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Abstract

Let n = (n(t));eT be a sample continuous max-infinitely random field on a locally compact metric
space T'. For a closed subset S C T, we denote by ng the restriction of 1 to S. We consider 8(Sy, S>),
the absolute regularity coefficient between ng, and ng,, where S1, S are two disjoint closed subsets of T.
Our main result is a simple upper bound for (S, S7) involving the exponent measure p of 17: we prove
that B(S1, $2) < 2 [Py Zs, fin £s, [1n(df), where f #g g means that there exists s € S such that
fs) = g(s).

If n is a simple max-stable random field, the upper bound is related to the so-called extremal coefficients:
for countable disjoint sets S1 and S, we obtain B(S1,52) < 43 (5, 5)es, x5, 2 — 0(s1,52)), where
0(s1, sp) is the pair extremal coefficient.

As an application, we show that these new estimates entail a central limit theorem for stationary
max-infinitely divisible random fields on 74 1n the stationary max-stable case, we derive the asymptotic
normality of three simple estimators of the pair extremal coefficient.
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1. Introduction

Max-stable random fields turn out to be fundamental models for spatial extremes since they
arise as the limit of rescaled maxima. More precisely, consider the component-wise maxima

na(t) = max &), teT,
1<i<n

of independent copies &;,i > 1, of a random field § = (£(¢));er. If the random field 5, =
(7, (t))reT converges in distribution, as n — 00, under suitable affine normalization, then its
limit n = {n(¢)};er is necessarily max-stable. Therefore, max-stable random fields play a central
role in the extreme value theory, just like Gaussian random fields do in the classical statistical
theory based on the central limit theorem.

Max-stable processes have been studied extensively in the past decades and many of their
properties are well-understood. For example, the structure of their finite dimensional distributions
is well known and insightful Poisson point process or spectral representations are available. Also
the theory has been extended to max-infinitely divisible (max-i.d.) processes. See for example
the seminal works by Resnick [20], de Haan [9,10], de Haan and Pickands [13], Giné et al. [16],
Resnick and Roy [21] and many others. More details and further references can be found in the
monographs by Resnick [20] or de Haan and Ferreira [11].

The questions of mixing and ergodicity of max-stable random processes indexed by R or Z
have been addressed recently. First results by Weintraub [29] in the max-stable case have been
completed by Stoev [25], providing necessary and sufficient conditions for mixing of max-stable
processes based on their spectral representations. More recently, Kabluchko and Schlather [18]
have extended these results and obtain necessary and sufficient conditions for both mixing and
ergodicity of max-i.d. random processes. They define the dependence function of a stationary
max-i.d. random process n = (1(¢)):ez by

P[n(0) <a,n(h) < a]
P[n(0) < alP[n(h) < al’
Then, it holds with £ = essinf 1(0):

e 1 is mixing if and only if for alla > ¢, t,(n) — O as n — +o0;
e 7 is ergodic if and only if foralla > ¢, n™! Y r_1Ta(h) > 0asn — +oo.

7,(h) = log a > essinf n(0), h € Z.

Ergodicity is strongly connected to the strong law of large numbers via the ergodic theorem. The
above results find natural applications in statistics to obtain strong consistency of several natural
estimators based on non-independent but ergodic observations.

Going a step further, we address in this paper the issue of estimating the strong mixing
coefficients of max-i.d. random fields. In some sense, ergodicity and mixing state that the
restrictions ng, and ng, to two subsets S, S become almost independent when the distance
between S; and S, goes to infinity. Strong mixing coefficients make this statement quantitative:
we introduce two standard mixing coefficients o (S, S2) and B(S1, S2) that measure how
much ns, and ng, differ from independence. The rate of decay of those coefficients as the
distance between S; and S> goes to infinity is a crucial point for the central limit theorem
(see Appendix A.3). As an application, we consider the asymptotic normality of three simple
estimators of the extremal coefficients of a stationary max-stable random field on Z¢ with
standard unit Fréchet margins.

Our approach differs from those of Stoev [25] based on spectral representations and of
Kabluchko and Schlather [18] based on exponent measures. It relies on the Poisson point process
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representation of max-i.d. random fields offered by Giné et al. [16] (see also Appendix A.1) and
on the notions of extremal and subextremal points recently introduced by the authors [14]. The
Palm theory for the Poisson point process and the Campbell-Slyvniak formula are also a key tool
(see Appendix A.2).

The structure of the paper is the following: the framework and results are detailed in the next
section; Section 3 is devoted to the proofs and an Appendix gathers some more technical details.

2. Framework and results

Let (2, 7, P) be a probability space and T be a locally compact metric space. We denote
by C(T) = C(T, [0, +00)) the space of nonnegative continuous functions endowed with the
topology of uniform convergence on compact sets and by C its Borel o-field. A measure is said
to be locally finite if it assigns finite measure to compact sets. Let p be a locally finite Borel
measure on Co(7T) = C(T) \ {0} satisfying

/L[{f € Co(T); sup f > 8}] < oo forall compact K C T and ¢ > 0, D
K

and ¢ a Poisson point process on Cy(7) with intensity p. More rigorously, we should consider
& as a random point measure rather than as a random set of points, since there may be points
with multiplicities. It is however standard to consider @ as a random set of points with possible
repetitions.

