the point measure Φ −
n

j=1 δφ j has no S-subextremal atom in A, i.e. it belongs to

D = {N ∈ Mp(C0); N−

S (A) = 0}.

Then the n-tuple (φ1, . . . , φn) is unique up to permutation of the coordinates. The above
observations entail that for all measurable C ⊂ Mp(C0),

P[Φ+

S ∈ C,Φ−

S ∈ B]

=
1
n!

E


Cn

0

1
{Φ+

S ∈C}
1{∀i∈[[1,n]], φi <S η}1n

i=1 δφi ∈B
1

Φ−
n

i=1 δφi ∈D
Φ(dφ1)

× (Φ − δφ1)(dφ2) · · ·


Φ −

n−1
i=1

δφi


(dφn)


.

The Campbell–Slyvniak formula entails

P[Φ+

S ∈ C,Φ−

S ∈ B]

= E


1
{Φ+

S ∈C}
1
{Φ−

S (A)=0}

1
n!


Cn

0

1n
i=1 δ fi ∈B

 ⊗
n
i=1


1{ fi <S η}µ(d fi )


. (15)

Summing this relation over the different values of n1, . . . , nk ∈ N and the related sets B = {N ∈

Mp(C0); N (A1) = n1, . . . , N (Ak) = nk}, we obtain

P[Φ+

S ∈ C] = E

1
{Φ+

S ∈C}
1
{Φ−

S (A)=0}
exp


µ({ f ∈ A; f <S η})


.

So we can rewrite Eq. (15) as

P[Φ+

S ∈ C,Φ−

S ∈ B] = E

1
{Φ+

S ∈C}
1
{Φ−

S (A)=0}
exp


µ({ f ∈ A; f <S η})


K (ηS, B)


,

where

K (ηS, B) =
exp


−µ({ f ∈ A; f <S η})


n!


An

1n
i=1 δ fi ∈B

⊗
n
i=1


1{ fi <S η}µ(d fi )


is the conditional probability of {Φ−

S ∈ B} with respect to Φ+

S (note it depends on Φ+

S only
through the restriction ηS). We recognize the distribution of a Poisson random measure with
intensity 1{ f <S η}µ(d f ) and this proves Lemma 3.2. �

We now construct the coupling providing the upper bound (12).
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Proposition 3.1. Let (Φ,η) be an independent copy of (Φ, η) and defineΦ = Φ+

S1
∪ {φ ∈ Φ; φ <S1 η}. (16)

The following properties hold true:

• Φ has the same distribution as Φ and Φ and satisfiesΦ+

S1
= Φ+

S1
, Φ−

S1
= {φ ∈ Φ; φ <S1 η}; (17)

• (Φ+

S1
,Φ+

S2
) and (Φ+

S1
,Φ+

S2
) is a coupling between P(Φ+

S1
,Φ+

S2
) and PΦ+

S1
⊗ PΦ+

S2
such that

P

(Φ+

S1
,Φ+

S2
) ≠ (Φ+

S1
,Φ+

S2
)


≤ 2 P[Φ+

S1
∩ Φ+

S2
≠ ∅]. (18)

Proof of Proposition 3.1.

• Eq. (17) follows from the construction of Φ: considerη(t) =


φ∈Φ φ(t), t ∈ T ;

the maximum η is achieved on S1 by the S1-extremal points Φ+

S1
, and the definition (16)

ensures thatη and η are equal on S1 so that Eq. (17) holds.
Furthermore, conditionally on Φ+

S1
, the distribution of {φ ∈ Φ; φ <S1 η} is equal to

the distribution of a Poisson point process with intensity 1{ f <S1 η}µ(d f ). According to

Lemma 3.2, this is the conditional distribution of Φ−

S1
given Φ+

S1
, whence (Φ+

S1
,Φ−

S1
) has the

same distribution as (Φ+

S1
,Φ−

S1
). We deduce that Φ = Φ+

S1
∪ Φ−

S1
and Φ = Φ+

S1
∪Φ−

S1
have the

same distribution.
• The coupling property is easily proved: since Φ and Φ have the same distribution, the law

of (Φ+

S1
,Φ+

S2
) is equal to P(Φ+

S1
,Φ+

S2
); since Φ and Φ are independent, (Φ+

S1
,Φ+

S2
) has law

PΦ+

S1
⊗ PΦ+

S2
.

