Total Vertex-Irregularity Labelings for Subdivision of Several Classes of Trees

Susilawati, Edy Tri Baskoro, Rinovia Simanjuntak
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract

Motivated by the notion of the irregularity strength of a graph introduced by Chartrand et al. ${ }^{[3]}$ in 1988 and various kind of other total labelings, Baca et al. ${ }^{[1]}$ introduced the total vertex irregularity strength of a graph. In 2010, Nurdin, Baskoro, Salman and Gaos ${ }^{[5]}$ determined the total vertex irregularity strength for various types of trees, namely complete k-ary trees, a subdivision of stars, and subdivision of particular types of caterpillars. In other paper ${ }^{[6]}$, they conjectured that the total vertex irregularity strength of any tree T is only determined by the number of vertices of degree 1,2 , and 3 in T. In this paper, we attempt to verify this conjecture by considering a subdivision of several types of trees, namely caterpillars, firecrackers, and amalgamation of stars.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICGTIS 2015
Keywords: Total vertex irregularity strength, tree, subdivision.
2010 MSC: 05C78

1. Introduction

The following problem was proposed by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba ${ }^{[3]}$. Assign positive integer labels to the edges of a simple connected graph of order at least 3 in such a way that the graph becomes irregular, i.e., the weights (label sums) at each vertex are distinct. The minimum value of the largest label over all such irregular assignments is known as the irregularity strength of such a graph. Finding the irregularity strength of a graph seems to be rather hard ${ }^{[2]}$ even for simple graphs. Later, Baca, Jendrol, Miller and Ryan ${ }^{[1]}$ introduced the total vertex irregularity strength of a graph as follows. Let $G(V, E)$ be a simple graph. For a labeling $\lambda: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ the weight of a vertex x is defined as $w t(x)=\lambda(x)+\sum_{x z \in E G} \lambda(x z)$. The mapping λ is called a vertex irregular total k-labeling if for every pair of distinct two vertices x and y we have $w t(x) \neq w t(y)$. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G and is denoted by $t v s(G)$. Baca et al. ${ }^{[1]}$ proved that $t v s\left(C_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil, n \geq 2, t v s\left(K_{n}\right)=2$ for any $n \geq 3$,

[^0]$t v s\left(K_{1, n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$, and $t v s\left(C_{n} \times P_{2}\right)=\left\lceil\frac{2 n+3}{4}\right\rceil$. If T is a tree with m pendant vertices and no vertex of degree 2 , they proved that $\left\lceil\frac{t+1}{2}\right\rceil \leq t v s(T) \leq m$. They also proved that if G is a (p, q) graph with minimum degree δ and maximum degree Δ, then $\left\lceil\frac{p+\lambda}{\Delta+1}\right\rceil \leq t v s(G) \leq p+\Delta-2 \delta+1$.

Nurdin, Baskoro, Salman and Gaos ${ }^{[5,6]}$ determined the total vertex irregularity strength of trees containing vertices of degree 2 , namely a subdivision of a star and a subdivision of a particular caterpillar. They also improved some of the bounds given in ${ }^{[1]}$ and showed that $t v s\left(P_{n}\right)=\left\lceil\frac{n+1}{3}\right\rceil$. In ${ }^{[4]}$ Nurdin, Baskoro, Salman and Gaos proved that for $t \geq 2$, $t v s\left(t P_{n}\right)=\left\lceil\frac{n t+1}{3}\right\rceil$ for $n \geq 4$, and $t v s\left(t P_{n}\right)=t+1$ for $n=2,3$. $\operatorname{nn}^{[7]}$ Nurdin et al. proved that for a quadtree Q_{d} with $d \geq 2, t v s\left(Q_{d}\right)=2^{2 d-1}+1$. They also proved that for banana tree $\left(B_{n}, t\right), t v s\left(B_{n}, t\right)=\left\lceil\frac{n(t-1)}{2}\right\rceil+1, n \geq 3$ and $t \geq 3$.