We consider the random process

n(t) = max{¢(t),p € ¢}, teT,

with the convention that the maximum of the empty set is equal to 0. Condition (1) ensures that
the random process 7 is continuous on 7 (see [16] and Appendix A.1). Another property is worth
noting: 7 is max-infinitely divisible. This means that for all n > 1, there exist independent and
identically distributed continuous random fields (; »)1<i<n such that

c
n=Vi_| Nins

where V stands for pointwise maximum and £ for equality in distribution. Note that the max-
infinite divisibility of » is a simple consequence of the superposition theorem for Poisson point
processes. Furthermore, for all + € T, the essential infimum of the random variable 7(¢) is
equal to 0. As shown by Giné et al. [16], up to simple transformations, essentially all max-
i.d. continuous random processes on 7" can be obtained in this way (see Appendix A.1). The
measure g is called the exponent measure associated to the max-i.d. process 5. It should
be stressed that Giné et al. [16] deal with upper semi-continuous functions. For the sake
of simplicity, we consider in this paper only continuous processes, even if the main results
(Theorems 2.1 and 2.2) can be extended almost directly to cover the case of upper semi-
continuous processes.

We now introduce the so-called o- and B-mixing coefficients. For more details on strong
mixing conditions, the reader should refer to the recent survey by Bradley [3] or to the
monographs [15,22,4-6,8]. For S C T aclosed subset, we denote by Fs the o-field generated by
the random variables {n(s), s € S} and by Py the distribution of the restriction ng in the set C(S)
of nonnegative continuous functions on S endowed with its Borel o-field Cg. Let S1, S C T
be disjoint closed subsets. The a-mixing coefficient introduced by Rosenblatt [23] between the
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o-fields Fgs, and Fyg, is defined by
a(S1, $2) = sup{[P(4 N B) ~ PAP(B)L; A € Fs,, B € Fs, .

The B-mixing coefficient (or absolute regularity coefficient, see [28]) between the o-fields Fg,
and Fy, is given by
B(S1. 52) = sup{ [Psus, (C) = Ps, ® P, (O)l: € € Csqus, |- @)

Since S1 and $; are disjoint closed subsets, C(S| U S>) is naturally identified with C(S1) x C(S5»).
We denote by || - |lvar the total variation of a signed measure. Equivalent definitions of the
B-mixing coefficient are

B(S1, 52) = Ps;us, — Ps; @ Ps, llvar

1 J
=3 supiz > IP(A; N B)) - IP’(AI-)IP’(B]-)|}
i=1 j=1
where the supremum is taken over all partitions {A, ..., A;} and {By, ..., By} of {2 with the

A;’sin Fg, and the B;’s in Fg,. The following inequality is worth noting

1
a(S1, ) < 5,3(51,52). 3)
Our main result is the following.

Theorem 2.1. Let 1 be a continuous max-i.d. process on T with exponent measure [ satisfying
(1). Then, for all disjoint closed subsets S1, S, C T,

B(S1, $2) < 2/(C PLf £5 0. f £s, M(df).
0

In the particular case when S and S are finite or countable (which naturally arise for example
if 7 = 7<), we can provide an upper bound for the mixing coefficient 8(S1, S») involving only
the 2-dimensional marginal distributions of the process 7.

For (s1,s2) € T2, let Ms,,s, be the exponent measure of the max-i.d. random vector
(n(s1), n(s2)) defined on [0, +00)? by

1,52 (A) = u[{f € Co(T); (f(s1), f(s2)) € A}], A C [0, +00)? Borel set.

Corollary 2.1. If S| and S are finite or countable disjoint closed subsets of T,

P15y =23 3 [ B < 1060 = 2l o @nidya),

S1E€S] $2€8,

Next, we focus on simple max-stable random fields, where the phrase simple means that the
marginals are standardized to the standard unit Fréchet distribution,

Pn(r) < yl =exp[—y 'll{y=0}, yeR,teT.
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In this framework, an insight into the dependence structure is given by the extremal coefficients
0(S), S C T compact, defined by the relation

Plsupn(s) < y] = exp[-6(S)y™'], > 0. @

seS

Theorem 2.2. Let n be a continuous simple max-stable random field on T.
For all compact S C T, the quantity

C(8) = Elsup{n(s)™"; s € S}] ®)
is finite and furthermore:

e For all disjoint compact subsets S1, S>» C T,
B(S1, S2) =2[C(S) + C(S) |[6(S) +6(S2) —6(S1 U Sy)]

o For (S1,i)ier and (S82,j)jes countable families of compact subsets of T such that §; =
Uier S1,i and S = Ujey o are disjoint,

B(S1, 82 =23 Y [CS1) + C(82.) |[6(S10) +6(S2.)) = 681U S2.)]-

iel jeJ

In the particular case when S and S, are finite or countable, the mixing coefficient 8(S1, S2)
can be bounded from above in terms of the extremal coefficient function

0(s1,82) = 0({s1,52}), s1,52€T.

We recall the following basic properties: it always holds 6(sy, s2) € [1,2]; 6(s1, s2) = 2 iff
n(s1) and n(sy) are independent; 6(s1, s2) = 1 iff n(s1) = n(s2). Thus the extremal coefficient
function gives some insight into the 2-dimensional dependence structure of the max-stable field
n, although it does not characterize it completely.

Corollary 2.2. Suppose n is a continuous simple max-stable random field on T. If S| and S, are
finite or countable disjoint closed subsets of T, then

B(SI1,S1) <4 Y D [2—0(s1,)].

sleSI S2€Sz

Remark 2.1. It should be stressed that the proof of Theorem 2.2 relies on the following
inequality: if 7 is a max-stable process with exponent measure &, then for all disjoint compact
subsets S;, S, C T

[ B #5m £ i) < [eesn+ coso][aosn +ocsn —ocs U],
0

In view of Theorem 2.1, this inequality entails the first point of Theorem 2.2. When S| = {s1}
and S = {s»}, we obtain

/P[n(h) = y1,1(52) < y2l sy s, (dy1dy2) < 2[2 = 6 (51, 52)].

This is used in the proof of Corollary 2.2.



