
The Journal of Logic and
Algebraic Programming 51 (2002) 193–214

��� �����	
��

��� 	��
	
����	�
�����	����

www.elsevier.com/locate/jlap

Molecular dynamics

J.A. Bergstraa,b,∗, I. Bethkeb
a Applied Logic Group, Department of Philosophy, Utrecht University,

Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
b Programming Research Group, Faculty of Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract

Molecular dynamics is a model for the structure and meaning of object based programming sys-
tems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a
collection of molecules. Each molecule is a collection of atoms with bindings between them. A
computation is modeled as an evolution of the memory fluid. Evolution of the memory fluid takes
place by means of chains of actions. Actions transform the structure of molecules in a way similar to
chemical reactions. © 2002 Published by Elsevier Science Inc.

Keywords: Object oriented programming; Molecular dynamics; Program algebra

1. Introduction

Molecular dynamics is a simple theory, mainly consisting of notations and informal se-
mantics, bearing on a particular format for states and state changes for computer
programs.

In this theory we view a state as a fluid of molecules. A molecule consists of a number
of atoms all reachable from one of the atoms—the root—by sequences of directed links.
A directed link from one atom to another atom exists if the former has a so-calledfield
containing the latter. The link then can be followed from the atom for which it is a field to
the one contained in it. By means of actions causing a change of state fields can be added
to and withdrawn from atoms, and contents of fields can be modified. In order to make
particular behavioural observations, selected atoms can be brought intofocus.

We will exemplify molecules with fairly primitive diagrams. Fig. 1 depicts our first
diagram consisting of two molecules. Here• represents an atom andx, y, z, . . . denote
selected atoms brought into focus. Such foci may share their contents as in the case ofu
andz. The curly arrow links the focusx to its content. The straight arrow→ repre-

∗ Corresponding author.
E-mail addresses: jan.bergstra@phil.uu.nl, janb@science.uva.nl (J.A. Bergstra), inge@science.uva.nl

(I. Bethke).

1567-8326/02/$ - see front matter� 2002 Published by Elsevier Science Inc.
PII: S1567-8326(02)00021-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82028233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

194 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

Fig. 1. Fluid consisting of two molecules.

sents a field;a, b, c, . . . are field names written next to the fields. This fluid contains two
molecules, four foci and nine atoms having together 16 fields. The seven irreflexive fields
are proper in the sense that they traverse the molecule. The fluid can be presented by means
of a fluid table as follows:

In this fluid table 1, 2, . . . enumerate atoms from left to right and from top to bottom.
Clearly fluid tables depend on the order of enumeration of the atoms.

There may exist multiple links between atoms. Fields, however, with identical origin,
contents and name are identified. The next diagram in Fig. 2 depicts a molecule with

Fig. 2. Molecule with double bindings.

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 195

double bindings. Here different atoms are connected in both directions. A fluid table for
this molecule is

A submolecule visible from an atom is the collection of all atoms reachable by (repeat-
ed) field selections from that atom (together with all links between them). A submolecule
is maximal if it is not contained in a larger submolecule. A maximal submolecule is also
called a molecule. For a focusx the molecule visible throughx is the submolecule visible
from the contents ofx. Thus in Fig. 3, the molecule visible throughx is the entire molecule,
whereas the molecule visible throughy is the proper submolecule inside the dashed frame.
The molecule visible throughu consists of a single atom.

The fluid making up a state of a computation can be thought of as containing a large
collection of proto-atoms standing for memory locations that are still available for accom-
modating atoms. Creating an atom turns a proto-atom into an atom. The original empty
fluid only contains proto-atoms. At the present level of abstraction the number of proto-
atoms will not be used. In practice this means that the number is considered unbounded
(infinite); in actual computing the initial number of proto-atoms is a measure for the amount
of memory space available. The actions in a computation go through a metabolic cycle,
starting with the creation of atoms from proto-atoms. Garbage collection completes the

Fig. 3.

