An Asymptotic Formula for the Maximum Size of an h-Family in Products of Partially Ordered Sets

Konrad Engel and Nikolaj Nikolaevič Kuzjurin

Sektion Mathematik, Wilhelm-Pieck-Universität, 2500 Rostock, German Democratic Republic
Communicated by the Managing Editors

Received November 17, 1983

Abstract

An h-family of a partially ordered set \boldsymbol{P} is a subset of P such that no $h+1$ elements of the h-family lie on any single chain. Let S_{1}, S_{2}, \ldots be a sequence of partially ordered sets which are not antichains and have cardinality less than a given finite value. Let P_{n} be the direct product of S_{1}, \ldots, S_{n}. An asymptotic formula of the maximum size of an h-family in P_{n} is given, where $h=o(\sqrt{n})$ and $n \rightarrow \infty$. (c) 1984 Academic Press, Inc.

Let P be a partially ordered set (poset). A subset $\mathfrak{F}_{h} \subseteq P$ is called an h family if it does not contain a chain of $h+1$ elements, i.e., there are not $x_{0}, \ldots, x_{h} \in \mathfrak{F}_{h}$ such that $x_{0}<\cdots<x_{h}$. Let $d_{h}(P)$ be the maximum size of an h-family in P. If P and Q are posets, then the direct product $P \times Q$ is defined on the Cartesian product of the sets P and Q as follows: $\left(x_{1}, y_{1}\right) \leqslant_{P \times Q}\left(x_{2}, y_{2}\right)$ iff $x_{1} \leqslant_{P} x_{2}$ and $y_{1} \leqslant_{Q} y_{2}$.

In all that follows we consider a sequence S_{1}, S_{2}, \ldots of nontrivial posets (i.e., they are not antichains) with bounded cardinalities. Let $k_{i}:=\left|S_{i}\right|<C$ ($i=1,2, \ldots$). We put $P_{n}:=S_{1} \times \cdots \times S_{n}$ and $d_{n, h}:=d_{h}\left(P_{n}\right)$. In this paper we will give an asymptotic formula for $d_{n, h}$ if $h=o(\sqrt{n})$ and $n \rightarrow \infty$. This generalizes a result of V. B. Alekseev [2] where the case $S_{1}=S_{2}=\cdots$ and $h=1$ was settled.

In order to formulate our result we need the following definition. A representation of a poset P is a mapping $z: P \rightarrow \mathbb{R}$ such that $z(x)-z(y) \geqslant 1$ if $x>y$. A representation is called optimal if $\left(1 /|P| \sum_{x \in P}(z(x)-\bar{z}(P))^{2}\right.$ is an infimum (extending over all representations of P), where $\bar{z}(P):=$ $\left(1 /|P| \sum_{x \in P} z(x)\right.$. The infimum is denoted by $D(P)$.

Remark 1. In [2] and [3] it is proved that an optimal representation always exists.

In all that follows let z_{i} be an optimal representation of S_{i} such that $\bar{z}_{i}\left(S_{i}\right)=0$. If $x \in S_{i}$, we can omit the index i in $z_{i}(x)$ and write biefly $z(x)$ since the mapping is defined by S_{i}. Let $D_{i}:=D\left(S_{i}\right)$ and $V_{n}:=\sum_{i=1}^{n} D_{i}$. Our main result is the following

Theorem. If $h=o(\sqrt{n})$, then

$$
d_{n, h} \sim \frac{k_{1} \cdots k_{n}}{\sqrt{2 \pi V_{n}}} \cdot h, \quad \text { where } n \rightarrow \infty
$$

At first we will prove the

Theorem A. If $h=o(\sqrt{n})$, then

$$
d_{n, h} \gtrsim \frac{k_{1} \cdots k_{n}}{\sqrt{2 \pi V_{n}}} \cdot h, \quad \text { where } n \rightarrow \infty
$$

Proof. Let $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in P_{n}$ and define $z(\mathbf{x}):=\sum_{i=1}^{n} z\left(x_{i}\right)$. Obviously $\mathfrak{F}_{h}:=\{\mathbf{x}:-h / 2<z(\mathbf{x}) \leqslant h / 2\}$ is an h-family. Hence, $d_{n, h} \geqslant\left|\mathfrak{F}_{h}\right|$. We will prove that

$$
\begin{equation*}
\left|\mathscr{F}_{h}\right| \sim \frac{k_{1} \cdots k_{n}}{\sqrt{2 \pi V_{n}}} \cdot h \tag{1}
\end{equation*}
$$

