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An h-family of a partially ordered set P is a subset of P such that no h + 1 
elements of the h-family lie on any single chain. Let S,, S,,... be a sequence of 
partially ordered sets which are not antichains and have cardinality less than a 
given finite value. Let P, be the direct product of S, ,..., S,. An asym 
of the maximum size of an h-family in P, is given, where h = o( P 

totic formula 
n) and n + w. 
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Let P be a partially ordered set (poset). A subset B,, E P is called an h- 
family if it does not contain a chain of h + 1 elements, i.e., there are not 
x,,,..., x,, E s,, such that x, < . . . ( x,, . Let d,,(P) be the maximum size of an 
h-family in P. If P and Q are posets, then the direct product P X Q is defined 
on the Cartesian product of the sets P and Q as follows: 
(xl~~l)~pxp(xz~~2) iffx19,x2 ady,GQY2- 

In all that follows we consider a sequence S,, S,,... of nontrivial posets 
(i.e., they are not antichains) with bounded cardinalities. Let kj := jS,\ < C 
(i = 1,2 ,... ). We put P, := S, x ..a x S, and dn,h := d,,(P,,). In this paper we 
will give an asymptotic formula for d,,, if h = o(fi) and n--t co. This 
generalizes a result of V. B. Alekseev (21 where the case S, = S, = ... and 
h = 1 was settled. 

In order to formulate our result we need the following definition. A 
representation of a poset P is a mapping z: P+ R such that z(x) -z(y) > 1 
if x > y. A representation is called optimal if (l/] P( xx,,, (z(x) - f(P))’ is an 
infimum (extending over all representations of P), where f(P) := 
(l/] PI C,,,, z(x). The infimum is denoted by D(P). 

Remark 1. In [2] and [3] it is proved that an optimal representation 
always exists. 

In all that follows let z1 be an optimal representation of Si such that 
F&S,) = 0. If x E S,, we can omit the index i in zl(x) and write biefly z(x) 
since the mapping is defined by S,. Let D, := D(S,) and V,, := CE i Di. Our 
main result is the following 
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THEOREM. Ifh =o(&), then 

d n,h - ‘2 . h, where n -+ co. 

At first we will prove the 

THEOREM A. Ifh = o(\/;;), then 

. . . 
dtt,, 2 kg - h, where n + a~ 

Proof: Let x = (x r ,..., x,) E P, and define z(x) := C;=, z(x,). Obviously 
3 ,, := {x:- h/2 < z(x) Q h/2} is an h-family. Hence, d,,, > lS,,l. We will 
prove that 

For that we define the following discrete random variables q,, q*,... as 
follows: 

P(qr = Zf) = +, 
i 

where zj := z(sj) and S, = {s f ,..., si,}. Let q, , qz ,... be independent and 
v, := tl, + .. . + qn. Then the expected value and variance of v,, is equal to 0 
and V,, respectively. We have [3*/ = k, ..a k, . P(-h/2 < v, < h/2). Thus it 
is sufficient to prove that 

P 
( 
-;<q& 

) 
= +- (1 + o(l))* 

n 

In Lemmas 4 and 5 of [2] it is proved that or, r,~~,... have a lattice 
distribution and that the maximal spans of them are equal to l/r,, I/r, ,..., 
where rr , rz ,... are integers. Obviously, there exists only a finite number of 
posets with cardinality less than C. Thus the number of different distribution 
functions of vi, q, ,... is finite. Let l/R, ,..., l/R, be the corresponding 
maximal spans. If R is the least common multiple of R, ,..., R, and 
& := Rq + y,, then the maximal span of r, is equal to R/R,, hence an integer 
(i = 1, 2,...). Thus yI can be chosen such that & is an integer-valued variable. 
If we put pn := C;= 1 rr, then obviously W,, := R ‘V, is the variance and 
M,:=y, + . . . + yn is the expected value of pn (n = 1,2,...). Since the greatest 
common divisor of R/R, ,..., R/R, equals 1 we may use the limit theorem for 
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k-sequences of independent random variables (see [8, p. 1891) and conclude 
that 

(the supremum extends over all integers N). Now we have 

(4) 

whereI:={N$Z:-hR/2+M,<N<hR/2+M,}. 
Let D and D be the smallest and largest value of {D, , Dz,... }, respectively 