196 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

metabolism by turning atoms into proto-atoms provided such atoms have garbage status.
In Section 6 we will show how to treat proto-atoms graphically.

2. A repertoire of actions and instructions

In molecular dynamics an action is the semantics of an instruction. Instructions are part
of programs, actions are part of the evolution of a system.

We consider the following repertoire of eight basic (i.e., indivisible) instructions denot-
ing as many kinds of actions on molecules. Together this is the collection MPP ofmo-
lecular programming primitives. The actions denoted by these instructions are described
informally. It is assumed that these descriptions are self-evident. A better way to provide
this information might be to use a motion picture. In such a motion picture a slow and
continuous motion can introduce a modification of the state while unaffected parts remain
firmly in their respective places, thereby conveying a sense of stable identity. For a first
step towards a dynamic representation of memory states see [4].

We consider fourmutations, two assignments, and twotests. Mutations change a mol-
ecule by adding new atoms or bindings and by modifying bindings, assignments modify
selected atoms. Both types of instructions return a boolean value depending on the appro-
priateness of the instruction. Tests return only a boolean value; they do not modify any
molecule:

(1) Mutations
(a) Atom creation: Create a new atom and bring it into focusx.

x = new

Atom creation returns the boolean valuetrue by default.
(b) Field introduction: Introduce areflexive field f for the atom in focusx.

x. + f

Field introduction returns the boolean valuetrue if the atom focussed byx does
not yet own a field namedf; otherwisefalse is returned and the instruction is
ignored.

(c) Field withdrawal: Remove the fieldf from the atom in focusx.

x. − f

Field withdrawal returns the boolean valuetrue if the atom focussed byx owns a
field namedf; otherwisefalse is returned and the instruction is ignored.

(d) Field mutation: Place the atom focussed byy in the fieldf of the atom in focusx.

x.f = y

Field mutation returns the boolean valuetrue if the atom focussed byx owns a
field namedf; otherwisefalse is returned and the instruction is ignored.

(2) Assignments
(a) Field selection: Bring the atom in member fieldf of the atom in focusy into focus

x.

x = y.f

Field selection returns the boolean valuetrue if the atom focussed byy owns a
field namedf; otherwisefalse is returned and the instruction is ignored.

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 197

Fig. 4.

(b) Assignment: Place the atom in focusy also in focusx.

x = y

Assignment returns the boolean valuetrue by default.
(3) Tests

(a) Atom identity test: This test returnstrue if the foci x andy share an atom; the test
will return false otherwise

x == y

(b) Field membership test: This instruction returnstrue in the case thatf is a field of
the atom in focusx. Otherwise it returnsfalse.

x/f

Note that MPP has two implicit parameters: the collection of focus names and the collec-
tion of field names. Both of these collections are assumed unbounded.
As an example consider the action given by the following sequence of basic instructions:

x = new; y = new; x. + a; y. + b; x.a = y; y.b = x

This combination creates a couple of atoms each having one field containing its mate. The
diagrams depicted in Fig. 4 render the intermediate actions caused by this sequence on a
originally empty fluid.

3. Program notations for programming instructions

In order to express sequences of programming instructions we shall adopt a notational
system in the style of program algebra (see [2,3]). There are several such program notations
allowing for different degrees of flexibility. The most appropriate notation for molecular
programming emerging from our definitions is PGLEc.mpp, i.e., PGLEc using the basic
instructions and tests from MPP. Because we will only need PGLEc, we will focus on an
introduction of that notation per se.

The syntax of program expressions in PGLEc is generated from nine kinds of constants
and one composition mechanism. The constants can be viewed as basic instructions. The
composition mechanism is the structuring feature of the programming language: concate-
nation ofX andY is writtenX;Y . As a parameter we need a collection of so-called basic
instructions: in our case, these are the eight instructions combined in MPP. Thus PGLEc
consists of:
(1) Basic instructions: All instructions in MPP serve as basic instructions. When execut-

ed these instructions may modify a state. After having performed an basic instruc-
tion a program must enact its subsequent instruction. If that instruction fails to exist
termination occurs.