In ${ }^{[4]}$ Nurdin, Baskoro, Salman and Gaos proved that the total vertex irregularity strength of the complete k-ary tree ($k \geq 2$) with depth $d \geq 1$ is $\left\lceil\frac{k^{d}+1}{2}\right\rceil$ and the total vertex irregularity strength of the subdivision of $K_{1, n}$ for $n \geq 3$ is $\left\lceil\frac{n+1}{3}\right\rceil$. Let G be a special caterpillar obtained by taking a path P_{m} and m copies of P_{n} denoted by $P_{n, 1}, P_{n, 2}, \ldots, P_{n, m}$ where $m \geq 2, n \geq 2$, and then joining the i-th vertex of P_{m} to an end vertex of the path $P_{n, i}$. Then, they showed that $\operatorname{tvs}(G)=\left\lceil\frac{m n+3}{3}\right\rceil$.

For any general tree T with maximum degree Δ, Nurdin et al. ${ }^{[6]}$ showed that $t v s(T) \geq \max \left\{t_{1}, t_{2}, \ldots, t_{\Delta}\right\}$ where $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ and n_{i} be the number of vertices degree $i \in[1, \Delta]$. Furthermore, they also conjectured that the total vertex irregularity strength of any tree T is only determined by the number of its vertices of degrees 1,2 and 3. Precisely, they conjectured that for any tree T we have $t v s(T)=\max \left\{t_{1}, t_{2}, t_{3}\right\}$. Recently, Susilawati, E. T. Baskoro and R. Simanjuntak ${ }^{[8]}$ proved that in any tree T with maximum degree 4 , there is $i \in\{1,2,3\}$ such that $t_{i} \geq t_{4}$. As a consequence, tvs of such a tree T is at least $\max \left\{t_{1}, t_{2}, t_{3}\right\}$. They ${ }^{[8]}$ also gave some condition for trees with maximum degree 4 whose $t v s(T)=\max \left\{t_{1}, t_{2}, t_{3}\right\}$. In this paper, we study the correctness of this conjecture by considering a subdivision of several types of trees, namely caterpillars, firecrackers and amalgamation of stars.

2. Main Results

Let T be a tree with p vertices and q edges. Let n_{i} be the number of vertices degree i. Baca et al in ${ }^{[1]}$ proved that

$$
n_{1}=2+\sum_{i \geq 2}(i-2) n_{i}
$$

Theorem 1. ${ }^{[6]}$ Let T be a tree with maximum degree Δ. Let n_{i} be the number of vertices of degree i, then

$$
\operatorname{tvs}(T) \geq \max \left\{t_{1}, t_{2}, \ldots, t_{\Delta}\right\}
$$

where $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ and n_{i} be the number of vertices degree $i \in[1, \Delta]$.

2.1. Subdivision of caterpillars

In this subsection, we determine the total vertex irregularity strength of a subdivision graph of a non-homogeneous caterpillar. For integers $m, k_{1}, k_{2}, \ldots, k_{m} \geq 2$, define a caterpillar $C_{m}^{\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}}$ as a graph obtained by attaching k_{i} vertices to each vertex of c_{i} of the path P_{m}, for $i \in[1, m]$. The path P_{m} in $C_{m}^{\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}}$ is called the backbone of the caterpillar. All vertices degree one are called pendant vertices. All pendant edges adjacent to c_{i} are labeled by $c_{11}, c_{12}, \ldots, c_{i j}$ where $1 \leq j \leq\left|k_{i}\right|$. Edges $c_{i} c_{i j}$ and $c_{i} c_{i+1}$ are called pendant edges and backbone edges, respectively. If $k_{1}=k_{2}=\ldots=k_{m}=r$, then the caterpillar is called to be homogeneous, and it is denoted by C_{m}^{r}. Otherwise, the caterpillar is called to be non-homogeneous. Let $G=(V, E)$ be a connected graph and $e \in E(G)$. The subdivision of a graph G on the edge e in k times is a graph obtained from the graph G by replacing edge $e=u v$ with a path $\left(u, x_{1}, x_{2}, \cdots, x_{k}, v\right)$ on $k+2$ vertices. The vertices x_{i} are called subdivision vertices. Now, denote by $S u b\left(C_{m}^{\left\{k_{1}, k_{2}, k_{3}, \ldots, k_{m}\right\}},\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{m-1}\right\}\right)$ the subdivision of a non-homogeneous caterpillar on all the backbone edges in w_{1}, w_{2}, \cdots, or w_{m-1} times, respectively. Denote by x_{i} all the subdivision vertices. See Figure 1 as examples.

