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Abstract
The Klein curve is de�ned by the smooth plane model X 3Y + Y 3Z + Z3X = 0. We give all

embeddings in higher dimension with a linear action of the automorphism group. The curve has
24 expoints, i.e. points where the tangent intersects with multiplicity three. For even charac-
teristic, the embeddings yield interesting con�gurations of the expoints and good linear codes.
c© 1999 Published by Elsevier Science B.V. All rights reserved.

For the Klein curve in even characteristic, we give the essentially unique embedding
of degree six in three dimensions with the property that no plane contains more than
�ve expoints. The expoints are de�ned over the �eld of eight elements. In PG(3; 8);
there exists a ‘knot’, a unique point not in any plane through �ve expoints. Section 1
gives the combinatorial properties of the con�guration. Section 2 describes some of
the special behaviour of the Klein curve in even characteristic. Section 3 gives the
construction of a best possible, easily decodable code of type [24; 16; 7] over F8. Section
4 describes, for arbitrary characteristic, the invariant embeddings of the Klein curve.

1. Con�guration in PG(3; 8)

We give a con�guration of 25 planes in PG(3; 8) such that points are contained in
one, three or �ve of the planes. The interpretation in terms of the Klein curve follows
in the next section.

Theorem 1. For a set of N points in PG(3; 8); such that no three are on a line;
let ni be the number of planes intersecting the set in precisely i points. If at most
three ni are nonzero; then either N = 65 with n1 = 65; n9 = 520; or N = 25 with
n1 = 175; n3 = 200; n5 = 210:
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Table 1
Con�guration in PG(2; 8) and its dual

7 42 24 7 42 24

7 3 6 0 7 3 6 0
42 1 4 4 42 1 4 4
24 0 7 2 24 0 7 2

Proof. The result follows from numerical constraints. After solving
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for ni; nj; nk ; for {i; j; k}⊂{1; 2; : : : ; 10}, the equation ni + nj + nk =585 for N has few
solutions in integers, and only two feasible cases remain.

The case N = 65 is realized by an ovoid, in particular by the rational points of an
elliptic quadric [11]. For the case N = 25, we �rst consider a con�guration in a plane
H of PG(3; 8). Let F be a Fano plane in H. Among the lines of H not in F there
are 42 lines that pass through a point of F and 24 lines that do not. Among the points
of H not in F there are 42 points that lie on a line of F and 24 points that do not.
Table 1 gives the tactical decomposition. The classes in the decomposition are orbits
under the action of the automorphism group SL(3,2) of F. We choose as generators

S =


 0 1 0
1 0 0
0 0 1


 ; T =


 1 1 0
1 1 1
0 1 0


 :

The Frobenius collineation (x :y : z) 7→ (x2 :y2 : z2) acts on the classes. It divides the
class P of 24 points into eight triples (P; P2; P4). Through a point P ∈ P pass seven
lines that intersect P in four points plus the two lines PP2; PP4. We turn this into a
partial geometry pg(K =4; R=8; T =4) by considering P; P2; P4 to be collinear with
the virtual point O. This gives a set L of 42+8=50 lines, with each line intersecting
P ∪ O in K = 4 points, and with R= 8 lines through each P ∈ P ∪ O.

Proposition 1. The pair (P∪O;L) de�nes a partial geometry pg(4; 8; 4); or a quasi-
symmetric 2 − (25; 4; 1) design. It has automorphism group (Frob) × SL(3; 2). The
dual partial geometry pg(8; 4; 4); or the block graph of the design; is a strongly
regular graph srg(50; 28; 15; 16). Its adjacency matrix A has eigenvalues (−4; 3; 28)
and satis�es A2 + A= 16J + 12I .
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Table 2
Con�guration in PG(3; 8)

7 24 42 8 168 168 168

1 7 24 42 0 0 0 0
14 3 0 6 4 36 12 12
42 3 0 6 0 16 24 24
24 0 2 7 1 21 7 35
168 0 2 7 1 21 23 19
168 1 4 4 2 18 22 22
168 1 4 4 0 24 20 20

Table 3
Dual con�guration in PG(3; 8)

1 14 42 24 168 168 168

7 1 6 18 0 0 24 24
24 1 0 0 2 14 28 28
42 1 2 6 4 28 16 16
8 0 7 0 3 21 42 0
168 0 3 4 3 21 18 24
168 0 1 6 1 23 22 20
168 0 1 6 5 19 22 20

Proof. See [12,19] for de�nitions and general properties. The 2− (25; 4; 1) design was
�rst found by [5,23]. The design has 504 automorphisms. The other nonisomorphic
designs with the same parameters all have less automorphisms [17].

