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Abstract

Motivated by the notion of the irregularity strength of a graph introduced by Chartrand et al. [3] in 1988 and various kind of other

total labelings, Baca et al. [1] introduced the total vertex irregularity strength of a graph.

In 2010, Nurdin, Baskoro, Salman and Gaos [5] determined the total vertex irregularity strength for various types of trees, namely

complete k−ary trees, a subdivision of stars, and subdivision of particular types of caterpillars. In other paper [6], they conjectured

that the total vertex irregularity strength of any tree T is only determined by the number of vertices of degree 1, 2, and 3 in T . In this

paper, we attempt to verify this conjecture by considering a subdivision of several types of trees, namely caterpillars, firecrackers,

and amalgamation of stars.
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1. Introduction

The following problem was proposed by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba[3]. Assign

positive integer labels to the edges of a simple connected graph of order at least 3 in such a way that the graph

becomes irregular, i.e., the weights (label sums) at each vertex are distinct. The minimum value of the largest label

over all such irregular assignments is known as the irregularity strength of such a graph. Finding the irregularity

strength of a graph seems to be rather hard[2] even for simple graphs. Later, Baca, Jendrol, Miller and Ryan[1]

introduced the total vertex irregularity strength of a graph as follows. Let G(V, E) be a simple graph. For a labeling

λ : V(G) ∪ E(G) → {1, 2, . . . , k} the weight of a vertex x is defined as wt(x) = λ(x) +
∑

xz∈EG
λ(xz). The mapping λ

is called a vertex irregular total k-labeling if for every pair of distinct two vertices x and y we have wt(x) � wt(y).

The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity
strength of G and is denoted by tvs(G). Baca et al. [1] proved that tvs(Cn) = � n+2

3
�, n ≥ 2, tvs(Kn) = 2 for any n ≥ 3,
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tvs(K1,n) = � n+1
2
�, and tvs(Cn × P2) = � 2n+3

4
�. If T is a tree with m pendant vertices and no vertex of degree 2, they

proved that � t+1
2
� ≤ tvs(T ) ≤ m. They also proved that if G is a (p, q) graph with minimum degree δ and maximum

degree Δ, then � p+λ
Δ+1

� ≤ tvs(G) ≤ p + Δ − 2δ + 1.

Nurdin, Baskoro, Salman and Gaos[5,6] determined the total vertex irregularity strength of trees containing vertices

of degree 2, namely a subdivision of a star and a subdivision of a particular caterpillar. They also improved some

of the bounds given in[1] and showed that tvs(Pn) = � n+1
3
�. In [4] Nurdin, Baskoro, Salman and Gaos proved that for

t ≥ 2, tvs(tPn) = � nt+1
3
� for n ≥ 4, and tvs(tPn) = t + 1 for n = 2, 3. In [7] Nurdin et al. proved that for a quadtree Qd

with d ≥ 2, tvs(Qd) = 22d−1 + 1. They also proved that for banana tree (Bn, t), tvs(Bn, t) = � n(t−1)
2
�+ 1, n ≥ 3 and t ≥ 3.

In[4] Nurdin, Baskoro, Salman and Gaos proved that the total vertex irregularity strength of the complete k-ary tree

(k ≥ 2) with depth d ≥ 1 is � kd+1
2
� and the total vertex irregularity strength of the subdivision of K1,n for n ≥ 3 is

� n+1
3
�. Let G be a special caterpillar obtained by taking a path Pm and m copies of Pn denoted by Pn,1, Pn,2, . . . , Pn,m

where m ≥ 2, n ≥ 2, and then joining the i-th vertex of Pm to an end vertex of the path Pn,i. Then, they showed that

tvs(G) = �mn+3
3
�.