For that we define the following discrete random variables $\eta_{1}, \eta_{2}, \ldots$ as follows:

$$
P\left(\eta_{i}=z_{j}^{l}\right)=\frac{1}{k_{i}}
$$

where $z_{j}^{i}:=z\left(s_{j}^{l}\right)$ and $S_{l}=\left\{s_{1}^{i}, \ldots, s_{k_{i}}^{i}\right\}$. Let $\eta_{1}, \eta_{2}, \ldots$ be independent and $v_{n}:=\eta_{1}+\cdots+\eta_{n}$. Then the expected value and variance of v_{n} is equal to 0 and V_{n}, respectively. We have $\left|\mathfrak{F}_{h}\right|=k_{1} \cdots k_{n} \cdot P\left(-h / 2<v_{n} \leqslant h / 2\right)$. Thus it is sufficient to prove that

$$
\begin{equation*}
P\left(-\frac{h}{2}<v_{n} \leqslant \frac{h}{2}\right)=\frac{h}{\sqrt{2 \pi V_{n}}}(1+o(1)) \tag{2}
\end{equation*}
$$

In Lemmas 4 and 5 of [2] it is proved that $\eta_{1}, \eta_{2}, \ldots$ have a lattice distribution and that the maximal spans of them are equal to $1 / r_{1}, 1 / r_{2}, \ldots$, where r_{1}, r_{2}, \ldots are integers. Obviously, there exists only a finite number of posets with cardinality less than C. Thus the number of different distribution functions of $\eta_{1}, \eta_{2}, \ldots$ is finite. Let $1 / R_{1}, \ldots, 1 / R_{l}$ be the corresponding maximal spans. If R is the least common multiple of R_{1}, \ldots, R_{l} and $\xi_{i}:=R \eta_{i}+y_{i}$, then the maximal span of ξ_{i} is equal to R / R_{i}, hence an integer $(i=1,2, \ldots)$. Thus y_{i} can be chosen such that ξ_{l} is an integer-valued variable. If we put $\mu_{n}:=\sum_{i=1}^{n} \xi_{l}$, then obviously $W_{n}:=R^{2} V_{n}$ is the variance and $M_{n}:=y_{1}+\cdots+y_{n}$ is the expected value of $\mu_{n}(n=1,2, \ldots)$. Since the greatest common divisor of $R / R_{1}, \ldots, R / R_{i}$ equals 1 we may use the limit theorem for
k-sequences of independent random variables (see [8, p. 189]) and conclude that

$$
\begin{equation*}
\sup _{N}\left|\sqrt{W_{n}} P\left(\mu_{n}=N\right)-\frac{1}{\sqrt{2 \pi}} e^{-\left(N-M_{n}\right)^{2} / 2 W_{n}}\right| \rightarrow 0 \tag{3}
\end{equation*}
$$

(the supremum extends over all integers N). Now we have

$$
\begin{align*}
P\left(-\frac{h}{2}<v_{n} \leqslant \frac{h}{2}\right) & =P\left(-\frac{h R}{2}+M_{n}<\mu_{n} \leqslant \frac{h R}{2}+M_{n}\right) \\
& =\sum_{N \in I} P\left(\mu_{n}=N\right), \tag{4}
\end{align*}
$$

where $I:=\left\{N \in \mathbb{Z}:-h R / 2+M_{n}<N \leqslant h R / 2+M_{n}\right\}$.
Let \underline{D} and \bar{D} be the smallest and largest value of $\left\{D_{1}, D_{2}, \ldots\right\}$, respectively (they exist since there is only a finite number of different distribution functions under $\left.\eta_{1}, \eta_{2}, \ldots\right)$. Because of $h=o(\sqrt{n})$ we conclude that for all $N \in I$

$$
0<\frac{\left(N-M_{n}\right)^{2}}{2 W_{n}} \leqslant \frac{(h R)^{2}}{2 R^{2} V_{n}} \leqslant \frac{h^{2}}{2 n \underline{D}}<\varepsilon_{1}(n),
$$

where $\varepsilon_{1}(n) \rightarrow 0$. (It is not the case that $\underline{D}=0$ since S_{1}, S_{2}, \ldots are not antichains.) Thus (3) implies that for all $N \in I$

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}}\left(1-\varepsilon_{2}(n)\right) \leqslant \sqrt{W_{n}} P\left(\mu_{n}=N\right) \leqslant \frac{1}{\sqrt{2 \pi}}\left(1+\varepsilon_{3}(n)\right) \tag{5}
\end{equation*}
$$

where $\varepsilon_{2}(n) \rightarrow 0$ and $\varepsilon_{3}(n) \rightarrow 0$. Since $|I|=h R$ from (4) and (5) it follows

$$
\frac{h R}{\sqrt{2 \pi W_{n}}}\left(1-\varepsilon_{2}(n)\right) \leqslant P\left(-\frac{h}{2}<v_{n} \leqslant \frac{h}{2}\right) \leqslant \frac{h R}{\sqrt{2 \pi W_{n}}}\left(1+\varepsilon_{3}(n)\right),
$$

and because of $W_{n}=R^{2} V_{n}$ we obtain

$$
P\left(-\frac{h}{2}<v_{n} \leqslant \frac{h}{2}\right)=\frac{h}{\sqrt{2 \pi V_{n}}}(1+o(1)),
$$

and (2) is proved.
Q.E.D.