We are left to prove Eq. (18). Since Φ+

S1
= Φ+

S1
, we need to bound the probability

P
Φ+

S2
≠ Φ+

S2


from above. By construction, Φ is obtained from Φ by removing the pointsφ ∈ Φ such that φ ≮S1

η and adding the points φ ∈ Φ+

S1
. Hence, it holds

{Φ+

S2
≠ Φ+

S2
} ⊂ {∃φ ∈ Φ+

S1
, φ ≮S2

η} ∪ {∃φ ∈ Φ+

S2
,φ ≮S1

η}.

Noting the equality of events

{∃φ ∈ Φ+

S1
, φ ≮S2

η} = {∃φ ∈ Φ+

S1
∩ Φ+

S2
} = {Φ+

S1
∩ Φ+

S2
≠ ∅},

we obtain

P[Φ+

S2
≠ Φ+

S2
] ≤ P[Φ+

S1
∩ Φ+

S2
≠ ∅] + P[∃φ ∈ Φ+

S2
,φ ≮S1

η].

Since Φ and Φ have the same law, we have

P[Φ+

S1
∩ Φ+

S2
≠ ∅] = P[Φ+

S1
∩ Φ+

S2
≠ ∅].

Hence, Eq. (18) follows from the upper bound

P[∃φ ∈ Φ+

S2
,φ ≮S1

η] ≤ P[Φ+

S1
∩ Φ+

S2
≠ ∅]
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that we prove now. Using symmetry and exchanging the roles of Φ and Φ on the one hand
and the roles of S1 and S2 on the other hand, it is equivalent to prove that

P[∃φ ∈ Φ+

S1
, φ ≮S2

η] ≤ P[Φ+

S1
∩ Φ+

S2
≠ ∅].

We conclude the proof by noticing that the inclusion of events

{∃φ ∈ Φ+

S1
, φ ≮S2

η} ⊂ {∃φ ∈ Φ+

S1
, φ ≮S2

η}

entails

P[∃φ ∈ Φ+

S1
, φ ≮S2

η] ≤ P[∃φ ∈ Φ+

S1
, φ ≮S2

η] = P[Φ+

S1
∩ Φ+

S2
≠ ∅]. �

We now complete the proof of Theorem 3.1 by proving Eqs. (13) and (14).

Proof of Eq. (13). We observe that

{Φ+

S1
∩ Φ+

S2
≠ ∅} = {∃φ ∈ Φ, φ ≮S1

η, φ ≮S2
η}

which entails

P[Φ+

S1
∩ Φ+

S2
≠ ∅] ≤ E


φ∈Φ

1{φ≮S1
η,φ≮S2

η}

 .

Noting that φ ≮Si
η if and only if φ ≮Si

max(Φ−{φ}), we apply the Campbell–Slyvniak formula
(see Appendix A.2) and compute

E


φ∈Φ

1{φ≮S1
η,φ≮S2

η}

 = E


φ∈Φ

1{φ≮S1
max(Φ−{φ}),φ≮S2

max(Φ−{φ})}


=


C0

E[1{ f ≮S1
max(Φ), f ≮S2

max(Φ)}]µ(d f )

=


C0

P[ f ≮S1
η, f ≮S2

η]µ(d f ). �

Proof of Eq. (14). For any measurable subset C ⊂ Mp(C0) × Mp(C0),

β(Φ+

S1
,Φ+

S2
) ≥ |P[(Φ+

S1
,Φ+

S2
) ∈ C] − P[(Φ+

S1
,Φ+

S2
) ∈ C]|

where Φ is an independent copy of Φ. We obtain the lower bound (14) by choosing the subset

C = {(M1, M2) ∈ Mp(C0) × Mp(C0); M1 ∩ M2 ≠ ∅}.