The group SL(3; 2) acts on points from the left, and on lines from the right. Since
it is closed under transposition, the orbits of points and lines are similar. For the
action of SL(3,2) on PG(3; 8) this is no longer the case. A faithful four-dimensional
representation of SL(3,2) �xes either a point or a plane. For a representation that �xes
the plane at in�nity, let

S =



0 1 0 1
1 0 0 1
0 0 1 1
0 0 0 1


 ; T =



1 1 0 0
1 1 1 0
0 1 0 0
0 0 0 1


 :

The action on the points in the plane at in�nity is the one we have seen above. But the
action on the planes is di�erent from that on the points. Tables 2 and 3 give the sizes
of the orbits and the tactical decomposition. Actually there are nine orbits. Three orbits
of 56 points each are essentially the same. They di�er by the action of the Frobenius
collineation and are represented by their union. Similarly for three orbits of 14 planes
each. The planes in the fourth and �rst column of the dual con�guration yield a set
P′ ∪ O′ of 25 planes with only a few distinct small intersection numbers. This gives
the following result.
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Theorem 2. The plane of P′ ∪ O′ realize the case N = 25 in Theorem 1. A point of
PG(3; 8) is contained in either one (175); three (200); or �ve (210) of the 25 planes.

2. The Klein curve

We will interpret the con�guration of 25 planes P′ ∪O′ in PG(3; 8) in terms of the
Klein curve and its dual curve. The Klein curve

K : X 3Y + Y 3Z + Z3X = 0

is the essentially unique plane curve of degree four with 168 automorphisms. The curve
has good reduction for p 6= 7. Other models are also used [6,7,2,10]. The Hessian of
the Klein curve has equation

H : X 5Z + Y 5X + Z5Y − 5X 2Y 2Z2 = 0:
It has good reduction only for p 6= 2; 7. For p 6= 2; 3, the dual curve of the Klein
curve has equation

K∗: 4K3 − 27H 2 = 0:
For p = 2 and p = 3, respectively, the dual curve K∗ is isomorphic to the Hessian
H and to the curve K; respectively. In both cases, the natural map K → K∗ is purely
inseparable. The case p=3 is dealt with in [14, Exercise 2.4, Chapter IV]. For p=2,
we have morphisms

K
(KX :KY :KZ )−→ H (2)

(HX :HY :HZ )−→ K (8);

with factorization

K
(y2z : z2x : x2y)−→ H

(x2 : y2 : z2)−→ H (2);

H (2)
(y3+z2x : z3+x2y : x3+y2z)−→ K (2)

(x4 : y4 : z4)−→ K (8):

The morphism K → H is the reduction of the morphism

K
(y2z : z2x : x2y)−→ S6: X 5Z + Y 5X + Z5Y − 3X 2Y 2Z2 = 0:

The curve S6 has seven double points. In even characteristic, they are the singularities
of the Hessian H . And they correspond to the seven bitangents of the Klein curve. It
is straightforward to give a smooth model �S6 of S6 in three dimensions.
Klein uses the traingle XYZ=0 as Ref. [16]. Its three vertices O0; O1; O2 are expoints

of the Klein curve. The triangle shares 21 automorphisms with the curve. For � a �xed
primitive seventh root of unity, they are generated by

� : (x :y : z) 7→ (y : z : x); � : (x :y : z) 7→ (�x : �4y : �2z):

The curve S6 is invariant under �; �. The double points are in a single orbit that is
represented by (1 : 1 : 1).
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Lemma 1. The functions y2z; z2x; x2y intersect the Klein curve with multiplicity at
least two in O0; O1; O2. So does the function xyz. The embedding (X : Y : Z : T ) =
(y2z : z2x : x2y : xyz) gives a desingularization �S6 of S6; with ideal

I = 〈T 2X + TY 2 + YZ2; T 2Y + TZ2 + ZX 2; T 2Z + TX 2 + XY 2; T 3 − XYZ〉:

Proof. The embedding is de�ned with the divisor 3L−2(O0 +O1 +O2), which is very
ample. Which means by [14, Proposition 3:1, Chapter IV] applied to this particular
case, that no conic exists that passes through 2(O0+O1+O2). The four given relations
generate the kernel of the map

k[X; Y; Z; T ]→ k[x; y; z]=(x3y + y3z + z3x);