Now we will prove the more difficult
Theorem B. $d_{n, n} \lessgtr\left(k_{1} \cdots k_{n} / \sqrt{2 \pi V_{n}}\right) \cdot h$, where $n \rightarrow \infty$.
Proof. It is sufficient to prove that

$$
d_{n, 1} \leqslant \frac{k_{1} \cdots k_{n}}{\sqrt{2 \pi V_{n}}}
$$

since $d_{n, h} \leqslant h \cdot d_{n, 1}$ (each h-family is the union of h Sperner families, i.e., 1 families; see, for instance, [1, p. 271]). Let $N_{v}:=\left\{\mathbf{x} \in P_{n}: z(\mathbf{x})=v\right\}$ and consider the bipartite graph G_{v} on the vertex-set $N_{v-1} \cup N_{v}$ in which (\mathbf{x}, \mathbf{y}) is an edge iff $\mathbf{x}<\mathbf{y}$. Let E_{v} be a maximum matching of G_{v}, i.e., a maximum set of pairwise non-adjacent edges of G_{v}. Now join adjacent edges of the matchings $\ldots, E_{v-1}, E_{v}, E_{v+1}, \ldots$ so far as possible. In this way we obtain a partition of P_{n} into chains (single points are regarded as chains too). Let R_{n} be the set of such chains in the partition which have an element \mathbf{x} with $-\frac{1}{2}<z(\mathbf{x}) \leqslant \frac{1}{2}$. Further let R_{1} and R_{2} be the set of such chains in the partition in which $z(\mathbf{x}) \geqslant \frac{1}{2}$ and $z(\mathbf{x}) \leqslant-\frac{1}{2}$ for all elements of the chain, respectively. Obviously, $d_{n, 1} \leqslant\left|R_{0}\right|+\left|R_{1}\right|+\left|R_{2}\right|,\left|R_{0}\right|=\left|\left\{\mathbf{x}:-\frac{1}{2}<z(\mathbf{x}) \leqslant \frac{1}{2}\right\}\right|$. From (1) in the proof of Theorem A we obtain

$$
\left|R_{0}\right| \sim \frac{1}{\sqrt{2 \pi V_{n}}} k_{1} \cdots k_{n}
$$

In all that follows we will prove that $\left|R_{1}\right| \leqslant k_{1} \cdots k_{n} \cdot o(1 / \sqrt{n})$. Then all is done since then

$$
\frac{\left|R_{1}\right|}{\left|R_{0}\right|} \leqslant o\left(\frac{1}{\sqrt{n}}\right) \cdot \sqrt{2 \pi V_{n}} \leqslant o\left(\frac{1}{\sqrt{n}}\right) \cdot \sqrt{2 \pi n \bar{D}} \rightarrow 0,
$$

and the same follows for $\left|R_{2}\right|$ by duality.
Let δ_{v} be the number of elements of N_{v} which are not covered by an edge of the maximum matching E_{v}. Associating to each chain of R_{1} its smallest element we obtain

$$
\begin{equation*}
\left|R_{1}\right|=\sum_{v>1 / 2} \delta_{v} \tag{6}
\end{equation*}
$$

For $X \subseteq N_{v}$ let $V(X):=\left\{\mathbf{y} \in N_{v-1}: \mathbf{y}<\mathbf{x}\right.$ for any $\left.\mathbf{x} \in X\right\}$. A set $X \subseteq N_{v}$ is called a critical set iff

$$
|X|-|V(X)|=\max _{Y \leq N_{v}}(|Y|-|V(Y)|) .
$$

From well-known results on matchings (see [7, p. 138 ff .]) it follows that there exists a unique minimal critical set X_{v} which is contained in all other critical sets and for which

$$
\left|X_{v}\right|-\left|V\left(X_{v}\right)\right|=\delta_{v} .
$$

Now we will prove that special classes of elements, so-called statistics, are contained in X_{v}. At first we shall define these classes. Since $\left|S_{t}\right|<C$ for all i
we have in our sequence S_{1}, S_{2}, \ldots only a finite number of different posets. Let T_{1}, \ldots, T_{l} be these posets ($T_{i}=\left\{t_{j} ; j=1, \ldots, \tilde{k}_{l}\right\}, i=1, \ldots, l$). We can suppose that T_{1}, \ldots, T_{1} are pairwise disjoint. Let n_{i} be the number of factors T_{i}. Obviously,

$$
P_{n} \cong \underbrace{T_{1} \times \cdots \times T_{1}}_{n_{1}} \times \cdots \times \underbrace{T_{1} \times \cdots \times T_{1}}_{n_{t}} .
$$