(they exist since there is only a finite number of different distribution 
functions under vi, qz,...). B ecause of h = o(fi) we conclude that for all 
NEI 

o < @+Wzg VW2 < h* 

2w, 2R*v* _ - \ z < q(n), 

where al(n)+ 0. (It is not the case that D = 0 since S,, S,,... are not 
antichains.) Thus (3) implies that for all NE I 

where cl(n)+ 0 and E&Z)+ 0. Since JIJ = hR from (4) and (5) it follows 

and because of W,, = R*V,, we obtain 

p 
( 

-p<%<$ 
) 

= & (1 +0(l)), 

and (2) is proved. 

Now we will prove the more difficult 

Q.E.D. 

THEOREM B. d,,, ;S (k, a-- k,/m) - h, where n + co. 

Proof It is sufficient to prove that 
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since d n,h < h . d,,, (each h-family is the union of h Sperner families, i.e., l- 
families; see, for instance, [ 1, p. 2711). Let N”:={x E P,: z(x) = v} and 
consider the bipartite graph G, on the vertex-set N,- r U N, in which (x, y) is 
an edge iff x < y. Let E, be a maximum matching of G,, i.e., a maximum set 
of pairwise non-adjacent edges of G,. Now join adjacent edges of the 
matchings . . . . E,- 1, E,, E,, 1 ,... so far as possible. In this way we obtain a 
partition of P, into chains (single points are regarded as chains too). Let R, 
be the set of such chains in the partition which have an element x with 
-f < z(x) < i. Further let R, and R, be the set of such chains in the 
partition in which z(x) > j and z(x) < -4 for all elements of the chain, 
respectively. Obviously, d,,,<~R,~+~R,~+~R,I, IR,,l=I{x: -4 <z(x),< $}I. 
From (1) in the proof of Theorem A we obtain 

In all that follows we will prove that 1 R 1 1 Q k, e-a k, a 0(1/v%). Then all is 
done since then 

and the same follows for I R, I by duality. 
Let 6, be the number of elements of N, which are not covered by an edge 

of the maximum matching E,. Associating to each chain of R I its smallest 
element we obtain 

PII= c 4. 
v> 11-7 

For XcN, let V(X):= {YEN,-,:y<x for any xEX}. A set XsN, is 
called a critical set iff 

I4 -I W-II = yy (I YI - I ww* ” 

From well-known results on matchings (see [7, p. 138ff.l) it follows that 
there exists a unique minimal critical set X, which is contained in all other 
critical sets and for which 

IX”1 - I Jv”)I = 6,. 

Now we will prove that special classes of elements, so-called statistics, are 
contained in XV. At first we shall define these classes. Since I S, ] < C for all i 
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we have in our sequence S,, S,,... only a finite number of different posets. 
Let T, ,..., T, be these posets (T1 = { fj ;j = l,..., &}, i = l,..., I). We can 
suppose that T, ,..., T, are pairwise disjoint. Let n, be the number of factors 
T, . Obviously, 

P,rT,x...xT,x...xT,x...xT,. 
n1 “1 

Without loss of generality we may assume that P, is equal to this poset. 
Further, let Q, := (qf ,..., qi ) be a Il,-tuple of integers with c$ I qj = n, 
(i = I,..., I), and let Q := (& i,..., Q,) be an I-tuple of such &tuples. The 
statistic of Q is defined to be the set of elements x = (xi ,..., x,) E P, in which 
the element fj occurs exactly q; times G = l,..., k;, i = l,..., I); it is denoted 
by S(Q). Now we will prove that either no element of a statistic or the whole 
statistic, i.e., all elements of it, is contained in X,. Let x = (n, ,..., x,) be an 
element of the direct product of the symmetric groups on the sets {l,..., n,}, 
i= 1 ,..., 1. To such a II we can associate an automorphism rp, of P, by 

cp,(x:,..., x:,9..., x:9..., XL,, := (x:,(1) ,..., &,,) P..., X&,) ,..., xt/(,,)). 