X 7→ y2z; Y 7→ z2x; Z 7→ x2y; T 7→ xyz:

Above a regular point (X : Y : Z) of S6 lies a unique point (X : Y : Z : T ) of �S6. For
a singular point, there are two choices for T ; for example, the roots of T 2 + T +1 for
(X : Y : Z)= (1 : 1 : 1). In even characteristic, the variable T separates the points on the
seven bitangents.
The divisor �=O0 +O1 +O2 is invariant under the subgroup of index 8 generated

by �; �. It has eight images under the automorphism group. Among them there is the
sum �′ = O′

0 + O
′
1 + O

′
2 of the other three real expoints. Consider

X 3Y + Y 3Z + Z3X = (X + Y + Z)(X 2Y + Y 2Z + Z2X + XYZ)

−(XY + YZ + ZX )2:
The line X +Y+Z is one of the 28 bitangents of the Klein curve. The conic XY+YZ+
ZX intersects the curve in the two points of the bitangent and in the six real expoints.
It follows that the form of degree three intersects the Klein curve in 2� + 2�′. The
symmetry among the six real expoints is more obvious for the isomorphic model with
equation

7s1(s31 + s3)− (2s21 + s2)2 = 0
for s1; s2; s3 the elementary symmetric functions of X; Y; Z [10].

Theorem 3. The automorphism group of the Klein curve acts linearly on the models
K and �S6; that is; the automorphisms for the two embeddings are restrictions of
projective transformations of the ambient space.

Proof. We need to prove that the divisor classes of L and 3L − 2(O0 + O1 + O2),
respectively, are invariant under the automorphism group. For L this is obvious, since
the divisor class is the canonical class. On the other hand, 3L ∼ 4�. And for any pair
(�; �′) of distinct images of �, we have as above that 3L ∼ 2�+ 2�′.

We can now interpret the sets P of 24 points and P′ of 24 planes which were
de�ned in the previous section.
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Theorem 4. Up to a projective transformation of the ambient space; the set P of
24 points in PG(2; 8) and the set P′ of 24 planes in PG(3; 8) are the expoints
P=(x :y : z) of the Klein curve K and their images P′=(y4z2 : z4x2 : x4y2 : x2y2z2) on
the desingularized dual curve �K

∗
; respectively.

Proof. By the previous theorem, the set of 24 expoints and the set of 24 images are
orbits under the linear action of SL(3; 2) on PG(2; 8) and PG(3; 8); respectively. The
orbits under the action are given in the previous section. In particular, the orbits P

and P′ are unique of size 24.

There are two natural correspondences between P and P′. The 24 points P ∈ P

lie in the plane O′ at in�nity. The plane P′ = (y4z2 : z4x2 : x4y2 : x2y2z2) intersects the
plane O′ in the tangent at P= (x :y : z). The plane P′ = (x2y :y2z : z2x : xyz) intersects
the plane O′ in a tangent through P = (x :y : z).

3. Linear codes

For a pair of embeddings in P2 and in P3 we de�ne a three-error-locating code.
In general, the code is two-error-correcting. Using results of the previous sections, we
obtain a code over F8 that is actually three-error-correcting. Consider the embedding

(X : Y : Z : T ) = (x2y :y2z : z2x : xyz)

for points (x :y : z) on the Klein curve. Over F8, the image of the 24 expoints together
with the point (0 : 0 : 0 : 1) realizes the case N = 25 in Theorem 1. The embedding

(X : Y : Z : T ) = (xw :yw : zw : xy + yz + zx)

for w = x + y + z, maps the projective plane onto the elliptic quadric

XY + YZ + ZX − (X + Y + Z)T = 0:
Again over F8, the image of the 64 points (x :y : z) not on the line x + y + z = 0
together with the point (0 : 0 : 0 : 1) realizes the case N = 65 in Theorem 1.
In general, let P be a set of n points in P2 together with an embedding in P3. We

will assume that no three points of P are collinear in P3. Let each point P ∈ P have
a �xed a�ne representative (x; y; z) with image (X; Y; Z; T ). Through three distinct
points P1; P2; P3 ∈ P, we can �nd a line (if it exists) or a plane by solving for the
null space of

U =


 x1 y1 z1
x2 y2 z2
x3 y3 z3


 ; V =


 X1 Y1 Z1 T1
X2 Y2 Z2 T2
X3 Y3 Z3 T3


 ;

respectively. A simple observation shows that a single matrix su�ces to �nd either a
line or a plane through P1; P2; P3.
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Lemma 2. A line through P1; P2; P3 can be found in the null space of V tU . If the
null space is empty; a plane through P1; P2; P3 can be found in the null space of U tV .