C. Dombry, F. Eyi-Minko / Stochastic Processes and their Applications 122 (2012) 3790-3811 3795

As noted in the introduction, our main motivation for considering the strong mixing properties
of max-i.d. random fields is to obtain central limit theorems (CLTs) for stationary max-
i.d. random fields. In this direction, we focus on stationary random fields on 7 = 74 and our
analysis relies on Bolthausen’s CLT [2] (see Appendix A.3).

We denote by || = maxj<;<g4 |h;| the norm of 1 € 74 and by |S| the number of elements of
a subset S C Z?. The boundary 95 of S is the set of elements & € S such that there is /' ¢ S
withd(h, h') = 1.

A random field X = (X (¢)),cz« is said to be stationary if the law of (X (¢ + 5)),c7« does not
depend on s € Z?. We say that a square integrable stationary random field X satisfies the CLT if
the following two conditions are satisfied:

(i) the series 62 = Ztezd Cov[X (0), X (t)] converges absolutely;

(i) for all sequences A, of finite subsets of Z¢, which increase to Z¢ and such that
limy, .0 94,1/ 4x| = 0, the sequence [A,|7/2 3", 4 (X (t) — E[X(1)]) converges in law
to the normal distribution with mean 0 and variance o2 as n — 00.

Please note that we do not require the limit variance 0% to be positive; the case 02 = 0
corresponds to a degenerated CLT where the limit distribution is the Dirac mass at zero.
Bolthausen’s CLT for stationary mixing random fields together with our estimates of mixing
coefficients of max-i.d. random fields yields the following theorem.

Theorem 2.3. Suppose 1) is a stationary max-i.d. random field on 7.2 with exponent measure [
and let

VWZ/HM@S%MMSMMM@Mm,hEW-

Let g : R? — R be a measurable function and ty, ..., t, € 74 such that

Elg(n(t), ..., n(tp))zJ”s] < o0 forsomes§ >0,

and assume that
o
Z y(h) = o(m_d) and Z md=! sup y(h)s/(2+8) < 0. (6)

|h|=m m=1 lh|=m
Then the stationary random field X defined by

X(0) =g +10,....,00p+1), 1eZ
satisfies the CLT.
Condition (6) requires that y goes fast enough to 0 at infinity. It is met for example if

y(h) < C-|h|™% for some b > d max(2, (2 + 8)/8) and C > 0. @)
If 5 is simple max-stable, it follows from the proof of Theorem 2.2 and Corollary 2.2 that

y(h) <22 —06(0, h)),

with 6 the extremal coefficient function.
As an application of Theorem 2.3, we consider the estimation of the extremal coefficient for
a stationary simple max-stable random field on Z% . For h € Z¢, we note 0(h) =6(0, h). Eq. 4)
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implies
0(h) = —ylog p(h,y) with p(h,y) =P®(0) <y, n(h) <y),y >0,

suggesting the simple estimator

00 (h) = —ylog pu(h.y)  with p(h. y) = [Aal™" D Tipy<yimatmy<y) ®)

te/,

where A, is a sequence of finite subsets increasing to Z< such that [d4,|/|4,] — O as
n — oo. The fact that the naive estimator é,gl)(h) depends on the threshold level y > 0 is
not satisfactory. Alternatively, one may consider the following procedures. Smith [24] noticed
that min(n(O)_l, r](h)_l) has an exponential distribution with mean 6(h)~! and proposed the
estimator

[Ap]
> min(p()~!, @ +h)"1’

ted,

6 (h) =

Cooley et al. [7] introduced the F-madogram defined by

vp(h) = E[|[F(n(0)) — F(n(h))|] with F(y) = exp(—=1/y)1{y>0}
and showed that it satisfies
10(h) —1 1+ 2vp(h
—L or equivalently 6(h) = +—UF()
260(h)+1 1 —2vp(h)

This suggests the estimator

[Anl +2 32 [F(n(®) — F(n(t + h))|

ted,

1Al =2 3 [F(@®) = F(n(t + )|

te/,

vp(h) =

63 () =

The following proposition states the asymptotic normality of these estimators.

Proposition 2.1. Suppose that 1 is a stationary simple max-stable random field on 79 with
extremal coefficient function satisfying

2—60kh)=<C- |h|717 for some b > 2d and C > 0. O]
Then, the estimators é,E") (h),i =1, 2, 3 are asymptotically normal:

14,112 (60 (h) — 6(h)) = N(0,67) asn — oo
with limit variances

ol =y Y (expl0(h) — 0({0, h 1.1+ h})y~'1— 1),

tezd

o5 =0()* > Cov[min(n(©0) ", n()~"), min( ()", n(t + ],

tezd

o3 = (0(h) + 1)* Y Cov[|F(n(0)) — F(n())|. |F(n(t)) — F(n(t + h))]].

tezd
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Interestingly, the function y +— 0’12 is strictly convex, has limit +o00 as y — 0% or 400 and

hence it admits a unique minimizer y* corresponding to an asymptotically optimal truncation
level for the estimator é,(l]). Unfortunately, the limit variances 022 and 032 are not so explicit so
that a comparison between the three is difficult.

We illustrate our results on two classes of stationary max-stable random fields on R?.

Example 2.1. We consider the Brown—Resnick simple max-stable model (see [19]). Let (W;);>1
be independent copies of a sample continuous stationary increments Gaussian random field
W = (W());cge With zero mean and variance o2(1). Independently, let (Z;);>1 be the
nonincreasing enumeration of the points of a Poisson point process (0, +-00) with intensity
2 2dz. The associated Brown—Resnick max-stable random field is defined by

n(t) =\/ ZiexplWi(t) —o>(t)/2], t R
i=1

It is known that 5 is a stationary simple max-stable random field whose law depends only on the
negative semi-definite function V, called the variogram of W, and defined by

V(h) =E[(W(+h) —W@)*, heR?
In this case, the extremal coefficient function is given by

0(s1,52) =2W(y/V(s2—51)/2), s1,5 € RY,

where ¥ denotes the cdf of the standard normal law. Using the tail equivalent

e—x2/2
1— ¥(x)~ as x — +o00,
x/2m
we see that Eq. (9) holds as soon as

iminf D Vd.
h— o0 10g |h|

This completes the necessary and sufficient conditions for ergodicity or mixing of Brown—
Resnick processes given by Kabluchko and Schlather [18].