Without loss of generality we may assume that P_{n} is equal to this poset. Further, let $Q_{i}:=\left(q_{1}^{i}, \ldots, q_{k}^{i}\right)$ be a \bar{k}_{i} tuple of integers with $\sum_{j=1}^{\mathfrak{k}_{i}} q_{j}^{i}=n_{i}$ $(i=1, \ldots, l)$, and let $\mathbf{Q}:=\left(Q_{1}, \ldots, Q_{l}\right)$ be an l-tuple of such \tilde{k}_{i} tuples. The statistic of Q is defined to be the set of elements $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in P_{n}$ in which the element t_{j}^{i} occurs exactly q_{j}^{i} times ($\left.j=1, \ldots, \tilde{k}_{i}, i=1, \ldots, l\right)$; it is denoted by $S(\mathrm{Q})$. Now we will prove that either no element of a statistic or the whole statistic, i.e., all elements of it, is contained in X_{v}. Let $\pi=\left(\pi_{1}, \ldots, \pi_{l}\right)$ be an element of the direct product of the symmetric groups on the sets $\left\{1, \ldots, n_{i}\right\}$, $i=1, \ldots, l$. To such a π we can associate an automorphism φ_{π} of P_{n} by

$$
\varphi_{\pi}\left(x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{1}^{l}, \ldots, x_{n_{l}}^{l}\right):=\left(x_{\pi_{1}(1)}^{1}, \ldots, x_{\pi_{1}\left(n_{1}\right)}^{1}, \ldots, x_{\pi_{l^{(1)}}^{l}}^{l}, \ldots, x_{\pi_{t}\left(n_{l}\right)}^{l}\right) .
$$

Evidently, $\left|\varphi_{\mathbf{z}}\left(X_{v}\right)\right|=\left|X_{v}\right|$ and $\left|V\left(\varphi_{k}\left(X_{v}\right)\right)\right|=\left|V\left(X_{v}\right)\right|$, hence $\left|\varphi_{\pi}\left(X_{v}\right)\right|-$ $\left|V\left(\varphi_{n}\left(X_{v}\right)\right)\right|=\delta_{v}$. Since X_{v} is a minimal critical set we have $X_{v} \subseteq \varphi_{n}\left(X_{v}\right)$, hence $X_{v}=\varphi_{\pi}\left(X_{v}\right)$. Consequently, if $\mathbf{x} \in X_{v}$, then $\varphi_{\pi}(\mathbf{x}) \in X_{v}$ for all such π, thus the whole statistic containing \mathbf{x} is contained in X_{v}.
Let $z\left(Q_{i}\right):=\sum_{j=1}^{k_{t}} q_{j}^{i} z\left(t_{j}^{i}\right)$ and $z(\mathbf{Q}):=\sum_{i=1}^{i} z\left(Q_{i}\right)$. Obviously, $z(\mathbf{x})=z(\mathbf{Q})$ holds for all $\mathbf{x} \in S(\mathbf{Q})$. Let I_{m} be the set of all pairs (i, j) for which $t_{i}^{m}>t_{j}^{m}$ and $z\left(t_{i}^{m}\right)-z\left(t_{j}^{m}\right)=1(m=1, \ldots, l)$. In order to estimate δ_{v} (see (6)) we associate to each pair (t_{i}^{m}, t_{j}^{m}) with $(i, j) \in I_{m}$ a number $\beta_{i j}^{m}$ (to be specified later) such that $\beta_{i j}^{m} \geqslant 0(m=1, \ldots, l)$ and $\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m}=1$.

For $\mathbf{Q}=\left(Q_{1}, \ldots, Q_{i}\right)$ and $(i, j) \in I_{m}$ we define $\mathbf{Q}_{i j}^{m}$ to be the tuple $\left(Q_{1}, \ldots, Q_{m-1}, Q_{m}^{\prime}, Q_{m+1}, \ldots, Q_{1}\right)$, where $Q_{m}^{\prime}:=\left(q_{1}^{m}, \ldots, q_{i}^{m}-1, \ldots, q_{j}^{m}+1, \ldots, q_{\bar{k}_{m}}^{m}\right)$. Obviously the elements of $S\left(\mathbf{Q}_{i j}^{m}\right)$ can be obtained from the elements of $S(\mathbf{Q})$ by specifying some coordinate and changing t_{i}^{m} to t_{j}^{m} for each element in which t_{i}^{m} occurs in that coordinate.

We set $r(\mathbf{Q}):=|S(\mathrm{Q})|-\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m}\left|S\left(\mathbf{Q}_{i j}^{m}\right)\right|$ if the right-hand side is not negative and $r(Q):=0$, otherwise.

Lemma 1. $\delta_{v} \leqslant \sum_{\mathbf{Q}: z(\mathbf{Q})=v} r(\mathbf{Q})$.
Proof. To each pair $\left(\mathbf{Q}, \mathbf{Q}^{\prime}\right)$ with $\boldsymbol{z}(\mathbf{Q})=\boldsymbol{z}\left(\mathbf{Q}^{\prime}\right)+1=v$ and $\mathbf{Q}^{\prime}=\mathbf{Q}_{i j}^{m}$ for some $m \in\{1, \ldots ., l\}$ and some $(i, j) \in I_{m}$ we associate the unique weight $\beta_{i j}^{m}\left|S\left(\mathbf{Q}_{i j}^{m}\right)\right|$. Counting the weights of pairs $\left(\mathbf{Q}, \mathbf{Q}^{\prime}\right)$ with $S(\mathbf{Q}) \subset X_{v}$ in two different ways we obtain