De�nition 1. The code C(P) ∈ Fn is the set of solutions c = (cP) to the system of
linear equations∑

P∈P

xPXPcP =
∑
P∈P

xPYPcP = · · ·=
∑
P∈P

zPTPcP = 0:

For a codeword c ∈ C(P), up to three errors can be located.

Theorem 5. For c ∈ C(P) and for a vector e with zero coordinates except for coor-
dinates e1; e2; e3 at positions P1; P2; P3; let r = c + e. The matrix U t diag(e1; e2; e3)V
has the same null spaces as the matrix U tV . Its entries are given by∑

P∈P

xPXPrP;
∑
P∈P

xPYPrP; : : : ;
∑
P∈P

zPTPrP:

In particular; given r; we can determine either a line or a plane through P1; P2; P3.

Proof. The matrix U t diag(e1; e2; e3)V has entries
3∑
i=1

xiXiei;
3∑
i=1

xiYiei; : : : ;
3∑
i=1

ziTiei:

Since eP is zero outside P = P1; P2; P3, we may extend the summation from i= 1; 2; 3
to P ∈ P. And by de�nition of C(P), we may then replace ep with rp.

The fact that three errors can be located yields the following restrictions on words
in C(P) with at most six nonzero coordinates.

Corollary 1. A word c ∈ C(P) with six nonzero coordinates has support on a line or
in a plane. A word with �ve nonzero coordinates has support on a line. No nontrivial
codeword exists with support of size less than �ve.

Proof. We can write c = e − e′ with both e and e′ supported in at most three points.
Applying the theorem with r = 0 + e = (e − e′) + e′ yields that the lines and planes
through the support of e coincide with those through the support of e′. The claims
easily follow.

A partial converse is given by the following result.

Lemma 3. Let the code C(P) have codimension r in Fn.

(i) If r − 3 points of P are collinear in P2 then a codeword exists in C(P)
with support in the r − 3 points.

(ii) If r − 2 points of P are coplanar in P3 then a codeword exists in C(P)
with support in the r − 2 points.
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Proof. For each set of r points that contains the r−3 points of the line, we can �nd a
nontrivial function in the span xX; : : : ; zT that vanishes at the r points. By duality, each
n− r columns of the generator matrix of C(P) outside the r− 3 points are dependent.
But then the n− r+3 columns outside the r−3 points have rank at most n− r−1 and
a nonzero word exists in C(P) that cancels at the n − r + 3 points. Part (ii) follows
similarly.

We return to the two special cases.

Lemma 4. For both the Klein curve (with n = 24) and the elliptic quadric (with
n= 64); the code C(P) ∈ Fn is of codimension r = 8.

Proof. Consider the 12 functions xX; xY; : : : ; zT . For the Klein curve, there are four
obvious relations. For the elliptic quadric, all functions are of degree three in x; y; z
and pass through the intersection of x + y + z = 0 and xy + yz + zx = 0.

From Corollary 1 and Lemma 3 we see that a code of redundancy eight is three-error-
correcting if and only if no line in P2 contains �ve points and no plane in P3 contains
six points. The bounds are met sharply by the embeddings of the Klein curve.

Theorem 6. For the Klein curve; the code C(P) is of type [24; 16; 7]. For the elliptic
quadric; the code C(P) is of type [64; 56; 5].

4. Monomial embeddings

So far we have dealt with the embeddings (x :y : z) and (x2y :y2z : z2x : xyz) of the
Klein curve. We show that they are the building blocks for invariant embeddings. Every
embedding with a linear action of the automorphism group is obtained from these two
by suitable Segre embeddings. More generally, we consider monomial embeddings of
arbitrary degree and we explicitly give the codewords of the previously de�ned code
C(P).

De�nition 2. The monomial embedding of degree d of the Klein curve is de�ned,
up to a projective transformation, by the complete linear series of the divisor
d(L− O0 − O1 − O2).