Example 2.2. Our second class of example is the moving maximum process by de Haan and
Pereira [12]. Let f : R? — [0, 400) be a continuous density function such that

/f(x)dx:l and / sup f(x +h)dx < oco.
Rd R

4 h|<1

Let Y%°, 8(z..u;) be a Poisson random measure on (0, +-00) x R? with intensity z~2dzdu. Then
the random field

n)=\/Zift-U), teR?
i=1

is a stationary sample continuous simple max-stable random field. The corresponding extremal
coefficient function is given by

0(s1, s2) :/ max(f(s; —x), f(s2 —x))dx, s1,5 € RY.
Rd
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Some computations reveal that Eq. (9) holds true as soon as
. log f(h)
imsup ————

h—oo l0g|h]
withk; =3 andky; =2(d + 1) ford > 2.

< —Kg

3. Proofs
3.1. Strong mixing properties of extremal point processes

In the sequel, we shall write shortly Co = Co(T). We denote by M,(Co) the set of locally
finite point measures N on Cy endowed with the o -algebra generated by the family of mappings
{N — N(A), A C Cy Borel set}. We introduce here the notion of S-extremal points that will
play a key role in this work. We use the following notations: if fi, f> are two functions defined
(at least) on S, we note

fi=s f» ifandonlyifVs € S, fi(s) = fa(s),
fi<s f» ifandonlyifVs € S, fi(s) < fa(s),
f1 £s fo ifandonlyifds €S, fi(s) > fa(s).

A point ¢ € @ is said to be S-subextremal if ¢ <g 7, it is said S-extremal otherwise, i.e. if there
exists s € S such that ¢ (s) = n(s). In words, a S-subextremal point has no contribution to the
maximum 7 on S.

Definition 3.1. Define the S-extremal random point process 45; and the S-subextremal random
point process $¢ by

P ={ped ¢#£sn and o5 ={p e P; ¢<sn}.

The fact that @;‘ and &g are well defined point processes, i.e. that they satisfy some mea-
surability properties, is proved in [14, Appendix A.3]. Clearly, the restriction s depends on @;
only:

n(s) = max{p(s); ¢ € 5}, se€S.

This implies that the strong mixing coefficient 8(S1, S»2) defined by Eq. (2) can be upper bounded
by a similar S-mixing coefficient defined on the level of the extremal point process @‘i , @;2. For

i=1,2,1et Pq;; be the distribution of @;: on the space of locally finite point measures on Cy

and let P( q;;rl’ (p;rz ) be the joint distribution of (@‘L], @St). We define

It holds
B(S1, S2) < BB, OF). (an

The following theorem provides a simple estimate for the S-mixing coefficient on the point pro-
cess level. It implies Theorem 2.1 straightforwardly and has a clearer interpretation.
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Theorem 3.1. e The following upper bound holds true:
(&g, O5) < 2P[ &5 N D, # 0] (12)
with

PLOE N 0F 0] < fc B(f £, 1. f £, 1) n(df). (13)
0

e [f the point process ® is simple (in particular in the max-stable case), the following lower
bound holds true:
B(B;. BF) = P& N &L #0] (14)

2

Clearly, Egs. (11)—(13) together imply Theorem 2.1.

Remark 3.1. The upper and lower bounds in Theorem 3.1 are of the same order, and hence
relatively sharp. It is not clear however how to bound B(S;, S2) from below and how sharp the
upper bound in Theorem 2.1 is.

3.2. Proof of Theorem 3.1

The upper bound for the mixing coefficient (<P+1, @;‘2) defined by Eq. (10) relies on a
standard coupling argument. There are indeed deep relationships between S-mixing and optimal
couplings and we will use the following result (see e.g. [22, Chapter 5]). Note that the lemma
holds true for any pairs of random variables, but for the sake of future reference, we state it for
extremal point processes.

Lemma 3.1. Ona probability space (§2, F, P), suppose that the random variables
(‘I);:l’ 45;2[), i = 1,2 are such that:

(i) the distribution of (&3, 8" is P, #t 00)

.. T 42 =42, .
(ii) the distribution of (@Sl , (I)Sz ) is qu;rl ® P¢S+2.
Then,
B, o3 < P23, o)) # (232, o)),

We say that the random variables (@;’li, @;’; ), i = 1, 2 satisfying (i) and (ii) realize a coupling
between the distributions P 45;1 , @Erz ) and P¢;r1 ® P¢S+2 .

In order to construct a suitable coupling, we need the following lemma describing the
dependence between @; and 9.

Lemma 3.2. Let S C T be a closed set. The conditional distribution of ®g with respect to @;
is equal to the distribution of a Poisson point process with intensity 1y «cpyu(df).

Proof of Lemma 3.2. Note that in the particular case when T is compact and 45; is finite almost
surely, Lemma 3.2 follows from [14, Theorem 2.1 and Corollary 2.1]. For T non compact, the
proof needs to be modified in a non straightforward way.