Evidently, I %(X,) I = IX, I and I WUX,)) I = I W,> I9 hence I (PK) I - 
I %%KN I = 6, * S’ mce XV is a minimal critical set we have X, c o.(X,), 
hence X, = (p,(X,). Consequently, if x E X,, then o,(x) E X, for all such x, 
thus the whole statistic containing x is contained in X,. 

Let z(Q,) := J$ I qj z(ti) and z(Q) := cf=i z(Q,). Obviously, z(x) = z(Q) 
holds for all x E S(Q). Let I,,, be the set of all pairs (i,j) for which ty > tJ” 
and z(ty) - z(ty) = 1 (m = l,..., I). In order to estimate 6, (see (6)) we 
associate to each pair (t” i , ty) with (i,j) E I,,, a number /3; (to be specified 
later) such that al; > 0 (m = l,..., 1) and C!,,=l C(r,,,el$ = 1. 

For Q = (Q, ,..., Q,) and (i,j) E I,,, we define Qz to be the tuple 
<Q,,...,Q,-,,Qh, Q,+,,...,Q,>, where Qh:= (q’:,...,q~- L...,$“+ L&J 
Obviously the elements of S(QG) can be obtained from the elements of S(Q) 
by specifying some coordinate and changing ty to ty for each element in 
which t;” occurs in that coordinate. 

We set r(Q) := I S(Q)1 - CL= 1 C (i,j)EI,P;; IS( if the right-hand side 
is not negative and r(Q) := 0, otherwise. 

LEMMA 1. 6, < CQ:rtQ+v r(Q). 

Proox To each pair (Q, Q’) with z(Q) = z(Q’) + 1 = v and Q’ = Qr for 
some m E {l,...., 1) and some (i,j) E I,,, we associate the unique weight 
/3; IS(Q Counting the weights of pairs (Q, Q’) with S(Q) c X, in two 
different ways we obtain 
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c c Y- P;NQ;)l 
Q:S(Q)cX, WI= 1 Ci.?El,,, 

< Q;s~cx~I~(Q)l - 2 i c Pi7 IS( 
Q:s(Q)cx, m=l (i,l)~I, 

= Q si x r(Q)< Q ;)= r(Q). 
. =v :* u 

Now we will prove that 

Q.E.D. 

c r(Q)<., . ..k.,.o 
Q=(Q)> l/2 

which together with (6) and Lemma 1 will complete the proof. We will 
estimate the above sum in two steps. For that let, without loss of generality, 

n, ,..., n, > rt113 and n, + 1 ,..., n, < n ‘I3 (7) 

(if n is large enough we have s 2 1). Let 

F,:=]Q: /p:--Q/ > 2 6 In n, for some m E {l,..., s} and 

some i E {l,..., &} , 
I 

F,:=]Q: /Sp+ Q 2 fi In n, for each m E (l,..., s} and 

each iE { l,..., Em} . 
I 

Then 

9:z(;> l,2 r(Q) G pCF r(Q) + c r(Q)- 
E I QEF&Q)> l/2 

(8) 

LEMMA 2. CQEf, r(Q) < k, a=- k, * ~(ll\/;;). 
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Proo$ We have 

Q; r(Q) S 2 IS(Q (9) 
1 QEFI 

If Gy := {Q: )qr - n,/&,,l > 2 &In n,}(m = l,..., s, i = l,..., &), then 
obviously 

If KY(q) is the set of all x = (x1,..., x,) E P, in which the element ty occurs 
exactly q times, then 

c IS(Q c IG”(q)l. 
QEG; i7:ll7--n~~,l >2~mlnn, 

In order to estimate these sums we consider the following identically 
distributed and independent random variables Ai,..., l,m, with 

E -1 
P(& = 0) = ---, 

k”, 

P(~i= I)=f (i = l,..., n,). 
In 

Further let &,m:= A, + ... + lnm. Obviously, JKr(q)( = k, *** k, - P(C,,= q), 
and thus 

c .IS(Q)l = k, .-a 
QEG~ 

k..P(l&+~ >2&Jnn,). (11) 

Since n,,l& is the expected value of &,, it follows from Hoeffding’s 
exponential estimation for distributions of sums of independent random 
variables (see [8, p. 58,8.]) that 

P (I+ > 2&lnn,) s2. e-ln2fim. 