For any general tree T with maximum degree Δ, Nurdin et al. [6] showed that tvs(T ) ≥ max{t1, t2, . . . , tΔ} where

ti = �(1 +∑i
j=1 n j)/(i + 1)� and ni be the number of vertices degree i ∈ [1,Δ]. Furthermore, they also conjectured that

the total vertex irregularity strength of any tree T is only determined by the number of its vertices of degrees 1, 2 and

3. Precisely, they conjectured that for any tree T we have tvs(T ) = max{t1, t2, t3}. Recently, Susilawati, E. T. Baskoro

and R. Simanjuntak[8] proved that in any tree T with maximum degree 4, there is i ∈ {1, 2, 3} such that ti ≥ t4. As a

consequence, tvs of such a tree T is at least max{t1, t2, t3}. They[8] also gave some condition for trees with maximum

degree 4 whose tvs(T ) = max{t1, t2, t3}. In this paper, we study the correctness of this conjecture by considering a

subdivision of several types of trees, namely caterpillars, firecrackers and amalgamation of stars.

2. Main Results

Let T be a tree with p vertices and q edges. Let ni be the number of vertices degree i. Baca et al in [1] proved that

n1 = 2 +
∑
i≥2

(i − 2)ni.

Theorem 1. [6] Let T be a tree with maximum degree Δ. Let ni be the number of vertices of degree i, then

tvs(T ) ≥ max{t1, t2, . . . , tΔ},
where ti = �(1 +∑i

j=1 n j)/(i + 1)� and ni be the number of vertices degree i ∈ [1,Δ].

2.1. Subdivision of caterpillars

In this subsection, we determine the total vertex irregularity strength of a subdivision graph of a non-homogeneous

caterpillar. For integers m, k1, k2, . . . , km ≥ 2, define a caterpillar C{k1,k2,...,km}
m as a graph obtained by attaching ki

vertices to each vertex of ci of the path Pm, for i ∈ [1,m]. The path Pm in C{k1,k2,...,km}
m is called the backbone of

the caterpillar. All vertices degree one are called pendant vertices. All pendant edges adjacent to ci are labeled by

c11, c12, . . . , ci j where 1 ≤ j ≤ |ki|. Edges cici j and cici+1 are called pendant edges and backbone edges, respectively.

If k1 = k2 = . . . = km = r, then the caterpillar is called to be homogeneous, and it is denoted by Cr
m. Other-

wise, the caterpillar is called to be non-homogeneous. Let G = (V, E) be a connected graph and e ∈ E(G). The

subdivision of a graph G on the edge e in k times is a graph obtained from the graph G by replacing edge e = uv
with a path (u, x1, x2, · · · , xk, v) on k + 2 vertices. The vertices xi are called subdivision vertices. Now, denote by

S ub(C{k1,k2,k3,...,km}
m , {w1,w2,w3, . . . ,wm−1}) the subdivision of a non-homogeneous caterpillar on all the backbone edges

in w1,w2, · · · , or wm−1 times, respectively. Denote by xi all the subdivision vertices. See Figure 1 as examples.

Theorem 2. Let T 
 S ub(C{k1,k2,...,km}
m , {w1,w2,w3, . . . ,wm−1}) where m ≥ 2 and wk, ki ≥ 1 for 1 ≤ k ≤ m − 1 and

1 ≤ i ≤ m. The number of vertices degree one and two are n1 =
∑m

i=1 ki and n2 =
∑m−1

k=1 wk, respectively. For n2 ≥ n1

and n j+1 ≤ 1
2
(n j − 1) for j ≥ 2, then tvs(T ) ≤ t2.

Proof. Define a labeling algorithm λ as follows.
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Fig. 1. Graf T 
 S ub(C{3,3,2}
3

, {1, 2}) dan T 
 S ub(C{3,3,3}
3

, {1, 2})

1. Label all pendant vertices and pendant edges by the following steps.

(a). Let V ′
1 = {c1, c2, . . . , cm} be a set of backbone vertices in Pm where d(ci) ≥ d(ci+1). Let V1 = {ci j | 1 ≤ i ≤

m, 1 ≤ j ≤ ki} be a set of pendant vertices in T .

(b). Label t2 first pendant vertices in V1 by 1.

(c). Label (n1 − t2) remaining vertices in V1 by 2, 3, . . . , (n1 − t2 + 1).