Clearly, the event { f <g n} depends only on the restriction ng and is hence measurable with
respect to the o-field generated by @;“. In order to prove the statement, let Ay, ..., Ay C Cq be
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disjoint compact sets and ny, ..., n;y > 0. Let A = Uf:] A;andn = Zle n;. We compute the
conditional probability with respect to 43;“ of the event

(D5 (AD = ni1, ..., By (Ap) = ng).
This event is equal to {®; € B} with B = {N € M,(Cop); N(A1) = ny,..., N(Ax) = g}

We remark that it is realized if and only if there exists a n-tuple (¢1, . . ., ¢;) of atoms of & such
that:

— the atoms ¢y, ..., ¢, are S-subextremal;

- 27:1 Sd)} € B’

— the point measure ¢ — Z’}:l ¢, has no S-subextremal atom in A, i.e. it belongs to

D = {N € M,(Cp); Ng(A)=0}.

Then the n-tuple (¢1,...,¢,) is unique up to permutation of the coordinates. The above
observations entail that for all measurable C C M ,(Cyp),

P[®! € C, &5 € B]
1
= HE[[% Vatecylivielnl, ¢ <s ;7}1{2;:1 5¢,-€B}1{45—Z§’:1 5,<D) P(de¢r)

n—1
X (D — 8y))(dep2) - - (@ - Z%-)(daﬁn)]-
i=1

The Campbell-Slyvniak formula entails
P[&] € C, &5 € B]

1
=E |:1{¢;GC}1{¢S(A)—0}; o 1{2;’=15fl.63} ®;l=1(1{fi <s n}ﬂ(dfi)):| : (15)
]

Summing this relation over the different values of ny, ..., ny € N and the related sets B = {N €
M,(Cp); N(A)) =ny,..., N(Ax) = ni}, we obtain

PIEY € C1=E[1ptec) a5 yo R[S € 45 f <snp]].

So we can rewrite Eq. (15) as

P[] € C, &5 € B] = E[1{¢;EC}1{¢E(A):0} exp[({f € A; f <snD]K (s, B)],
where

exp[—u({f € A; f<sn)]

K(ns, B) = P

is the conditional probability of {&; € B} with respect to @;r (note it depends on 515; only
through the restriction ngs). We recognize the distribution of a Poisson random measure with
intensity 1{y <5,y (df) and this proves Lemma 3.2. [

We now construct the coupling providing the upper bound (12).
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Proposition 3.1. Let (5, 1) be an independent copy of (P, ) and define
P = 45;“1 U {5 € 5; q$<5l n}. (16)
The following properties hold true:
o @ has the same distribution as ® and @ and satisfies
o =df. Dy ={pe P §<snk a7

° (@“Ll @;‘2) and (d5+l, 5;2) is a coupling between P(@;’@Sp and P¢S+I ® Pq§;2 such that
[(¢+ ¢+);£(45+,@+)] <2P[8 N B #0). (18)

Proof of Proposition 3.1.

e Eq. (17) follows from the construction of @: consider
=\ e, teT:
4565
the maximum 7 is achieved on S; by the Sj-extremal points Q5+, and the definition (16)
ensures that 77 and 5 are equal on Sj so that Eq. (17) holds.

Furthermore, conditionally on @S , the distribution of {$ € 715 5 <g, 1} is equal to
the distribution of a Poisson point process with intensity 1y <s, m(df). Accordmg to

Lemma 3.2, this is the conditional distribution of @S given €P+ , Whence (Q5+, @Sl) has the

same distribution as (§Z5+I, d l). We deduce that & = <P+I U S| and P = @J: U <I> S have the
same distribution.

e The couphng property is easily proved: since @ and 9 have the same distribution, the law
of (@S , @"’) is equal to P(¢+ ¢+), since @ and & are independent, (@J“, ¢+) has law

P¢+ ® P¢+
We are left to prove Eq. (18). Since @+ = Q5+, we need to bound the probability

P[ #* @*] from above. By construction, D is obtamed from & by removing the points
¢ S (_13 such that qb #s, n and adding the points ¢ € Q5+ Hence, it holds

(D5, # DL C{3p e 0. ¢ £5,MUEP € 3. & £ ).
Noting the equality of events

3 e .0 £s,M=130ec ¢+ N ¢+} = {¢+ N 45+ # 0},
we obtain

P[qﬁ + 45+]<]P>[q5+m45+ # 0]+ P[3p € b ¢’7<s1
Since @ and @ have the same law, we have

P[&§ N Y # 0] =P[D] N DL # 0.
Hence, Eq. (18) follows from the upper bound

P13§ € 05, ¢ #g, 0] < P&, N &5, + 0]
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that we prove now. Using symmetry and exchanging the roles of ¢ and @ on the one hand
and the roles of S; and $> on the other hand, it is equivalent to prove that

P[3p € f, ¢ #£5, 71 < PLO N OF # 0.

We conclude the proof by noticing that the inclusion of events

(30 € 5.0 £5,7) C13b € &5, £5,7)

entails

P3¢ € 5. ¢ £5, 1 < P3¢ € &5 . ¢ £5, 7 =PI&S N &g, # 0] O

We now complete the proof of Theorem 3.1 by proving Egs. (13) and (14).
Proof of Eq. (13). We observe that
(B5 N OL £0) =3 € D¢ £g, 1. £, 1)
which entails
PLOS NOL #II<E| D> lipsg nots,n)
Ppe®

Noting that ¢ #£g, nifand only if ¢ £g max(P—{¢}), we apply the Campbell-Slyvniak formula
(see Appendix A.2) and compute

E|> Lgzs nozs,m | =E > Lig £, max(S—{g}).¢ £, max(S—(g})
ped pecd

= L Ell{s£5, max(®). f £, max(2)) 11 (d )
0

2/@ PLf £s 0. f #s,nlu(df). O

Proof of Eq. (14). For any measurable subset C C M,(Co) x M, (Cyp),
B(oS, 0F) = [PL(®S,, 8)) € C1 - PI(&],, &F) € C]|

where @ is an independent copy of @. We obtain the lower bound (14) by choosing the subset
C ={(My, M3) € M;,(Cp) x Mp(Cp); My N My # 0},