From (9)-( 12) we now obtain 

(12) 

c r(Q)< mEnus, 21C. k, ema k, . e-‘“*nm 
QEFI 

< 2lC. k, . . . k, . e-(1/9)“‘*” = k, . . . k, . 0 Q.E.D. 
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It remains to estimate the second sum in (8) CoEF2:zCoj.+,,2 r(Q). For this we 
need the following lemma which can be obtained from the Theorem of Gale 
(see 14, p. 621 and 12, Lemma 121) or from the Theorem of Kuhn and 
Tucker (see [3]). 

LEMMA 3. To each pair (ty , tJ”> with (i, j) E I,,, one can associate a 
number f”(i, j) > 0 such that f!!!(i) -f ‘J (i) = z(ty), where f’!!(i) := 
Cj:(lJ,.I,fmW) andf’:G) := Ci:u,i)E~Jm(j~ 9. 

Remark 2. This is the only place where we use the fact that the poset 
representations are optimal. 

Obviously there exist constants _F and F such that 

O<_F< C f”(i,j)<F for all m E {l,..., I} (13) 
(i,j)Efm 

@ can be chosen greater than 0 since T1,..., T, are not trivial posets). Now 
let 

L . f “(i,j) . n, 
n f IF*’ 

m = l,..., s, 

0, m = s + I,..., 1. 

(14) 

(15) 

Obviously Chzl Cci,j)EI,pE = 1 and Pt > 0. Further, from (13) and (14) it 
follows 

1 1 
~‘c.(n,+...+n,)._F~f~~.(n,+...+n,).F~F. 

4 + a.. +n, = 1_ ns+1+ -** + n1 

n n 

and 

n +.ss+n, s+1 < l-n1/3 -to 
\ - , 

n n 

there exists a constant E’ such that 

O<r;,<f<F. (16) 
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Moreover we mention that there is a constant 2 such that z(ty) < Z for all 
m E { l,..., 1) and i E (l,..., Km}. It follows 

z(Q,,J < n, - Z (m = I,..., I). (17) 

Now we are able to estimate the second sum in (8). 

LEMMA 4. If the numbers & are chosen as above, 

c r(Q)<kl .--k,.o 1 . 
Qez:z(Q)> l/2 ( ) fi 

ProojI We shall prove for a fixed Q E F, with z(Q)>/ i, T(Q)< 
IS(Q)1 - 0(1/A), where the function 0(1/h) does not depend on Q. Then 
all is done since then 

If r(Q) = 0, we do not have to prove anything, thus let r(Q) > 0. Then 

r(Q) = IS(Q) 

= IS(Q) 

= IS(Q) 

= IS(Q) 

*l-i Ca;-& ( m= 1 (i&H, / 

+i 
m=l 

+ il. 

Finally, we estimate the three sums in the parentheses using Lemma 3, (7), 
(15), (16), (17) and the facts that k, ( C, Q EF, and z(Q)> i. 
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Because of (7) we have 
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if n is large enough. Thus, 

&.l.Fg.+(~). 

c .= i c p” tqjm-411)tnm-k”mqy--m) 
2’ 0 

m= 1 U,./)El, %A?~ + 1) 

=+.i c 
frn(iJN# - 4;“)hn - L 4jm - KJ 

m= 1 (IJ)EI, uqi” + 1) 

G J- . i 
nf 

c f”(U) 4 \/n7;;tln n,> U2 dG(ln d + 1) 

m= 1 (ij)EI, i&zJJk”, - 2 fi In n,) 

f “(4j) 4 dQln n,)(2 \/;i;;;<ln n,) + 1) 
n,/C-2&lnn, 

Since 

4 J;;Cln nN2 h(ln 4 + 1) - 8c 1n2n 
n/C-2 filnn 

as n + co, for large enough n it holds 

C,<-$. f: C f”(i,j). 9Cln2n, 
m= 1 U./)EI, 

< 1.9C.F ln2n 
\ 

_F’ 
.-=o 5. 

n ( 1 

Last but not least we estimate the third sum using Lemma 3. 
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=+ i z(P,)=+(QH+ i z(Q,) 
m=l m=s+l 

z n,+,t***+n, z-1 n1’3 
<o-t--. -.- 

f n Qf 

Thus Lemma 4 and consequently Theorem B are proved. Q.E.D. 
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