(d). Let E1 = {ei j | ei j edge incident to ci j, ∀i, j} be a set of pendant edges. Label t2 edges in E1 by 1, 2, . . . , t2
and label (n1 − t2) edges in E1 by t2.

2. Let E2 = {xnxn+1 | n ∈ [1,wi − 1], i ∈ [1,m− 1]}. Define k1 = n1 and ki = k1 +
∑i−1

r=1 wr − 1 for each 2 ≤ i ≤ m− 1.

Now, for 1 ≤ i ≤ m − 1 and 1 ≤ n ≤ wi − 1, define λ(xnxn+1) = � 1+n+ki
3

�.
3. Next, define λ(e) = t2, for e ∈ E \ (E1 + E2).

4. Label all vertices in V \ V1 by the following steps.

Denote all vertices in V \ V1 by y1, y2, . . . , yN , where N =
m−1∑
i=1

wi + m, such that s(y1) ≤ s(y2) ≤ . . . ≤ s(yN) with

s(y) =
∑

yz∈E(T )
λ(yz), which can be considered as the temporary weight of yi in T .

Define λ(y1) recursively as follows.

λ(y1) = n1 + 2 − s(y1), which implies wt(y1) = λ(y1) + s(y1).

For 2 ≤ i ≤ N

λ(yi) = max{1,wt(yi−1) + 1 − s(yi)}.

We conclude that:

1. λ is a mapping from V(T ) ∪ E(T ) into {1, 2, . . . , t2},
2. The weights of pendant vertices are 2, 3, 4, . . . , n1 + 1, respectively.

3. The weight of all remaining vertices forms n1 + 2 = wt(y1) < wt(y2) < . . . < wt(yN) where N =
m−1∑
i=1

wi + m.

Then, tvs(T ) ≤ t2.

2.2. Subdivision of fire crackers

In this subsection, we determined the total vertex irregularity strength of subdivision graph of a non-homogeneous

fire crackers. For integers m,w1,w2, . . . ,wm ≥ 3. Let G1,G2, . . . ,Gm be a family of disjoint stars and wi be the number

of vertices degree one in Gi. Let ai be a pendant vertex of Gi, 1 ≤ i ≤ m, define a fire crackers F{w1,w2,...,wm}
m as a tree

graph which contains all the m stars and a path joining a1, a2, . . . , am.
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The vertices in path Pm in F{w1,w2,...,wm}
m is called the backbone vertices of the fire cracker and labeled by x1, x2, . . . , xm.

All vertices degree one are called pendant vertices. All vertices incident to pendant vertices are called central vertices
and labeled by c1, c2, . . . , cm. All pendant vertices attached to ci where 1 ≤ i ≤ m are labeled by a11, a12, . . . , aiwm .

Edges ciaiwi and xk xk+1 where 1 ≤ k + m are called pendant edges and backbone edges, respectively. If w1 = w2 =

. . . = wm = w, then the fire cracker is called to be homogeneous, and it is denoted by Fw
m. Otherwise, the fire cracker

is called to be non-homogeneous. Let G = (V, E) be a connected graph and e ∈ E(G). The subdivision of a graph G
on the edge e in k times is a graph obtained from the graph G by replacing edge e = uv with a path (u, x1, x2, . . . , xk, v)

on k + 2 vertices. Now, denoted by T � S ub(F{w1,w2,...,wm}
m , {q1, q2, . . . , qm−1}) the subdivision of a non-homogeneous

fire cracker on all the backbone edges in q1, q2, . . . , or qm−1 times, respectively. See Figure 2 for illustration.

Fig. 2. T � S ub(F{3,3,4}
3

, {2, 5})

Theorem 3. Let T 
 S ub(F{w1,w2,...,wm}
m , {q1, q2, . . . , qm−1}) with m,wi ≥ 3 for 1 ≤ i ≤ m and q j ≥ 2 for 1 ≤ j ≤ m − 1.