This yields indeed
B(D3,, 03) = [PL&S N &g, 3 0] — PP N &, 0]

and in the case when @ is a simple point process, i.e. when the intensity measure p has no atom,
we have

P[&) N BE #B =P[OND#P] =0. O
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3.3. Proof of Corollaries 2.1 and 2.2 and Theorem 2.2

Proof of Corollary 2.1. We have for all f € Cy,
{f £sy 0. [ #£s,n} = {31, 52) € S1 x 82, f(s1) = n(s1), f(s2) = n(s2)}
= Usies) Usyes, (n(s1) < f(s1), n(s2) < f(s2)}

whence, for S| and S, finite or countable,

PLf £sn f £s,n1 < D > Pln(si) < f(s1).n(s2) < fs2)]-

S1E€S] $2€85

As a consequence, the integral in Theorem 2.1 satisfies

/C PLf £5 10 f s, 1 n(df)

<Yy /COP["(“) < 0. 1) = Fs)]ndf)

S1E€S1 $2€85
2
=2 2 [ PO = w06 = 2l @nidy).
S1€S1 SQESQ [0'+OO)

In the last line, we have used the fact that iy, 4, is the image of the measure p under the mapping

[ (fls), f(s2)). O

Proof of Theorem 2.2. We recall that for a simple max-stable random field, the exponent
measure u is homogeneous of order —1, i.e. u(cA) = ¢ 'u(A) for all A ¢ Cy Borel set
and ¢ > 0. Also the assumption of standard unit Fréchet marginals implies

)=y, tel,y>o0.

These conditions imply (see [16, Proposition 3.2] or [11, Theorem 9.4.1 and Corollary 9.4.2])
that u can be written as

M(A)=/ / 1{rfeA}r_2dVU(df)
0o Jc,

where o is a probability measure on Cy such that

/ fM®odf)=1 foralreT,
Co
and

/ sup f(s)o(df) < oo forall compactS C T.
Cp seS
Using this, note that for all compact S C T and y > 0,

Plsup f(s) = yl = exp[—un({f € Co; sup f(s) > y}]

seS seS

= exp |:_/(C 1{suprf(s)>y} r_zdra(df)i|
0

ses

= exp [—yl /C sup f(s) o(df)] :

0 s€S
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It follows that the extremal coefficient 6(S) defined by (4) is equal to

9(S)=/(C sup f(s) o (df). (19)

0 s€S

We now consider C(S) defined by Eq. (5). Since S C T compact,

—1
CS)=E |:<in§77(S)> } ,

we need to provide a lower bound for infscg 7(s). To this aim, we remark that
inf = inf ma > max inf .
?els n(s) ies ¢>e£¢(S) - ¢e£;I€1S o)
The right hand side is a random variable with unit Fréchet distribution since
Plmax inf ¢ (s) < y] = P[V¢ € &, inf ¢(s) < y]
ped seS seS

= exp(—u({f € Co; Inf f(s) > y})

and
nw({f € Co; inf f(s) > y}) =y f inf £(s) o (df).
s€S Cy S€S

Hence, if fCo infyeg £(s) o (df) > 0, we obtain

-1

—1
C(S)=E [(Siggnm) } < E[(g&ag Siggcp(s))—l] = ( [C 0 Sirelgf(s)a(df)> < c0.

For arbitrary compact S C 7T, we may however have fCo infses f(s)o(df) = 0. But, if
S = B(so, ¢) is a closed ball with center so and radius &, the monotone convergence theorem
implies

/ inf f(s)a(df)—)/ fGo)o(df)y=1 ase— 0,
C Co

o seB(sg.€)

so that fCo infeB(sg,e0) () 0 (df) > 0 and C(B(so, €9)) < oo for g9 small enough. The result
for general S follows by a compacity argument: there exist sy, ..., s and €1, ..., & such that
S C Ule B(s;, €;). Hence,

supn(s)"!' < max  sup n(s)"' < Z sup n(s)”!
s€S I=i<k seB(si,er) =1 SE€B(si,€)
and
k k
c($) =E[supn()™" | < Y E[ swp n)7 =Y CBGsie0) < oc.
seS i=1 S€B(si.ei) i=1

This proves the fact that C(S) is finite.
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e The upper bound for S(S1, S2) given by Theorem 2.1 can be expressed as
B(S1. S2) < 2 fc PLf £, f #5,mi(df)
0

Z/C /(; Plr f £s, .1 f £s, nlr2dro (df)
0

o0
2f / E[l{rz inf n(s1)/f (s1).r= inf 17(32)/f(S2)}]r_2drU(df)
Cp JO 51€5] 5265

oG )\
=2 E f , f df). 20
/(Co |:max (Sluelsl J(s1) 5268, f(Sz)) :| o@n 20

We then introduce the upper bound
o) ()
max [ inf , inf
S1EST f(Sl) 52682 f(Sz)

< max(sup 7(s1)~", sup n(s2)~") min(sup f(s1), sup f(s2))

s1€S8) $2€8572 s1€S8] 52€8

whence we deduce

B(S1. $2) = 2E[max(sup n(s»)™". sup n(s2)”")]

s1€8] 5268

x min( sup f(s1), sup f(s2)) o (df)

Co S1€8] $2ESH

< 2E[ sup n(s) ™" + sup n(s)”'|

31651 SzGSz

x [ min(sup f(s1), sup f(s2))o(df)