$$
\begin{aligned}
& \sum_{\mathbf{Q}: S(\mathbf{Q}) \subset X_{v}} \sum_{m=1}^{1} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m}\left|S\left(\mathbf{Q}_{i j}^{m}\right)\right| \\
& \quad=\sum_{\mathbf{Q}^{\prime}: S\left(\mathbf{Q}^{\prime}\right) \subset V\left(X_{v}\right)}\left|S\left(\mathbf{Q}^{\prime}\right)\right| \cdot \sum_{m=1}^{l} \sum_{(i, j) \in I_{m}: \exists \mathbf{Q} \mathbf{w i t h} S(\mathbf{Q}) \subset X_{v} \text { and } \mathbf{Q}_{i j}^{m}=\mathbf{Q}^{\prime}} \beta_{i j}^{m} \\
& \quad \leqslant \sum_{\mathbf{Q}^{\prime}: S\left(\mathbf{Q}^{\prime}\right) \subset V\left(X_{v}\right)}\left|S\left(\mathbf{Q}^{\prime}\right)\right|=\left|V\left(X_{v}\right)\right| .
\end{aligned}
$$

It follows

$$
\begin{aligned}
\delta_{v} & =\left|X_{v}\right|-\left|V\left(X_{v}\right)\right| \\
& \leqslant \sum_{\mathbf{Q}: S(\mathbf{Q}) \subset X_{v}}|S(\mathbf{Q})|-\sum_{\mathbf{Q}: S(\mathbf{Q}) \subset X_{v}} \sum_{m=1}^{i} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m}\left|S\left(\mathbf{Q}_{i j}^{m}\right)\right| \\
& =\sum_{\mathbf{Q}: S(\mathbf{Q}) \in X_{v}} r(\mathbf{Q}) \leqslant \sum_{\mathbf{Q}: z(\mathbf{Q})=v} r(\mathbf{Q}) .
\end{aligned}
$$

Q.E.D.

Now we will prove that

$$
\sum_{\mathbf{Q}: z(\mathbf{Q}) \geq 1 / 2} r(\mathbf{Q}) \leqslant k_{1} \cdots k_{n} \cdot o\left(\frac{1}{\sqrt{n}}\right)
$$

which together with (6) and Lemma 1 will complete the proof. We will estimate the above sum in two steps. For that let, without loss of generality,

$$
\begin{equation*}
n_{1}, \ldots, n_{s}>n^{1 / 3} \quad \text { and } \quad n_{s+1}, \ldots, n_{l} \leqslant n^{1 / 3} \tag{7}
\end{equation*}
$$

(if n is large enough we have $s \geqslant 1$). Let

$$
\begin{aligned}
F_{1}:= & \left\{\mathbf{Q}:\left|q_{i}^{m}-\frac{n_{m}}{\hat{k}_{m}}\right|>2 \sqrt{n_{m}} \ln n_{m} \text { for some } m \in\{1, \ldots, s\}\right. \text { and } \\
& \text { some } \left.i \in\left\{1, \ldots, \tilde{k}_{m}\right\}\right\}, \\
F_{2}:= & \left\{\mathbf{Q}:\left|q_{i}^{m}-\frac{n_{m}}{\hat{k}_{m}}\right| \leqslant 2 \sqrt{n_{m}} \ln n_{m} \text { for each } m \in\{1, \ldots, s\}\right. \text { and } \\
& \text { each } \left.i \in\left\{1, \ldots, \tilde{k}_{m}\right\}\right\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{\mathbf{Q}: z(\mathbf{Q})>1 / 2} r(\mathbf{Q}) \leqslant \sum_{\mathbf{Q} \in F_{1}} r(\mathbf{Q})+\sum_{\mathbf{Q} \in F_{i}: \geq(\mathbf{Q})>1 / 2} r(\mathbf{Q}) . \tag{8}
\end{equation*}
$$

Lemma 2. $\sum_{\mathbf{Q} \in F_{1}} r(\mathbf{Q}) \leqslant k_{1} \cdots k_{n} \cdot o(1 / \sqrt{n})$.

Proof. We have

$$
\begin{equation*}
\sum_{Q \in F_{1}} r(\mathbf{Q}) \leqslant \sum_{\mathbf{Q} \in F_{1}}|S(\mathbf{Q})| . \tag{9}
\end{equation*}
$$

If $\quad G_{i}^{m}:=\left\{\mathbf{Q}:\left|q_{i}^{m}-n_{m} / \tilde{k_{m}}\right|>2 \sqrt{n_{m}} \ln n_{m}\right\}\left(m=1, \ldots, s, \quad i=1, \ldots, \tilde{k}_{m}\right)$, then obviously

$$
\begin{equation*}
\sum_{\mathbf{Q} \in F_{1}}|S(\mathbf{Q})| \sum_{m=1}^{s} \sum_{i=1}^{\kappa_{m}} \sum_{\mathbf{Q} \in G_{T}^{m}}|S(\mathbf{Q})| \leqslant l \mid \max _{\substack{m \in(1, \ldots, s) \\ i \in\left(1, \ldots, k_{m}\right)}}\left(\sum_{\mathbf{Q} \in G_{i}^{m}}|S(\mathbf{Q})|\right) \tag{10}
\end{equation*}
$$