This yields indeed

β(Φ+

S1
,Φ+

S2
) ≥ |P[Φ+

S1
∩ Φ+

S2
≠ ∅] − P[Φ+

S1
∩ Φ+

S2
≠ ∅]|

and in the case when Φ is a simple point process, i.e. when the intensity measure µ has no atom,
we have

P[Φ+

S1
∩ Φ+

S2
≠ ∅] = P[Φ ∩ Φ ≠ ∅] = 0. �
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3.3. Proof of Corollaries 2.1 and 2.2 and Theorem 2.2

Proof of Corollary 2.1. We have for all f ∈ C0,

{ f ≮S1
η, f ≮S2

η} = {∃(s1, s2) ∈ S1 × S2, f (s1) ≥ η(s1), f (s2) ≥ η(s2)}

= ∪s1∈S1 ∪s2∈S2{η(s1) ≤ f (s1), η(s2) ≤ f (s2)}

whence, for S1 and S2 finite or countable,

P[ f ≮S1
η, f ≮S2

η] ≤


s1∈S1


s2∈S2

P[η(s1) ≤ f (s1), η(s2) ≤ f (s2)].

As a consequence, the integral in Theorem 2.1 satisfies
C0

P[ f ≮S1
η, f ≮S2

η] µ(d f )

≤


s1∈S1


s2∈S2


C0

P[η(s1) ≤ f (s1), η(s2) ≤ f (s2)] µ(d f )

=


s1∈S1


s2∈S2

 2

[0,+∞)

P[η(s1) ≤ y1, η(s2) ≤ y2] µs1,s2(dy1dy2).

In the last line, we have used the fact that µs1,s2 is the image of the measure µ under the mapping
f → ( f (s1), f (s2)). �

Proof of Theorem 2.2. We recall that for a simple max-stable random field, the exponent
measure µ is homogeneous of order −1, i.e. µ(cA) = c−1µ(A) for all A ⊂ C0 Borel set
and c > 0. Also the assumption of standard unit Fréchet marginals implies

µ̄t (y) = y−1, t ∈ T, y > 0.

These conditions imply (see [16, Proposition 3.2] or [11, Theorem 9.4.1 and Corollary 9.4.2])
that µ can be written as

µ(A) =


∞

0


C0

1{r f ∈A} r−2drσ(d f )

where σ is a probability measure on C0 such that
C0

f (t) σ (d f ) = 1 for all t ∈ T,

and 
C0

sup
s∈S

f (s) σ (d f ) < ∞ for all compact S ⊂ T .

Using this, note that for all compact S ⊂ T and y > 0,

P[sup
s∈S

f (s) ≤ y] = exp[−µ({ f ∈ C0; sup
s∈S

f (s) > y})]

= exp

−


C0

1{sup
s∈S

r f (s)>y} r−2drσ(d f )


= exp


−y−1


C0

sup
s∈S

f (s) σ (d f )


.
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It follows that the extremal coefficient θ(S) defined by (4) is equal to

θ(S) =


C0

sup
s∈S

f (s) σ (d f ). (19)

We now consider C(S) defined by Eq. (5). Since S ⊂ T compact,

C(S) = E


inf
s∈S

η(s)

−1


,

we need to provide a lower bound for infs∈S η(s). To this aim, we remark that

inf
s∈S

η(s) = inf
s∈S

max
φ∈Φ

φ(s) ≥ max
φ∈Φ

inf
s∈S

φ(s).

The right hand side is a random variable with unit Fréchet distribution since

P[max
φ∈Φ

inf
s∈S

φ(s) ≤ y] = P[∀φ ∈ Φ, inf
s∈S

φ(s) ≤ y]

= exp(−µ({ f ∈ C0; inf
s∈S

f (s) > y}))

and

µ({ f ∈ C0; inf
s∈S

f (s) > y}) = y−1


C0

inf
s∈S

f (s) σ (d f ).

Hence, if


C0
infs∈S f (s) σ (d f ) > 0, we obtain

C(S) = E


inf
s∈S

η(s)

−1


≤ E

(max
φ∈Φ

inf
s∈S

φ(s))−1


=


C0

inf
s∈S

f (s) σ (d f )

−1

< ∞.