Co S1E€S] $2€SH
= 2[C(S1) + C(82)] [6(S1) + 6(S2) — 6(S1 U )]
In the last equality, we use Eq. (5) defining C(S) and Eq. (19) defining 6 (S) together with the
following simple equality

min( sup f(s1), sup f(s2)) +max(sup f(s1), sup f(s2))

s1€8] $2€852 s1€8] 52685
= sup f(s1)+ sup f(s2).
S1€S8] $2€S8H

e The second point is straightforward since
PLf #syn. f #s,nl =PlEi el f £5,n.3j €. [ £s, 1]
< DD B #sm S sy,

iel jeJ
so that
BS1LSH <Y [E PLS £y, f #5,, mu(df)
iel jeJ Y0

<23 3 [C(S1) + C(S2, )] [0(S1.0) +0(S2.)) — 0(S1 U2 )] O
iel jeJ
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Proof of Corollary 2.2. This is a straightforward consequence of the second point of Theo-
rem 2.2 with S = Uy, es, {51} and S2 = Uy, es, {s2}. It holds indeed

B(S1.$2) <2 Y D [Clsih) + CUs2D] [UsiD) +0({s2}) — Ofsi} U {s2})]

.Y1€S1 .YzESQ
with
O{s1h) =0({s2h) =1, O({s1} U {s2}) = 0(s1, 52)

and

C{s1h) =C({s2h) = L.

The last equality follows from the fact that, for all s € S, (s) has a standard unit Fréchet distri-
bution and hence 1 (s)~! has an exponential distribution with mean 1. Hence we obtain

B(SI, S <4 > (2—0(s1,5). O

S1€S1 3‘2632

3.4. Proof of Theorem 2.3 and Proposition 2.1

Proof of Theorem 2.3. According to Bolthausen’s CLT for stationary mixing random fields (see
Appendix A.3), it is enough to prove that the mixing coefficients cy ;(m) defined by Eq. (21) with
X(t)=gnt1+1),..., n£tp + t)) satisfy Eqgs. (22)—(24).
For § C Z4, we define S = U;_{s + 1, s € S}. The inclusion of o-fields
o({X(s),s € S Co({nis),s € 5)
entails a comparison of the related «-mixing coefficients: for disjoint Sy, S» C Z,

a® (81, 5) < a"(51. $2).

where the superscript X or n denotes that we are computing the «-mixing coefficient of the
random field X or 7 respectively. Furthermore,

IS = pISil, i=1,2 and d(S1,5) = d(S1,5) - 4,

with A = max;<;j<p d (%, t;) the diameter of {#1, ..., t,}. Hence, with obvious notations,
al (m) < an pm—=2), kleNUfool,m>A+1.

Similar to the proof of Corollary 2.2, we get

,(m — A) < pzkl sup y(), k,leNm=>A+1,

X
ak)l(m) <«
|tI=m—A

n
pk,p

and

afo(m) <o oom—2) <p Y y@), m=A+1

[t|l>=m—A

In view of this, Assumption (6) entails Eqs. (22)—(24), so that the random field X satisfies
Bolthausen’s CLT. [
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Proof of Proposition 2.1. Let i € Z¢. We apply Theorem 2.3 to the stationary random field

X() = lywyzymariy=y).  t € Z°.

Clearly E[X ()] = exp[—6(h)/y] and E[|X|?>T%] < oo for all § > 0. Assumption (9) together
with y(t) < 4(2 — 6(¢)) ensures that Eq. (6) is satisfied for § large enough. Hence the estimator
Pn(h, y) is asymptotically normal:

14012 (BB, ) = p(h, 3)) = N, BD
with limit variance

BL(») = > Cov[X(0), X ()]

tezd

= 3 (exp@((0. .1, 1+ h))/y) — exp@0 () /y) > 0.

tezd

The §-method entails the asymptotic normality of the estimator ény (h) = —ylog pn(h, y):
4a (82 () = 6(h)) = N (0, o)
with limit variance

of = y2exp0n)/MB] =y Y (expL20() — 6({0. h .t +h})/¥] = 1).

tezd

The proof of the asymptotic normality of é,@ and 67,53) is very similar and we give only the main
lines. Using Theorem 2.3, we prove that

Gu = 14,171 Y min()~! e+ )7
te|Ap|

is an asymptotic normal estimator of o(h)~1:
14" Gn = 6™y = N (0, B3)
with limit variance

B3 =Y Cov[min(n(0)", n()~"), min(n()~", n(t + H™"H].

tezd
The §-method entails the asymptotic normality of 0,52) (h) = 1/g, (h) with limit variance
o? =60(h)*B?.
Similarly,

bra(h) = 14,170 Y IF((0) = F(p(t + )|
te| Ay

is an asymptotic normal estimator of vg(h) = E[|F (n(0)) — F(n(h))|]:
|4 2 BF n(h) = vi(h) = N (O, B5)
with limit variance

B = Cov[IF(0)) — F(n()I, |F(n(t)) = F(n(t + h))|]-

tezZd
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The §-method entails the asymptotic normality of
1+ 20 4 (h)
1 —20p,(h)

with limit variance

of =)+ 1. O

63 (h) =

Appendix. Auxiliary results
A.l. Structure of max-i.d. random processes

The structure of sample continuous random processes on a compact metric space was
elucidated by Giné et al. [16]. Further results by Vatan [27] cover the discrete case T = 74,
We give here similar results when 7 is a locally compact metric space, typically T = R<. Such
extensions have been considered for max-stable models on R (see [11, Chapter 9.6]) but we have
found no reference in the max-i.d. case.

Let n be a continuous max-i.d. random process on C(7, R). Define its vertex function
h:T — [—o0,+00) by

h(t) = essinf n(z) = sup{x € R; P(n(r) > x) = 1}.