The number of vertices degree one and two are n1 =
∑m

i=1 wi and n2 =
∑m−1

j=1 q j + 2, respectively. For n2 ≥ n1 and
nk+1 ≤ 1

2
(nk − 1) for k ≥ 2, then tvs(T ) ≤ t2.

Proof. Define a labeling algorithm φ as follows.

1. Label all pendant vertices and pendant edges by the following steps.

(a). Let V1 = {c1, c2, . . . , cl} be a set of central vertices where d(ci) ≥ d(ci+1). Let V ′
1 = {ai j | 1 ≤ i ≤ m, 1 ≤ j ≤

wi,∀ i} be a set of pendant vertices in T .

(b). Label t2 first pendant vertices in V ′
1 by 1.

(c). Label (n1 − t2) remaining vertices in V1 by 2, 3, . . . , n1 − t2 + 1.

(d). Let E1 = {ei j | ei j edges incident to ai j, 1 ≤ i ≤ m and 1 ≤ j ≤ wi} be a set of pendant edges. Label t2 edges

in E1 by 1, 2, . . . , t2 and label (n1 − t2) edges in E1 by t2.

2. Let E2 = {xixi+1 | 1 ≤ i ≤ ∑m−1
j=1 q j + m − 1} be a set of backbone edges in Pm. Define φ(xixi+1) = � i+1+n1

3
�.

3. Next, define φ = t2 for e ∈ E\(E1 + E2).

4. Label all vertices in V \ V1 by the following steps. Denote vertices V \ V ′ with y1, y2, y3, . . . , yN where N =∑m−1
j=1 q j + 2m such that s(y1) ≤ s(y2) ≤ . . . ≤ s(yN) with s(y) =

∑
yz∈E(T )

φ(yz), which can be considered as

temporary weight of yi in T . Define φ(y1) recursively as follows.

φ(y1) = n1 + 2 − s(y1), which implies wt(y1) = φ(yi) + s(yi).

For 2 ≤ i ≤ N, then

wt(yi) = max{1,wt(yi−1) + 1 − s(yi)} and wt(yi) = s(yi) + φ(yi).

We conclude that:

1. φ is mapping from V(T ) ∪ E(T ) into {1, 2, . . . , t2},
2. The weight of all pendant verties are 2, 3, 4, . . . , n + 1.
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3. The weight of all remaining vertices form n1 + 2 = wt(y1) < wt(y2) < . . . < wt(yN) where N =
∑m−1

j=1 q j + 2m.

Then, we have tvs(T ) ≤ t2.

2.3. Subdivision of amalgamation of stars

In this subsection, we determine the total vertex irregularity strength of a subdivision of amalgamation of stars.

Let {G1,G2, . . . ,Gn} be a finite collection of graphs and each Gi has a fixed vertex v0i. The vertex-amalgamation of

G1,G2, . . . ,Gn, denoted by vertex − amal{Gi; v0,i; m} is formed by taking all the Gi’s and identifying their terminal

vertices. Consider Gi is star graph K1,wi and v0,i be a pendant vertices in K1,wi for all i, denoted by T 
 vertex −
amal{K1,wi ; v0,i; m} where m is the number of star graphs. All vertices degree one are called pendant vertices. All

edges incident to pendant vertices are called pendant edges. All pendant edges incident to v0,1 are called fixed edges.

Let G = (V, E) be a connected graph and e ∈ E(G). The subdivision of a graph G on the edge e in k times

is a graph obtained from the graph G by replacing e = uv with a path u, x1, x2, . . . , xk, v on k + 2 vertices. The

vertices xi are called subdivision vertices. Now, denote by T 
 S ub(vertex − amal{K1,wi ; v0,i; m}, {qi}) where 1 ≤
i ≤ m and qi = (wi − 1) the subdivision of amalgamation of star graphs on all of the fixed edges in q1, q2, . . . , qm

times, respectively. Denoted by xm,q1+2 all the subdivision vertices. All vertices pendant vertices are labeled by

c1,1, c1,2, . . . , c1,w1
, c2,1, c2,2, . . . , c2,w2

, . . . , cm,wm . See Figure 3 as example.