Theorem 2. Let $T \simeq \operatorname{Sub}\left(C_{m}^{\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}},\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{m-1}\right\}\right)$ where $m \geq 2$ and $w_{k}, k_{i} \geq 1$ for $1 \leq k \leq m-1$ and $1 \leq i \leq m$. The number of vertices degree one and two are $n_{1}=\sum_{i=1}^{m} k_{i}$ and $n_{2}=\sum_{k=1}^{m-1} w_{k}$, respectively. For $n_{2} \geq n_{1}$ and $n_{j+1} \leq \frac{1}{2}\left(n_{j}-1\right)$ for $j \geq 2$, then $\operatorname{tvs}(T) \leq t_{2}$.

Proof. Define a labeling algorithm λ as follows.

Fig. 1. Graf $T \simeq S u b\left(C_{3}^{\{3,3,2\}},\{1,2\}\right) \operatorname{dan} T \simeq S u b\left(C_{3}^{\{3,3,3\}},\{1,2\}\right)$

1. Label all pendant vertices and pendant edges by the following steps.
(a). Let $V_{1}^{\prime}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be a set of backbone vertices in P_{m} where $d\left(c_{i}\right) \geq d\left(c_{i+1}\right)$. Let $V_{1}=\left\{c_{i j} \mid 1 \leq i \leq\right.$ $\left.m, 1 \leq j \leq k_{i}\right\}$ be a set of pendant vertices in T.
(b). Label t_{2} first pendant vertices in V_{1} by 1 .
(c). Label $\left(n_{1}-t_{2}\right)$ remaining vertices in V_{1} by $2,3, \ldots,\left(n_{1}-t_{2}+1\right)$.
(d). Let $E_{1}=\left\{e_{i j} \mid e_{i j}\right.$ edge incident to $\left.c_{i j}, \forall i, j\right\}$ be a set of pendant edges. Label t_{2} edges in E_{1} by $1,2, \ldots, t_{2}$ and label $\left(n_{1}-t_{2}\right)$ edges in E_{1} by t_{2}.
2. Let $E_{2}=\left\{x_{n} x_{n+1} \mid n \in\left[1, w_{i}-1\right], i \in[1, m-1]\right\}$. Define $k_{1}=n_{1}$ and $k_{i}=k_{1}+\sum_{r=1}^{i-1} w_{r}-1$ for each $2 \leq i \leq m-1$. Now, for $1 \leq i \leq m-1$ and $1 \leq n \leq w_{i}-1$, define $\lambda\left(x_{n} x_{n+1}\right)=\left\lceil\frac{1+n+k_{i}}{3}\right\rceil$.
3. Next, define $\lambda(e)=t_{2}$, for $e \in E \backslash\left(E_{1}+E_{2}\right)$.
4. Label all vertices in $V \backslash V_{1}$ by the following steps.

Denote all vertices in $V \backslash V_{1}$ by $y_{1}, y_{2}, \ldots, y_{N}$, where $N=\sum_{i=1}^{m-1} w_{i}+m$, such that $s\left(y_{1}\right) \leq s\left(y_{2}\right) \leq \ldots \leq s\left(y_{N}\right)$ with $s(y)=\sum_{y z \in E(T)} \lambda(y z)$, which can be considered as the temporary weight of y_{i} in T.
Define $\lambda\left(y_{1}\right)$ recursively as follows.

$$
\lambda\left(y_{1}\right)=n_{1}+2-s\left(y_{1}\right), \text { which implies } w t\left(y_{1}\right)=\lambda\left(y_{1}\right)+s\left(y_{1}\right)
$$

For $2 \leq i \leq N$

$$
\lambda\left(y_{i}\right)=\max \left\{1, w t\left(y_{i-1}\right)+1-s\left(y_{i}\right)\right\} .
$$

We conclude that:

1. λ is a mapping from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{2}\right\}$,
2. The weights of pendant vertices are $2,3,4, \ldots, n_{1}+1$, respectively.
3. The weight of all remaining vertices forms $n_{1}+2=w t\left(y_{1}\right)<w t\left(y_{2}\right)<\ldots<w t\left(y_{N}\right)$ where $N=\sum_{i=1}^{m-1} w_{i}+m$.