We will always assume that & is continuous. We can then suppose without loss of generality that
h = 0. Indeed, if & is continuous and finite, we may consider n — 7 which is a continuous max-
i.d. random field with zero vertex function; and if / is not finite everywhere, we may consider
exp(n) — exp(h) which is max-i.d. with zero vertex function.

We denote by C(T') = C(T, [0, +00)) the space of nonnegative continuous functions on T
endowed with the topology of uniform convergence on compact sets and set Co(7) = C(T')\ {0}.

Theorem A.1. e Let n = (n(t))ser be a continuous max-i.d. process on T with vertex function
h = 0. There exists a unique locally finite Borel measure on Cq satisfying condition (1), called
the exponent measure of 0, such that

log P[NE_, (n@) = )| = —w[UE 1S € Coi £ (1) > 31}

forallk > 1,t,....,tr € T and y1,...,yr > 0.

e Conversely, for any locally finite Borel measure on Cy satisfying condition (1), there exists a
continuous max-i.d. process n on T with vertex function h = 0 and exponent measure (. It
can be constructed as follows: let ® be a Poisson point process on Co with intensity y and
define

n() =max{p(),p € &}, reT.

Proof of Theorem A.1. Let (7;,),>1 be an increasing sequence of compact sets such that 7 =
Un>1 T,,. We suppose furthermore that 7}, is included in the interior set of 7,,11. The space
C(T) = C(T,R™") of nonnegative continuous functions on T endowed with the topology of
uniform convergence on compact sets can be seen as the projective limit of the sequence of
spaces C(T,,, R*) endowed with the topology of uniform convergence. For m > n > 1, we
define the natural projections

w, : C(T) - C(T,) and m,,, : C(Ty) — C(Tp).
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For each n > 1, the restriction 7,(n) = 57, is a continuous max-i.d. process on the compact
space T, and according to [16], there exists a locally finite exponent measure u, on Co(7,) =
C(Ty) \ {0} satisfying equation

tog P ME_ (n(1) < vi) | = —ua[ UL, (f € Coi £ (1) > wi)]
forallk > 1,#1,...,tx € T, and y1, ..., yr > 0. Furthermore, for all ¢ > 0

UnlSnel <00 where S, = {f e C(T,); sup f > e].
Ty

Letng > 1 and ¢ > 0 be fixed. For n > n¢, define the finite Borel measure by

AOC[A]l = palA N, L Supel, A C C(Ty,) Borel set.

no,n
Clearly, the following compatibility conditions hold true: for m > n > ny,

~ng,e _ ~ng,e_—1

MZO f= 'u:lno gnn,m'
Note that since Co(T') is a Polish space, every locally finite measure is inner regular and hence a
Radon measure. Theorem 5.1.1 in [1] states the existence of projective limits of Radon measures,
and it implies the existence of a finite Radon measure "¢ on C(T') such that

~ng,& __ ~nog,&—1
w0t = p" 7, n > no.

It is then easily checked that the measure u on Co(7") defined by
u[A] = sup{a"°[A]; no > 1,e >0}, A C Cy(T) Borel set

is locally finite and enjoys the required properties. [l
A.2. Slyvniak’s formula

The Palm theory deals with conditional distribution for point processes. We recall here one of
the most famous formula of the Palm theory, known as Slyvniak’s theorem. This will be the main
tool in our computations. For a general reference on Poisson point processes, the Palm theory
and their applications, the reader is invited to refer to the monograph [26] by Stoyan, Kendall
and Mecke.

The following formula is obtained thanks to Campbell’s theorem and Slyvniak’s theorem
together, and is sometimes referred to as the Campbell-Slyvniak formula. For our purpose, we
state it for Cy valued point processes. Let M, (Cy) be the set of locally finite point measures
N on Cp endowed with the o -algebra generated by the family of mappings {N — N(A), A C
Cop Borelset}.

Theorem A.2 (Campbell-Slyvniak Formula). Let ® be a Poisson point process on Cqy with
intensity measure |i. For all measurable functions F : (C](‘) x Mp,(Cp) — [0, +00),

k k—1
E [/C F (¢1, b, B — Zs,,ﬁ,.) B(dpr) (B — 85)(de2) - - (@ - Z&,,,) (dqsk)]
0 i=1 j=1

= [ PG fo DI ),

0
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A.3. A central limit theorem for weakly dependent processes

Since the pioneer work of Ibragimov [17], many versions of the central limit theorem for
weakly dependent processes have been developed under various strong mixing conditions. We
present here a central limit theorem for stationary mixing random fields due to Bolthausen [2].
Let (Xg)ycza be areal valued stationary random field and recall the definition of the o-mixing
coefficient (21). If A C Z¢, we denote by |A| the number of elements in A and by dA the set
of elements k € A such that there is [ ¢ A with d(k,l) = 1. Let A, be a fixed increasing
sequence of finite subsets of 74, which increases to Z¢ and such that lim,,_, o0 [d4,|/|4,] = 0.
Let 5y = ) e n, (Xn — E[XpD).

For subsets Sy, S» C 74, we define

d(S1, 82) = min{|sy — s1]; 51 € S1, 52 € $2}.
Bolthausen’s central limit theorem is based on the mixing coefficients

i (m) = sup{a(S1, $2); [Si] =k, [S2] =1, d(S1. $2) = m} @
defined form > 1 and k, [ € N U {oo}.

Theorem A.3. Suppose that the following three conditions are satisfied:

Uoo(m) = o(m™); (22)
o
Z m? Vo (m) < oo forallk > 1,1 > 1 suchthatk +1 < 4; (23)
m=1
o0
E[1X4*"°] <00 and Z m? Yoy (m)|YCH < 0o for some § > 0. (24)
m=1

Then the series 0> = Y nezd Cov[Xo, X;] converges absolutely and if furthermore 02 >0,

L

W:N(O,l), asn — 0.
n
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