The monomial embeddings are a re�nement of the embeddings that are de�ned with
divisors eL ∼ 4e(L−O0−O1−O2) of degree a multiple of four. A monomial X aY bZc
of degree d intersects the Klein curve at the vertices O0; O1; O2) of the triangle XYZ=0
with multiplicities (3a+ b; 3b+ c; 3c+ a). The condition that the monomial intersects
each of the vertices at least d times means

2a¿c; 2b¿a; 2c¿b: (1)
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Di�erent monomials may be linearly dependent in k[X; Y; Z]=(X 3Y + Y 3Z + Z3X ). For
d= 4e, a basis of the linear series can be chosen among the monomials with

2e¿a; b; c¿e: (2)

After dividing out (XYZ)e, the monomials span the linear series of the divisor eL. We
show that the embeddings of the Klein curve with a linear action of the automorphism
group are precisely the monomial embeddings of even degree.

Lemma 5. Each automorphism of order seven �xes a unique triple of expoints.
Conversely; the expoints in a given triple have a common stabilizer of order seven.
Let the real expoints O0; O1; O2 and O′

0; O
′
1; O

′
2; be the �xed oints of the automo-

rphisms � and �′; respectively.

Theorem 7. The only invariant divisor classes of the Klein curve are those containing
an even multiple of L− O0 − O1 − O2.

Proof. The proof of Theorem 3 shows that the given classes are invariant. We show
that invariant classes of odd degree do not exist and that invariant classes of given even
degree are unique. It su�cies to prove the former for degree three and the latter for
degree six. A divisor class of degree three either is of the form L−P, for a point P, or
it contains a single e�ective divisor. Both situations contradict that the automorphisms
�; �′ of order seven have no common �xed point. Let D be an invariant class of degree
six. The class D − O0 − O1 − O2 is of degree three and is invariant under �; �. It
cannot be of the form L − P, for the point P would be invariant under �; �. Thus,
the class contains a unique e�ective divisor, which is invariant under �; �. The only
�xed points of � are O0; O1; O2, and the action of � is transitive on O0; O1; O2. Hence
D ∼ 2(O0 + O1 + O2); or D ∼ 6(L− O0 − O1 − O2).

The invariant class 2(L − O0 − O1 − O2) is a theta characteristic. Except for even
characteristic, the action of the automorphism group on the theta characteristics has
orbits of size 1; 7; 7; 21; 28. For even characteristic, the sizes are 1; 7.
The theorem gives the case p=7 of a more general result: The group of PSL(2; p)-

invariant line bundles on X (p) is an in�nite cyclic group generated by a line bundle
of degree (p2 − 1)=24 [1, Theorem 24:1].

De�nition 3. Let P={P1; P2; : : : ; P24} be the set of expoints of the Klein curve. The
code C(d), for d = 0; 1; : : : ; 28, is de�ned as the subspace of F248 generated by the
vectors

(f(P1); : : : ; f(P24)); f = xaybzc

for a+ b+ c = d such that (1) holds.

At the vertices O0; O1; O2 of xyz = 0, a monomial takes the value 1 in case of
equality (2a = c; 2b = a; or 2c = b, respectively) and 0 otherwise. The codes are
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geometric Goppa codes and general results for such codes apply. Code constructions
with the Klein curve appear in [3,4,13,18,20]. The 24 expoints lie in the intersection
of the Klein curve and its Hessian. And the codes can be studied in the context of
zero-dimensional complete intersections [9,22].

Theorem 8. For d=0; 1; : : : ; 28; the code C(d) has dual code C(28−d). For a+ b+
c = 28 such that (1) holds;

24∑
i=1

(xi)a(yi)b(zi)c = 0:

Proof. The dimensions of C(d) and C(28 − d) add up to 24. We prove that the
two codes are orthogonal. The summation is well-de�ned and does not depend on the
a�ne representation (xi;yi; zi) of Pi. We may assume as in (2) that a; b; c¿7. The only
contribution from O0; O1; O2 occurs when (a; b; c) equals (14; 7; 7) up to a permutation.
In that case the contribution is one. The 21 remaining points divide over three orbits
under �. Therefore, their contribution is nonzero only if a+ 4b+ 2c ≡ 0 (mod 7). Or,
since also a + b + c ≡ 0 (mod 7), only if (a; b; c) equals (14; 7; 7) or (8; 11; 9) up to
a cyclic permutation. In the �rst case the contribution is one and compensates the
contribution by O0; O1; O2. In the second case, the contribution by each of the seven
orbits under � is zero since x8y11z9 + x9y8z11 + x11y9z8 = 0.