If $K_{i}^{m}(q)$ is the set of all $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in P_{n}$ in which the element t_{i}^{m} occurs exactly q times, then

$$
\sum_{Q \in G_{i}^{m}}|S(\mathbf{Q})|=\sum_{q:\left|q-n_{m} / k_{m}\right|>2 \sqrt{n_{m}} \ln n_{m}}\left|K_{i}^{m}(q)\right| .
$$

In order to estimate these sums we consider the following identically distributed and independent random variables $\lambda_{1}, \ldots, \lambda_{n_{m}}$, with

$$
\begin{aligned}
& P\left(\lambda_{i}=0\right)=\frac{\tilde{k}_{m}-1}{\tilde{k}_{m}}, \\
& P\left(\lambda_{i}=1\right)=\frac{1}{\tilde{k}_{m}} \quad\left(i=1, \ldots, n_{m}\right) .
\end{aligned}
$$

Further let $\zeta_{n_{m}}:=\lambda_{1}+\cdots+\lambda_{n_{m}}$. Obviously, $\left|K_{i}^{m}(q)\right|=k_{1} \cdots k_{n} \cdot P\left(\zeta_{n_{m}}=q\right)$, and thus

$$
\begin{equation*}
\sum_{\mathbf{Q} \in G_{i}^{m}}|S(\mathbf{Q})|=k_{1} \cdots k_{n} \cdot P\left(\left|\zeta_{n_{m}}-\frac{n_{m}}{\widetilde{k_{m}}}\right|>2 \sqrt{n_{m}} \ln n_{m}\right) \tag{11}
\end{equation*}
$$

Since n_{m} / \tilde{k}_{m} is the expected value of $\zeta_{n_{m}}$ it follows from Hoeffding's exponential estimation for distributions of sums of independent random variables (see [8, p. 58, 8.]) that

$$
\begin{equation*}
P\left(\left|\zeta_{n_{m}}-\frac{n_{m}}{\widetilde{k}_{m}}\right|>2 \sqrt{n_{m}} \ln n_{m}\right) \leqslant 2 \cdot e^{-\ln ^{2} n_{m}} \tag{12}
\end{equation*}
$$

From (9)-(12) we now obtain

$$
\begin{aligned}
\sum_{\mathbf{Q} \in F_{1}} r(\mathbf{Q}) & \leqslant \max _{m \in(1, \ldots, s)} 2 l C \cdot k_{1} \cdots k_{n} \cdot e^{-\ln ^{2} n_{m}} \\
& \leqslant 2 l C \cdot k_{1} \cdots k_{n} \cdot e^{-(1 / 9) \ln n^{2} n}=k_{1} \cdots k_{n} \cdot o\left(\frac{1}{\sqrt{n}}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

It remains to estimate the second sum in (8) $\sum_{\mathbf{Q}_{\in \mathcal{F}} \mathbf{2}: z(\mathbf{O}) \geqslant 1 / 2} r(\mathbf{Q})$. For this we need the following lemma which can be obtained from the Theorem of Gale (see [4, p. 62] and [2, Lemma 12]) or from the Theorem of Kuhn and Tucker (see [3]).

Lemma 3. To each pair $\left(t_{i}^{m}, t_{j}^{m}\right)$ with $(i, j) \in I_{m}$ one can associate a number $f^{m}(i, j) \geqslant 0$ such that $f_{-}^{m}(i)-f_{+}^{m}(i)=z\left(t_{i}^{m}\right)$, where $f^{m}(i):=$ $\sum_{j:(i, j) \in I_{m}} f^{m}(i, j)$ and $f_{+}^{m}(i):=\sum_{j:(0, i) \in I_{m}} f^{m}(j, i)$.

Remark 2. This is the only place where we use the fact that the poset representations are optimal.

Obviously there exist constants \underline{F} and \bar{F} such that

$$
\begin{equation*}
0<\underline{F} \leqslant \sum_{(i, j) \in I_{m}} f^{m}(i, j) \leqslant \bar{F} \quad \text { for all } m \in\{1, \ldots, l\} \tag{13}
\end{equation*}
$$

(F can be chosen greater than 0 since T_{1}, \ldots, T_{l} are not trivial posets). Now let

$$
\begin{align*}
f & :=\frac{1}{n} \sum_{m=1}^{s} \sum_{(i, j) I_{m}} \frac{n_{m}}{\tilde{k}_{m}} f^{m}(i, j), \tag{14}\\
\beta_{i j}^{m} & :=\left\{\begin{array}{l}
\frac{1}{n} \cdot \frac{f^{m}(i, j)}{f} \cdot \frac{n_{m}}{\widetilde{k}_{m}}, \quad m=1, \ldots, s, \\
0, \quad m=s+1, \ldots, l .
\end{array}\right. \tag{15}
\end{align*}
$$