For arbitrary compact S ⊂ T , we may however have


C0
infs∈S f (s) σ (d f ) = 0. But, if

S = B(s0, ε) is a closed ball with center s0 and radius ε, the monotone convergence theorem
implies

C0

inf
s∈B(s0,ε)

f (s) σ (d f ) →


C0

f (s0) σ (d f ) = 1 as ε → 0,

so that


C0
infs∈B(s0,ε0) f (s) σ (d f ) > 0 and C(B(s0, ε0)) < ∞ for ε0 small enough. The result

for general S follows by a compacity argument: there exist s1, . . . , sk and ε1, . . . , εk such that
S ⊂ ∪

k
i=1 B(si , εi ). Hence,

sup
s∈S

η(s)−1
≤ max

1≤i≤k
sup

s∈B(si ,εi )

η(s)−1
≤

k
i=1

sup
s∈B(si ,εi )

η(s)−1

and

C(S) = E

sup
s∈S

η(s)−1


≤

k
i=1

E


sup
s∈B(si ,εi )

η(s)−1


=

k
i=1

C(B(si , εi )) < ∞.

This proves the fact that C(S) is finite.
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• The upper bound for β(S1, S2) given by Theorem 2.1 can be expressed as

β(S1, S2) ≤ 2


C0

P[ f ≮S1
η, f ≮S2

η] µ(d f )

= 2


C0


∞

0
P[r f ≮S1

η, r f ≮S2
η] r−2drσ(d f )

= 2


C0


∞

0
E

1{r≥ inf

s1∈S1
η(s1)/ f (s1),r≥ inf

s2∈S2
η(s2)/ f (s2)}


r−2drσ(d f )

= 2


C0

E


max


inf

s1∈S1

η(s1)

f (s1)
, inf

s2∈S2

η(s2)

f (s2)

−1


σ(d f ). (20)

We then introduce the upper bound

max


inf
s1∈S1

η(s1)

f (s1)
, inf

s2∈S2

η(s2)

f (s2)

−1

≤ max( sup
s1∈S1

η(s1)
−1, sup

s2∈S2

η(s2)
−1) min( sup

s1∈S1

f (s1), sup
s2∈S2

f (s2))

whence we deduce

β(S1, S2) = 2E

max


sup

s1∈S1

η(s1)
−1, sup

s2∈S2

η(s2)
−1

×


C0

min( sup
s1∈S1

f (s1), sup
s2∈S2

f (s2)) σ (d f )

≤ 2E


sup
s1∈S1

η(s1)
−1

+ sup
s2∈S2

η(s2)
−1


×


C0

min( sup
s1∈S1

f (s1), sup
s2∈S2

f (s2)) σ (d f )

= 2

C(S1) + C(S2)

 
θ(S1) + θ(S2) − θ(S1 ∪ S2)


.

In the last equality, we use Eq. (5) defining C(S) and Eq. (19) defining θ(S) together with the
following simple equality

min( sup
s1∈S1

f (s1), sup
s2∈S2

f (s2)) + max( sup
s1∈S1

f (s1), sup
s2∈S2

f (s2))

= sup
s1∈S1

f (s1) + sup
s2∈S2

f (s2).

• The second point is straightforward since

P[ f ≮S1
η, f ≮S2

η] = P[∃i ∈ I, f ≮S1,i
η, ∃ j ∈ J, f ≮S2, j

η]

≤


i∈I


j∈J

P[ f ≮S1,i
η, f ≮S2, j

η]

so that

β(S1, S2) ≤


i∈I


j∈J


C0

P[ f ≮S1,i
η, f ≮S2, j

η] µ(d f )

≤ 2

i∈I


j∈J


C(S1,i ) + C(S2, j )

 
θ(S1,i ) + θ(S2, j ) − θ(S1,i ∪ S2, j )


. �
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Proof of Corollary 2.2. This is a straightforward consequence of the second point of Theo-
rem 2.2 with S1 = ∪s1∈S1{s1} and S2 = ∪s2∈S2{s2}. It holds indeed

β(S1, S2) ≤ 2


s1∈S1


s2∈S2


C({s1}) + C({s2})

 
θ({s1}) + θ({s2}) − θ({s1} ∪ {s2})


with

θ({s1}) = θ({s2}) = 1, θ({s1} ∪ {s2}) = θ(s1, s2)

and

C({s1}) = C({s2}) = 1.