Lemma 6. The monomial embedding of degree d has a hyperplane passing through
d expoints if and only if the monomial embedding of degree d′ = 24 − d has a
hyperplane passing through the remaining d′ points.

Proof. The 24 expoints P1; P2; : : : ; P24 are in the intersection with the Hessian and
P1 + P2 + · · ·+ P24 ∼ 6L ∼ (d+ d′)(L− O0 − O1 − O2).

The result can be obtained in a di�erent manner, in terms of linear algebra, by using
the arguments that are used in Lemma 3. The embedding of degree �ve is given by

K
(xy : yz : zx)→ S5 : X 3Z2 + Y 3X 2 + Z3Y 2 = 0:

Theorem 9. For d=5; 6; 18; 19; the monomial embedding of degree d has fewer than
d expoints in each hyperplane.

Proof. By Lemma 6, we only need to consider d=5; 6. For even characteristic, the case
d=6 is given by Theorem 4 and Table 1. It follows that also in characteristic zero no
hyperplane contains six expoints. We give a direct proof for arbitrary characteristic.
The lines joining O0; O2; O1 are tangents. More generally, each expoint is a member
of a unique triple in which points are joined by tangents. Through two distinct triples a
unique conic passes, whose other two points of intersection are the points of a bitangent.
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It follows that a divisor class of degree six containing the sum of two distinct triples
is not invariant.
Let the sum P1 + P2 + · · ·+ P6 of six distinct expoints be in an invariant divisor

class. Assume that with O0 also O2, the other point on its tangent, is among them.
Then P1+P2+P3+P4 ∼ O0+2O1+O2 ∼ L+O2−O1. The latter divisor has basepoint
O2 which contradicts that P1; P2; P3; P4 6= O2. Hence, no two of the six expoints lie
on a tangent. If the sum of the six points is in an invariant class, then so is the sum
of the six distinct triples that contain them. This contradicts that the sum of the two
excluded triples is not in an invariant class.
Let the sum of �ve distinct expoints be in the class 2L − O0 − O1 − O2, i.e. let

�ve distinct expoints be on a conic through O0; O1; O2. If say O0 is among them,
then P1 + P2 + P3 + P4 ∼ 2L− 2O0 −O1 −O2 ∼ L+O0 −O1. As before, this contra-
dicts that P1; P2; P3; P4 6= O0. If among the �ve points two are on a tangent, then the
conic passes through two distinct triples and two points of a bitangent. If the points
are di�erent from O0; O1; O2 and no two points are on a tangent, then addition of re-
lations gives a sum of six distinct triples in an invariant divisor class. And we have
a contradiction.

Corollary 2. For d = 4; 5; 6; 18; 19; the code C(d) is of type [24; 3; 20]; [24; 3; 20];
[24; 4; 19]; [24; 16; 7]; [24; 17; 6]; respectively; over the �eld of eight elements.

Over the cyclotomic �eld Q(�7), the torsion of the divisor class group of the Klein
curve is generated by the expoints and is of type (Z=7Z)3×(Z=2Z)6 [20], [8]. In even
characteristic, the expoints generate a group (Z=7Z)3 × (Z=2Z)3.

Corollary 3. The 24 expoints plus the zero element de�ne a subset of 25 elements
in the group (Z=7Z)3 × (Z=2Z)3 such that no six distinct elements in the subset have
zero sum.

An explicit description of the subset is given in [8]. The elements of (Z=7Z)3 can
be identi�ed with the quadratic forms aX 2 +bXY +cY 2 over Z=7Z . The group (Z=2Z)3

can be identi�ed with the �eld F8. Let F∗8 = 〈�〉. The 24 expoints can be represented
by (Y 2; 0); (2Y 2; 0); (4Y 2; 0) and

((bX − aY )2; �(a=b)) for a ∈ Z=7Z; b ∈ (Z=7Z)∗:

We have presented several properties of the monomial embedding of degree six in
even characteristic. It yields an interesting con�guration in PG(3; 8) and a best possible
three-error-correcting code of type [24; 16; 7] over F8. It has an interpretation as the
desingularization of the dual curve and it is the unique embedding of degree six with
a linear action of the automorphism group. The corollary expresses a curious property
of the embedding.
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5. For further reading

The following references are also of interest to the reader [15] and [21].
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