Then, $t v s(T) \leq t_{2}$.

2.2. Subdivision of fire crackers

In this subsection, we determined the total vertex irregularity strength of subdivision graph of a non-homogeneous fire crackers. For integers $m, w_{1}, w_{2}, \ldots, w_{m} \geq 3$. Let $G_{1}, G_{2}, \ldots, G_{m}$ be a family of disjoint stars and w_{i} be the number of vertices degree one in G_{i}. Let a_{i} be a pendant vertex of $G_{i}, 1 \leq i \leq m$, define a fire crackers $F_{m}^{\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}}$ as a tree graph which contains all the m stars and a path joining $a_{1}, a_{2}, \ldots, a_{m}$.

The vertices in path P_{m} in $F_{m}^{\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}}$ is called the backbone vertices of the fire cracker and labeled by $x_{1}, x_{2}, \ldots, x_{m}$. All vertices degree one are called pendant vertices. All vertices incident to pendant vertices are called central vertices and labeled by $c_{1}, c_{2}, \ldots, c_{m}$. All pendant vertices attached to c_{i} where $1 \leq i \leq m$ are labeled by $a_{11}, a_{12}, \ldots, a_{i w_{m}}$. Edges $c_{i} a_{i w_{i}}$ and $x_{k} x_{k+1}$ where $1 \leq k+m$ are called pendant edges and backbone edges, respectively. If $w_{1}=w_{2}=$ $\ldots=w_{m}=w$, then the fire cracker is called to be homogeneous, and it is denoted by F_{m}^{w}. Otherwise, the fire cracker is called to be non-homogeneous. Let $G=(V, E)$ be a connected graph and $e \in E(G)$. The subdivision of a graph G on the edge e in k times is a graph obtained from the graph G by replacing edge $e=u v$ with a path $\left(u, x_{1}, x_{2}, \ldots, x_{k}, v\right)$ on $k+2$ vertices. Now, denoted by $T \simeq S u b\left(F_{m}^{\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}},\left\{q_{1}, q_{2}, \ldots, q_{m-1}\right\}\right)$ the subdivision of a non-homogeneous fire cracker on all the backbone edges in q_{1}, q_{2}, \ldots, or q_{m-1} times, respectively. See Figure 2 for illustration.

Fig. 2. $T \curvearrowleft \operatorname{Sub}\left(F_{3}^{\{3,3,4\}},\{2,5\}\right)$

Theorem 3. Let $T \simeq \operatorname{Sub}\left(F_{m}^{\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}},\left\{q_{1}, q_{2}, \ldots, q_{m-1}\right\}\right)$ with $m, w_{i} \geq 3$ for $1 \leq i \leq m$ and $q_{j} \geq 2$ for $1 \leq j \leq m-1$. The number of vertices degree one and two are $n_{1}=\sum_{i=1}^{m} w_{i}$ and $n_{2}=\sum_{j=1}^{m-1} q_{j}+2$, respectively. For $n_{2} \geq n_{1}$ and $n_{k+1} \leq \frac{1}{2}\left(n_{k}-1\right)$ for $k \geq 2$, then $\operatorname{tvs}(T) \leq t_{2}$.

Proof. Define a labeling algorithm ϕ as follows.