The last equality follows from the fact that, for all s ∈ S, η(s) has a standard unit Fréchet distri-
bution and hence η(s)−1 has an exponential distribution with mean 1. Hence we obtain

β(S1, S2) ≤ 4


s1∈S1


s2∈S2

(2 − θ(s1, s2)). �

3.4. Proof of Theorem 2.3 and Proposition 2.1

Proof of Theorem 2.3. According to Bolthausen’s CLT for stationary mixing random fields (see
Appendix A.3), it is enough to prove that the mixing coefficients αk,l(m) defined by Eq. (21) with
X (t) = g(η(t1 + t), . . . , η(tp + t)) satisfy Eqs. (22)–(24).

For S ⊂ Zd , we define S = ∪
p
i=1{s + ti , s ∈ S}. The inclusion of σ -fields

σ({X (s), s ∈ S}) ⊂ σ({η(s), s ∈ S})

entails a comparison of the related α-mixing coefficients: for disjoint S1, S2 ⊂ Z,

αX (S1, S2) ≤ αη(S1,S2),

where the superscript X or η denotes that we are computing the α-mixing coefficient of the
random field X or η respectively. Furthermore,

|Si | ≤ p|Si |, i = 1, 2 and d(S1,S2) ≥ d(S1, S2) − ∆,

with ∆ = max1≤i< j≤p d(ti , t j ) the diameter of {t1, . . . , tp}. Hence, with obvious notations,

αX
k,l(m) ≤ α

η
pk,pl(m − ∆), k, l ∈ N ∪ {∞}, m ≥ ∆ + 1.

Similar to the proof of Corollary 2.2, we get

αX
k,l(m) ≤ α

η
pk,pl(m − ∆) ≤ p2kl sup

|t |≥m−∆
γ (t), k, l ∈ N, m ≥ ∆ + 1,

and

αX
1,∞(m) ≤ α

η
p,∞(m − ∆) ≤ p


|t |≥m−∆

γ (t), m ≥ ∆ + 1.

In view of this, Assumption (6) entails Eqs. (22)–(24), so that the random field X satisfies
Bolthausen’s CLT. �
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Proof of Proposition 2.1. Let h ∈ Zd . We apply Theorem 2.3 to the stationary random field

X (t) = 1{η(t)≤y,η(t+h)≤y}, t ∈ Zd .

Clearly E[X (t)] = exp[−θ(h)/y] and E[|X |
2+δ

] < ∞ for all δ > 0. Assumption (9) together
with γ (t) ≤ 4(2 − θ(t)) ensures that Eq. (6) is satisfied for δ large enough. Hence the estimator
p̂n(h, y) is asymptotically normal:

|Λn|
1/2


p̂n(h, y) − p(h, y)


H⇒ N (0, β2
1 )

with limit variance

β2
1 (y) =


t∈Zd

Cov[X (0), X (t)]

=


t∈Zd


exp(θ({0, h, t, t + h})/y) − exp(2θ(h))/y


> 0.

The δ-method entails the asymptotic normality of the estimator θ̂
y
n (h) = −y log p̂n(h, y):

|Λn|
1/2

θ̂

y
n (h) − θ(h)


H⇒ N (0, σ 2

1 )

with limit variance

σ 2
1 = y2 exp(2θ(h)/y)β2

1 = y2

t∈Zd


exp[(2θ(h) − θ({0, h, t, t + h}))/y] − 1


.

The proof of the asymptotic normality of θ̂
(2)
n and θ̂

(3)
n is very similar and we give only the main

lines. Using Theorem 2.3, we prove that

q̂n = |Λn|
−1


t∈|Λn |

min(η(t)−1, η(t + h)−1)

is an asymptotic normal estimator of θ(h)−1:

|Λn|
1/2(q̂n − θ̂ (h)−1) H⇒ N (0, β2

2 )

with limit variance

β2
2 =


t∈Zd

Cov

min(η(0)−1, η(h)−1), min(η(t)−1, η(t + h)−1)


.