Fig. 3. T � S ub(Vertex − Amal{K1,4,K1,5,K1,4,K1,6; v0,1, v0,2, v0,3, v0,4; 4}, {3, 4, 3, 5})

• Let V(G) = {xi, j | 1 ≤ i ≤ m and 1 ≤ j ≤ qi + 2} ∪ {Ci,l | 1 ≤ l ≤ |wi| − 1} be a set of vertices in T .

• Let E(T ) = {xi, j xi, j+1 | 1 ≤ i ≤ n and 1 ≤ i ≤ qi + 1} ∪ {xi,1Ci,l | 1 ≤ l ≤ wi − 1} be a set of edges in T .

We can see that xi,|qi |+2 is one vertex for every 1 ≤ i ≤ m.

Theorem 4. Let T 
 S ub(vertex − amal{K1,wi ; v0,i; m}, {qi}) be a graph with wi,m ≥ 3 and qi = (wi − 1) for each
1 ≤ i ≤ m is the number of subdivision in all of the backbone edges. The number of vertices degree one and two are
n1 =

∑m
i=1 wi − 1 and n2 =

∑m
i=1 qi, respectively. For n2 ≥ n1 and nk+1 ≤ 1

2
(nk − 1) for k ≥ 2. Then, tvs(T ) ≤ t2.

Proof. Define a labeling algorithm ψ as follows.

1. Label all pendant vertices and pendant edges by the following steps.
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(a). Sort all wi for 1 ≥ i ≥ m such that w1 ≥ w2 ≥ . . . ≥ wm. This implies q1 ≥ q2 ≥ . . . ≥ qm. Let

V1 = {ci,k | 1 ≤ i ≤ m and 1 ≤ k ≤ wi − 1} be a set of pendant vertices in T .

(b). Label t2 first pieces of pendant vertices in V1 by 1.

(c). Label (n1 − t2) remaining vertices in V1 by 2, 3, . . . , (n1 − t2 + 1).

(d). Let E1 = {ei,k | ei,k edge incident to ci,k,∀i, k} where 1 ≤ i ≤ m and 1 ≤ k ≤ wi − 1 be a set of pendant

edges. Label t2 edges in E1 by 1, 2, . . . , t2 and label (n1 − t2) remaining edges in E1 by t2.

2. Label all edges in E(T ) \ E1 by the following steps.

(a). For 1 ≤ j ≤ q1, then define a j = |{qi | qi = j, 1 ≤ i ≤ m}|. Let k0 = n1 and k j = m −
j∑

s=1
as for 1 ≤ j ≤ q1.

For 1 ≤ j ≤ q1 − 1 and 1 ≤ i ≤ k j, then ψ(xi, j+1xi, j+2) =
⌈

1+i+
∑ j−1

r=0
kr

3

⌉
.

(b). Next, define ψ(e) = t2 for all remaining edges in T .

3. Label all vertices in V \ V1 by the following steps. Denoted all vertices in V \ V1 by y1, y2, y3, . . . , yN where

N =
m∑

i≥1
qi + m + 1, such that s(y1) ≤ s(y2) ≤ . . . ≤ s(yN) with s(y) =

∑
yz∈E(T )

ψ(yz), which can be considered as the

temporary weight of yi in T . Define ψ(y1) recursively as follows.

ψ(y1) = n1 + 2 − s(y1), which implies, wt(y1) = ψ(y1) + s(y1).

For 2 ≤ i ≤ N

ψ(yi) = max{1,wt(yi−1) + 1 − s(yi)}.

By this algorithm, we conclude that

1. ψ is mapping from V(T ) ∪ E(T ) into {1, 2, . . . , t2},
2. The weight of pendant vertices are 2, 3, 4, . . . , n + 1, respectively.

3. The weight of all remaining vertices form n1 + 2 = wt(y1) < wt(y2) < . . . < wt(yN) where N =
m∑

i≥1
qi + m + 1.

Then, tvs(T ) ≤ t2.
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