1. Label all pendant vertices and pendant edges by the following steps.
(a). Let $V_{1}=\left\{c_{1}, c_{2}, \ldots, c_{l}\right\}$ be a set of central vertices where $d\left(c_{i}\right) \geq d\left(c_{i+1}\right)$. Let $V_{1}^{\prime}=\left\{a_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq\right.$ $\left.w_{i}, \forall i\right\}$ be a set of pendant vertices in T.
(b). Label t_{2} first pendant vertices in V_{1}^{\prime} by 1 .
(c). Label $\left(n_{1}-t_{2}\right)$ remaining vertices in V_{1} by $2,3, \ldots, n_{1}-t_{2}+1$.
(d). Let $E_{1}=\left\{e_{i j} \mid e_{i j}\right.$ edges incident to $a_{i j}, 1 \leq i \leq m$ and $\left.1 \leq j \leq w_{i}\right\}$ be a set of pendant edges. Label t_{2} edges in E_{1} by $1,2, \ldots, t_{2}$ and label $\left(n_{1}-t_{2}\right)$ edges in E_{1} by t_{2}.
2. Let $E_{2}=\left\{x_{i} x_{i+1} \mid 1 \leq i \leq \sum_{j=1}^{m-1} q_{j}+m-1\right\}$ be a set of backbone edges in P_{m}. Define $\phi\left(x_{i} x_{i+1}\right)=\left\lceil\frac{i+1+n_{1}}{3}\right\rceil$.
3. Next, define $\phi=t_{2}$ for $e \in E \backslash\left(E_{1}+E_{2}\right)$.
4. Label all vertices in $V \backslash V_{1}$ by the following steps. Denote vertices $V \backslash V^{\prime}$ with $y_{1}, y_{2}, y_{3}, \ldots, y_{N}$ where $N=$ $\sum_{j=1}^{m-1} q_{j}+2 m$ such that $s\left(y_{1}\right) \leq s\left(y_{2}\right) \leq \ldots \leq s\left(y_{N}\right)$ with $s(y)=\sum_{y z \in E(T)} \phi(y z)$, which can be considered as temporary weight of y_{i} in T. Define $\phi\left(y_{1}\right)$ recursively as follows.

$$
\phi\left(y_{1}\right)=n_{1}+2-s\left(y_{1}\right), \text { which implies } \quad w t\left(y_{1}\right)=\phi\left(y_{i}\right)+s\left(y_{i}\right)
$$

For $2 \leq i \leq N$, then

$$
w t\left(y_{i}\right)=\max \left\{1, w t\left(y_{i-1}\right)+1-s\left(y_{i}\right)\right\} \text { and } w t\left(y_{i}\right)=s\left(y_{i}\right)+\phi\left(y_{i}\right)
$$

We conclude that:

1. ϕ is mapping from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{2}\right\}$,
2. The weight of all pendant verties are $2,3,4, \ldots, n+1$.
3. The weight of all remaining vertices form $n_{1}+2=w t\left(y_{1}\right)<w t\left(y_{2}\right)<\ldots<w t\left(y_{N}\right)$ where $N=\sum_{j=1}^{m-1} q_{j}+2 m$.

Then, we have $t v s(T) \leq t_{2}$.

2.3. Subdivision of amalgamation of stars

In this subsection, we determine the total vertex irregularity strength of a subdivision of amalgamation of stars. Let $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ be a finite collection of graphs and each G_{i} has a fixed vertex $v_{0 i}$. The vertex-amalgamation of $G_{1}, G_{2}, \ldots, G_{n}$, denoted by vertex - amal $\left\{G_{i} ; v_{0, i} ; m\right\}$ is formed by taking all the G_{i} 's and identifying their terminal vertices. Consider G_{i} is star graph $K_{1, w_{i}}$ and $v_{0, i}$ be a pendant vertices in $K_{1, w_{i}}$ for all i, denoted by $T \simeq v e r t e x-$ $\operatorname{amal}\left\{K_{1, w_{i}} ; v_{0, i} ; m\right\}$ where m is the number of star graphs. All vertices degree one are called pendant vertices. All edges incident to pendant vertices are called pendant edges. All pendant edges incident to $v_{0,1}$ are called fixed edges.