The δ-method entails the asymptotic normality of θ
(2)
n (h) = 1/q̂n(h) with limit variance

σ 2
2 = θ(h)4β2

1 .

Similarly,

ν̂F,n(h) = |Λn|
−1


t∈|Λn |

|F(η(t)) − F(η(t + h))|

is an asymptotic normal estimator of νF (h) = E[|F(η(0)) − F(η(h))|]:

|Λn|
1/2(ν̂F,n(h) − νF (h)) H⇒ N (0, β2

3 )

with limit variance

β2
3 =


t∈Zd

Cov

|F(η(0)) − F(η(h))|, |F(η(t)) − F(η(t + h))|


.
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The δ-method entails the asymptotic normality of

θ (3)
n (h) =

1 + 2ν̂F,n(h)

1 − 2ν̂F,n(h)

with limit variance

σ 2
3 = (θ(h) + 1)4β2

3 . �

Appendix. Auxiliary results

A.1. Structure of max-i.d. random processes

The structure of sample continuous random processes on a compact metric space was
elucidated by Giné et al. [16]. Further results by Vatan [27] cover the discrete case T = Zd .
We give here similar results when T is a locally compact metric space, typically T = Rd . Such
extensions have been considered for max-stable models on R (see [11, Chapter 9.6]) but we have
found no reference in the max-i.d. case.

Let η be a continuous max-i.d. random process on C(T, R). Define its vertex function
h : T → [−∞, +∞) by

h(t) = essinf η(t) = sup{x ∈ R; P(η(t) ≥ x) = 1}.

We will always assume that h is continuous. We can then suppose without loss of generality that
h ≡ 0. Indeed, if h is continuous and finite, we may consider η − h which is a continuous max-
i.d. random field with zero vertex function; and if h is not finite everywhere, we may consider
exp(η) − exp(h) which is max-i.d. with zero vertex function.

We denote by C(T ) = C(T, [0, +∞)) the space of nonnegative continuous functions on T
endowed with the topology of uniform convergence on compact sets and set C0(T ) = C(T )\{0}.

Theorem A.1. • Let η = (η(t))t∈T be a continuous max-i.d. process on T with vertex function
h ≡ 0. There exists a unique locally finite Borel measure on C0 satisfying condition (1), called
the exponent measure of η, such that

log P

∩

k
i=1{η(ti ) ≤ yi }


= −µ


∪

k
i=1{ f ∈ C0; f (ti ) > yi }


for all k ≥ 1, t1, . . . , tk ∈ T and y1, . . . , yk > 0.

• Conversely, for any locally finite Borel measure on C0 satisfying condition (1), there exists a
continuous max-i.d. process η on T with vertex function h ≡ 0 and exponent measure µ. It
can be constructed as follows: let Φ be a Poisson point process on C0 with intensity µ and
define

η(t) = max{φ(t), φ ∈ Φ}, t ∈ T .

Proof of Theorem A.1. Let (Tn)n≥1 be an increasing sequence of compact sets such that T =

∪n≥1 Tn . We suppose furthermore that Tn is included in the interior set of Tn+1. The space
C(T ) = C(T, R+) of nonnegative continuous functions on T endowed with the topology of
uniform convergence on compact sets can be seen as the projective limit of the sequence of
spaces C(Tn, R+) endowed with the topology of uniform convergence. For m ≥ n ≥ 1, we
define the natural projections

πn : C(T ) → C(Tn) and πn,m : C(Tm) → C(Tn).
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For each n ≥ 1, the restriction πn(η) = ηTn is a continuous max-i.d. process on the compact
space Tn and according to [16], there exists a locally finite exponent measure µn on C0(Tn) =

C(Tn) \ {0} satisfying equation

log P

∩

k
i=1{η(ti ) ≤ yi }


= −µn


∪

k
i=1{ f ∈ C0; f (ti ) > yi }


for all k ≥ 1, t1, . . . , tk ∈ Tn and y1, . . . , yk > 0. Furthermore, for all ε > 0

µn[Sn,ε] < ∞ where Sn,ε =


f ∈ C(Tn); sup

Tn

f > ε

.