Obviously $\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m}=1$ and $\beta_{i j}^{m} \geqslant 0$. Further, from (13) and (14) it follows

$$
\frac{1}{n} \cdot \frac{1}{C} \cdot\left(n_{1}+\cdots+n_{s}\right) \cdot \underline{F} \leqslant f \leqslant \frac{1}{n} \cdot\left(n_{1}+\cdots+n_{s}\right) \cdot \bar{F} \leqslant \bar{F} .
$$

Since

$$
\frac{n_{1}+\cdots+n_{s}}{n}=1-\frac{n_{s+1}+\cdots+n_{l}}{n}
$$

and

$$
\frac{n_{s+1}+\cdots+n_{l}}{n} \leqslant \frac{l \cdot n^{1 / 3}}{n} \rightarrow 0,
$$

there exists a constant \underline{F}^{\prime} such that

$$
\begin{equation*}
0<\underline{F}^{\prime} \leqslant f \leqslant \bar{F} . \tag{16}
\end{equation*}
$$

Moreover we mention that there is a constant Z such that $z\left(t_{t}^{m}\right) \leqslant Z$ for all $m \in\{1, \ldots, l\}$ and $i \in\left\{1, \ldots, \tilde{k}_{m}\right\}$. It follows

$$
\begin{equation*}
z\left(\mathrm{Q}_{m}\right) \leqslant n_{m} \cdot Z \quad(m=1, \ldots, l) . \tag{17}
\end{equation*}
$$

Now we are able to estimate the second sum in (8).
Lemma 4. If the numbers $\beta_{i j}^{m}$ are chosen as above,

$$
\sum_{\mathbf{Q} \in F_{2}: z(\mathbf{Q})>1 / 2} r(\mathbf{Q}) \leqslant k_{1} \cdots k_{n} \cdot o\left(\frac{1}{\sqrt{n}}\right) .
$$

Proof. We shall prove for a fixed $\mathbf{Q} \in F_{2}$ with $z(\mathbf{Q}) \geqslant \frac{1}{2}, r(\mathbf{Q}) \leqslant$ $|S(\mathbf{Q})| \cdot o(1 / \sqrt{n})$, where the function $o(1 / \sqrt{n})$ does not depend on \mathbf{Q}. Then all is done since then

$$
\sum_{\mathbf{Q} \in F_{2}: z(\mathbf{Q})>1 / 2} r(\mathbf{Q}) \leqslant \sum_{\mathbf{Q}}|S(\mathbf{Q})| \cdot o\left(\frac{1}{\sqrt{n}}\right)=k_{1} \cdots k_{n} \cdot o\left(\frac{1}{\sqrt{n}}\right)
$$

If $r(\mathbf{Q})=0$, we do not have to prove anything, thus let $r(\mathbf{Q})>0$. Then

$$
\begin{aligned}
r(\mathbf{Q})= & |S(\mathbf{Q})|-\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m}\left|S\left(\mathbf{Q}_{i j}^{m}\right)\right| \\
= & |S(\mathbf{Q})| \cdot\left(1-\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{\left|S\left(\mathbf{Q}_{i j}^{m}\right)\right|}{|S(\mathbf{Q})|}\right) \\
= & |S(\mathbf{Q})| \cdot\left(1-\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{q_{i}^{m}}{q_{j}^{m}+1}\right) \\
= & |S(\mathbf{Q})| \cdot\left(\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{1}{q_{j}^{m}+1}\right. \\
& +\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{\left(q_{j}^{m}-q_{i}^{m}\right)\left(n_{m}-\tilde{k}_{m} q_{j}^{m}-\tilde{k}_{m}\right)}{n_{m}\left(q_{j}^{m}+1\right)} \\
& \left.+\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{\left(q_{j}^{m}-q_{i}^{m}\right) \tilde{k}_{m}}{n_{m}}\right) .
\end{aligned}
$$

Finally, we estimate the three sums in the parentheses using Lemma 3, (7), (15), (16), (17) and the facts that $k_{i}<C, \mathbf{Q} \in F_{2}$ and $z(\mathbf{Q}) \geqslant \frac{1}{2}$.

$$
\begin{aligned}
\sum_{1} & :=\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{l j}^{m} \frac{1}{q_{j}^{m}+1}=\frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{(i, j) \in I_{m}} \frac{f^{m}(i, j) n_{m}}{\left(q_{j}^{m}+1\right) \tilde{k}_{m}} \\
& \leqslant \frac{1}{n f} \sum_{m=1}^{s} \sum_{(i, j) \in I_{m}} \frac{f^{m}(i, j)}{1-2\left(\tilde{k_{m}} \ln n_{m} / \sqrt{n_{m}}\right)} .
\end{aligned}
$$