Let $G=(V, E)$ be a connected graph and $e \in E(G)$. The subdivision of a graph G on the edge e in k times is a graph obtained from the graph G by replacing $e=u v$ with a path $u, x_{1}, x_{2}, \ldots, x_{k}, v$ on $k+2$ vertices. The vertices x_{i} are called subdivision vertices. Now, denote by $T \simeq S u b\left(v e r t e x-\operatorname{amal}\left\{K_{1, w_{i}} ; v_{0, i} ; m\right\},\left\{q_{i}\right\}\right)$ where $1 \leq$ $i \leq m$ and $q_{i}=\left(w_{i}-1\right)$ the subdivision of amalgamation of star graphs on all of the fixed edges in $q_{1}, q_{2}, \ldots, q_{m}$ times, respectively. Denoted by $x_{m, q_{1}+2}$ all the subdivision vertices. All vertices pendant vertices are labeled by $c_{1,1}, c_{1,2}, \ldots, c_{1, w_{1}}, c_{2,1}, c_{2,2}, \ldots, c_{2, w_{2}}, \ldots, c_{m, w_{m}}$. See Figure 3 as example.

Fig. 3. $T \backsim S u b\left(\right.$ Vertex $\left.-\operatorname{Amal}\left\{K_{1,4}, K_{1,5}, K_{1,4}, K_{1,6} ; v_{0,1}, v_{0,2}, v_{0,3}, v_{0,4} ; 4\right\},\{3,4,3,5\}\right)$

- Let $V(G)=\left\{x_{i, j} \mid 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq q_{i}+2\right\} \cup\left\{C_{i, l}\left|1 \leq l \leq\left|w_{i}\right|-1\right\}\right.$ be a set of vertices in T.
- Let $E(T)=\left\{x_{i, j} x_{i, j+1} \mid 1 \leq i \leq n\right.$ and $\left.1 \leq i \leq q_{i}+1\right\} \cup\left\{x_{i, 1} C_{i, l} \mid 1 \leq l \leq w_{i}-1\right\}$ be a set of edges in T.

We can see that $x_{i,\left|q_{i}\right|+2}$ is one vertex for every $1 \leq i \leq m$.
Theorem 4. Let $T \simeq S u b\left(\right.$ vertex $\left.-\operatorname{amal}\left\{K_{1, w_{i}} ; v_{0, i} ; m\right\},\left\{q_{i}\right\}\right)$ be a graph with $w_{i}, m \geq 3$ and $q_{i}=\left(w_{i}-1\right)$ for each $1 \leq i \leq m$ is the number of subdivision in all of the backbone edges. The number of vertices degree one and two are $n_{1}=\sum_{i=1}^{m} w_{i}-1$ and $n_{2}=\sum_{i=1}^{m} q_{i}$, respectively. For $n_{2} \geq n_{1}$ and $n_{k+1} \leq \frac{1}{2}\left(n_{k}-1\right)$ for $k \geq 2$. Then, $t v s(T) \leq t_{2}$.
Proof. Define a labeling algorithm ψ as follows.