Let n0 ≥ 1 and ε > 0 be fixed. For n ≥ n0, define the finite Borel measure by

µ̃n0,ε
n [A] = µn[A ∩ π−1

n0,n Sn0,ε], A ⊂ C(Tn) Borel set.

Clearly, the following compatibility conditions hold true: for m ≥ n ≥ n0,

µ̃n0,ε
n = µ̃n0,ε

m π−1
n,m .

Note that since C0(T ) is a Polish space, every locally finite measure is inner regular and hence a
Radon measure. Theorem 5.1.1 in [1] states the existence of projective limits of Radon measures,
and it implies the existence of a finite Radon measure µ̃n0,ε on C(T ) such that

µ̃n0,ε
n = µ̃n0,επ−1

n , n ≥ n0.

It is then easily checked that the measure µ on C0(T ) defined by

µ[A] = sup{µ̃n0,ε[A]; n0 ≥ 1, ε > 0}, A ⊂ C0(T ) Borel set

is locally finite and enjoys the required properties. �

A.2. Slyvniak’s formula

The Palm theory deals with conditional distribution for point processes. We recall here one of
the most famous formula of the Palm theory, known as Slyvniak’s theorem. This will be the main
tool in our computations. For a general reference on Poisson point processes, the Palm theory
and their applications, the reader is invited to refer to the monograph [26] by Stoyan, Kendall
and Mecke.

The following formula is obtained thanks to Campbell’s theorem and Slyvniak’s theorem
together, and is sometimes referred to as the Campbell–Slyvniak formula. For our purpose, we
state it for C0 valued point processes. Let Mp(C0) be the set of locally finite point measures
N on C0 endowed with the σ -algebra generated by the family of mappings {N → N (A), A ⊂

C0 Borelset}.

Theorem A.2 (Campbell–Slyvniak Formula). Let Φ be a Poisson point process on C0 with
intensity measure µ. For all measurable functions F : Ck

0 × Mp(C0) → [0, +∞),

E


Ck

0

F


φ1, . . . , φk,Φ −

k
i=1

δφi


Φ(dφ1) (Φ − δφ1)(dφ2) · · ·


Φ −

k−1
j=1

δφ j


(dφk)



=


Ck

0

E[F( f1, . . . , fk,Φ)] µ⊗k(d f1, . . . , d fk).
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A.3. A central limit theorem for weakly dependent processes

Since the pioneer work of Ibragimov [17], many versions of the central limit theorem for
weakly dependent processes have been developed under various strong mixing conditions. We
present here a central limit theorem for stationary mixing random fields due to Bolthausen [2].
Let (Xk)k∈Zd be a real valued stationary random field and recall the definition of the α-mixing
coefficient (21). If Λ ⊂ Zd , we denote by |Λ| the number of elements in Λ and by ∂Λ the set
of elements k ∈ Λ such that there is l ∉ Λ with d(k, l) = 1. Let Λn be a fixed increasing
sequence of finite subsets of Zd , which increases to Zd and such that limn→∞ |∂Λn|/|Λn| = 0.
Let Σn =


h∈Λn

(Xh − E[Xh]).
For subsets S1, S2 ⊂ Zd , we define

d(S1, S2) = min{|s2 − s1|; s1 ∈ S1, s2 ∈ S2}.

Bolthausen’s central limit theorem is based on the mixing coefficients

αkl(m) = sup

α(S1, S2); |S1| = k, |S2| = l, d(S1, S2) ≥ m


(21)

defined for m ≥ 1 and k, l ∈ N ∪ {∞}.

Theorem A.3. Suppose that the following three conditions are satisfied:

α1∞(m) = o(m−d); (22)
∞

m=1

md−1αkl(m) < ∞ for all k ≥ 1, l ≥ 1 such that k + l ≤ 4; (23)

E

|Xh |

2+δ


< ∞ and
∞

m=1

md−1
|α11(m)|δ/(2+δ) < ∞ for some δ > 0. (24)

Then the series σ 2
=


h∈Zd Cov[X0, Xh] converges absolutely and if furthermore σ 2 > 0,

Σn

σ |Λn|1/2 H⇒ N (0, 1), as n → ∞.
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