Because of (7) we have

$$
1-2 \frac{\tilde{k}_{m} \ln n_{m}}{\sqrt{n_{m}}}>\frac{1}{2}
$$

if n is large enough. Thus,

$$
\begin{aligned}
\sum_{1} & \leqslant \frac{2}{n f} \cdot l \cdot \bar{F} \leqslant \frac{2 l \bar{F}}{\underline{F}^{\prime}} \cdot \frac{1}{n}=o\left(\frac{1}{\sqrt{n}}\right) . \\
\sum_{2} & :=\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{\left(q_{j}^{m}-q_{i}^{m}\right)\left(n_{m}-\tilde{k}_{m} q_{j}^{m}-\tilde{k_{m}}\right)}{n_{m}\left(q_{j}^{m}+1\right)} \\
& =\frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{(i, j) \in I_{m}} \frac{f^{m}(i, j)\left(q_{j}^{m}-q_{i}^{m}\right)\left(n_{m}-\tilde{k_{m}} q_{j}^{m}-\tilde{k}_{m}\right)}{\tilde{k_{m}}\left(q_{j}^{m}+1\right)} \\
& \leqslant \frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{(i, j) \in I_{m}} \frac{f^{m}(i, j) 4 \sqrt{n_{m}}\left(\ln n_{m}\right) \tilde{k_{m}}\left(2 \sqrt{n_{m}}\left(\ln n_{m}\right)+1\right)}{\tilde{k}_{m}\left(n_{m} / \tilde{k}_{m}-2 \sqrt{n_{m}} \ln n_{m}\right)} \\
& \leqslant \frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{(i, j) \in I_{m}} \frac{f^{m}(i, j) 4 \sqrt{n_{m}}\left(\ln n_{m}\right)\left(2 \sqrt{n_{m}}\left(\ln n_{m}\right)+1\right)}{n_{m} / C-2 \sqrt{n_{m}} \ln n_{m}} .
\end{aligned}
$$

Since

$$
\frac{4 \sqrt{n}(\ln n)(2 \sqrt{n}(\ln n)+1)}{n / C-2 \sqrt{n} \ln n} \sim 8 C \ln ^{2} n
$$

as $n \rightarrow \infty$, for large enough n it holds

$$
\begin{aligned}
\sum_{2} & \leqslant \frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{\left(i \sqrt{\prime} \in I_{m}\right.} f^{m}(i, j) \cdot 9 C \ln ^{2} n_{m} \\
& \leqslant \frac{l \cdot 9 C \cdot \bar{F}}{\underline{F}^{\prime}} \cdot \frac{\ln ^{2} n}{n}=o\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Last but not least we estimate the third sum using Lemma 3.

$$
\begin{aligned}
\sum_{3} & :=\sum_{m=1}^{l} \sum_{(i, j) \in I_{m}} \beta_{i j}^{m} \frac{\left(q_{j}^{m}-q_{i}^{m}\right) \tilde{k}_{m}}{n_{m}} \\
& =\frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{(i, j) \in I_{m}} f^{m}(i, j)\left(q_{j}^{m}-q_{i}^{m}\right) \\
& =\frac{1}{n f} \cdot \sum_{m=1}^{s} \sum_{i=1}^{k_{m}} q_{i}^{m}\left(f_{+}^{m}(i)-f_{-}^{m}(i)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{n f} \cdot \sum_{m=1}^{s} z\left(Q_{m}\right)=-\frac{1}{n f} z(\mathbf{Q})+\frac{1}{n f} \cdot \sum_{m=s+1}^{l} z\left(Q_{m}\right) \\
& \leqslant 0+\frac{Z}{f} \cdot \frac{n_{s+1}+\cdots+n_{l}}{n} \leqslant \frac{Z \cdot l}{f} \cdot \frac{n^{1 / 3}}{n}=o\left(\frac{1}{\sqrt{n}}\right) .
\end{aligned}
$$

Thus Lemma 4 and consequently Theorem B are proved.
Q.E.D.

References

1. M. Aigner, "Kombinatorik, II," Springer-Verlag, Berlin/Heidelberg/New York, 1976.
2. V. B. Alexseev, O čisle monotonnych k-značnych funkcij, Problemy Kibernet. 28 (1974), 5-24.
3. K. Engel, Optimal representations of partially ordered sets and a limit Sperner theorem, submitted.
4. L. Ford and D. Fulkerson, "Potokiv setjach," Mir, Moscow, 1966.
5. C. Greene and D. J. Kleitman, The structure of Sperner k-families, J. Combin. Theory Ser. A 20 (1976), 41-68.
6. C. Greene and D. J. Kleitman, Proof techniques in the theory of finite sets, in "Studies in Combinatorics" (G.-C. Rota, Ed.), pp. 22-79, MAA Studies in Mathematics 17, Washington, D.C., 1978.
7. O. Ore, "Teorija grafov," Nauka, Moscow, 1980.
8. V. V. Petrov, "Sums of Independent Random Variables," Akademie-Verlag, Berlin, 1975.
9. M. SAKs, Dilworth numbers, incidence maps and product partial orders, SIAM J. Algebra Discrete Methods 1 (1980), 211-215.