1. Label all pendant vertices and pendant edges by the following steps.
(a). Sort all w_{i} for $1 \geq i \geq m$ such that $w_{1} \geq w_{2} \geq \ldots \geq w_{m}$. This implies $q_{1} \geq q_{2} \geq \ldots \geq q_{m}$. Let $V_{1}=\left\{c_{i, k} \mid 1 \leq i \leq m\right.$ and $\left.1 \leq k \leq w_{i}-1\right\}$ be a set of pendant vertices in T.
(b). Label t_{2} first pieces of pendant vertices in V_{1} by 1 .
(c). Label $\left(n_{1}-t_{2}\right)$ remaining vertices in V_{1} by $2,3, \ldots,\left(n_{1}-t_{2}+1\right)$.
(d). Let $E_{1}=\left\{e_{i, k} \mid e_{i, k}\right.$ edge incident to $\left.c_{i, k}, \forall i, k\right\}$ where $1 \leq i \leq m$ and $1 \leq k \leq w_{i}-1$ be a set of pendant edges. Label t_{2} edges in E_{1} by $1,2, \ldots, t_{2}$ and label $\left(n_{1}-t_{2}\right)$ remaining edges in E_{1} by t_{2}.
2. Label all edges in $E(T) \backslash E_{1}$ by the following steps.
(a). For $1 \leq j \leq q_{1}$, then define $a_{j}=\left|\left\{q_{i} \mid q_{i}=j, 1 \leq i \leq m\right\}\right|$. Let $k_{0}=n_{1}$ and $k_{j}=m-\sum_{s=1}^{j} a_{s}$ for $1 \leq j \leq q_{1}$. For $1 \leq j \leq q_{1}-1$ and $1 \leq i \leq k_{j}$, then $\psi\left(x_{i, j+1} x_{i, j+2}\right)=\left\lceil\frac{1+i+\sum_{r=0}^{j-1} k_{r}}{3}\right\rceil$.
(b). Next, define $\psi(e)=t_{2}$ for all remaining edges in T.
3. Label all vertices in $V \backslash V_{1}$ by the following steps. Denoted all vertices in $V \backslash V_{1}$ by $y_{1}, y_{2}, y_{3}, \ldots, y_{N}$ where $N=\sum_{i \geq 1}^{m} q_{i}+m+1$, such that $s\left(y_{1}\right) \leq s\left(y_{2}\right) \leq \ldots \leq s\left(y_{N}\right)$ with $s(y)=\sum_{y z \in(T)} \psi(y z)$, which can be considered as the temporary weight of y_{i} in T. Define $\psi\left(y_{1}\right)$ recursively as follows.

$$
\psi\left(y_{1}\right)=n_{1}+2-s\left(y_{1}\right), \text { which implies, } w t\left(y_{1}\right)=\psi\left(y_{1}\right)+s\left(y_{1}\right)
$$

For $2 \leq i \leq N$

$$
\psi\left(y_{i}\right)=\max \left\{1, w t\left(y_{i-1}\right)+1-s\left(y_{i}\right)\right\} .
$$

By this algorithm, we conclude that

1. ψ is mapping from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{2}\right\}$,
2. The weight of pendant vertices are $2,3,4, \ldots, n+1$, respectively.
3. The weight of all remaining vertices form $n_{1}+2=w t\left(y_{1}\right)<w t\left(y_{2}\right)<\ldots<w t\left(y_{N}\right)$ where $N=\sum_{i \geq 1}^{m} q_{i}+m+1$.

Then, $\operatorname{tvs}(T) \leq t_{2}$.

Acknowledgement. This research was supported by Research Grant "Program Hibah PMDSU ITB-DIKTI", Ministry of Research, Technology and Higher Education, Indonesia.

References

1. Baca M, Jendrol S, Miller M, Ryan J. On irregular total labellings. Discrete Mathematics 2002;307(1-12):1378-1388.
2. Baril JL, Kheddouci H, Togni O. The irregularity strength of circulant graphs. Discrete Mathematics 2005;304:1-10.
3. Chartrand G, Jacobson MS, Lehel J, Oellermann OR, Ruiz S, Saba F. Irregular network. Congressus Numerantium 1988;64:187-192.
4. Nurdin, Baskoro ET, Salman ANM, Gaos NN. On the total vertex-irregular strength of a disjoint union of t copies of a path. Journal of Combinatorial Mathematics and Combinatorial Computing 2009;71(2009):227-233.
5. Nurdin, Baskoro ET, Salman ANM, Gaos NN. On total vertex-irregular labelings for several types of trees. Utilitas Mathematica 2010;83:277290.
6. Nurdin, Baskoro ET, Salman ANM, Gaos NN. On total vertex-irregularity strength of trees. Discrete Mathematics 2010;310:3043-3048.
7. Nurdin, Baskoro ET, Salman ANM, Gaos NN. On total vertex-irregular of quadtree and banana Tree. Journal Indones.Mathematical Society 2012;18(1):31-36.
8. Susilawati, Baskoro ET, Simanjuntak R. Total vertex irregularity strength of trees with maximum degree four. Submitted.

[^0]: E-mail address: susilawati_nurdin@students.itb.ac.id, ebaskoro@math.itb.ac.id, rino@math.itb.ac.id