198 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

(2) Positive test instruction: For every instructiona in MPP there is a positive test+a. This
test performsa and, if a returnstrue, then the sequence of remaining instructions is
performed; iffalse is returned aftera was performed, the next instruction is skipped
and execution proceeds with the instruction following that skipped instruction. If the
respective instructions fail to exist termination occurs.

(3) Negative test instruction: For every instructiona in MPP there is a negative test-a.
This test performsa and, if a returnsfalse, then the sequence of remaining instruc-
tions is performed; iftrue is returned aftera was performed, the next instruction is
skipped and execution proceeds with the instruction following that skipped instruction.
If the respective instructions fail to exist termination occurs.

(4) Termination instruction: ! serves as a notation for an instruction resulting in the im-
mediate termination of the program.

(5) Label catch instruction: The instructionLk, for k a natural number, represents a visible
label. As an instruction it is a skip in the sense that it will not have any effect on a state.

(6) Absolute goto instruction: For each natural numberk the instruction ##Lk represents
a jump to (the beginning of) the first (i.e., left-most) label catch instruction in the
program which is labeled by the labelk. If no such instruction can be found termination
of the program execution will occur.

(7) Conditional instruction: For every instructiona in MPP the instructions+a{ and-a{
initiate the text of a conditional construct.

(8) then/else separator: The instruction}{ connects two program sections that are en-
closed in braces.

(9) end brace: The instruction} serves as a closing brace in connection with its comple-
mentary opening brace.

The intended meaning of the last three instructions is the following: given any two se-
quences of instructionsu1; . . . ; un andv1; . . . ; vm, the compound instruction

+a{; u1; . . . ; un; }{; v1; . . . ; vm; }
yields the execution ofa followed by the branchu1; . . . ; un in casetrue was the yield of
the instructiona, or followed by the second branchv1; . . . ; vm in casefalse was returned
by the instructiona. A compound instruction starting with a negative test selects the first
branch in casefalse was returned by the test; otherwise the second branch is executed.
After having performed the first or the second branch a program must enact its subsequent
instruction. If that instruction fails to exist termination occurs.

Now PGLEc.mpp is a proper subset of all programs obtainable from the nine kinds
of instruction using sequential composition. The restriction posed on arbitrary programs
justifying their classification in PGLEc.mpp is the following:

each test instruction (positive or negative) must always be immediately followed by a
goto instruction or a termination instruction.

Thus a typical PGLEc.mpp expression is

+x == y{; L0; x = new; }{; +x/a; ##L0; x. + a; z = new; x.a = z; }; !
Now let p be a program in PGLEc.mpp. A computation ofp can start from the initial

fluid Sinit or can start from some non-empty fluids. With p •md s the computation ofp on
s in the framework of molecular dynamics is denoted. Two things can happen:
(1) The computation properly terminates, resulting in the molecules′. This molecule is

obtained by the succession of instructions prescribed byp. In this casep •md s denotes
s′.

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 199

Fig. 5. Limitless evolution.

Fig. 6. Truth tables for sequential connectives.

(2) The computation progresses indefinitely. A process of perpetual evolution emerges.
This perpetual evolution can lead to a limit which is then denoted bys′ = p •∞

md s.
The limit exists if each focus remains fixed from some stage onwards, and if all objects
get their final collection of fields after finitely many steps in the computation. Fig. 5
depicts a limitless evolution caused by the computation

x = new; L0; y = new; y. + a; y.a = x; x = y; ##L0

on the initial empty fluid.
All PGLEc.mpp programs are deterministic. It follows that starting from the initial fluid,
a terminating or converging program produces a unique molecule or multi-molecule. In
which sense is the molecule unique? If in another world the program had been started in the
initial state (of that world) as well, a different molecule would have resulted (in a different
world). What can be said is that the two multi-molecules (or hypothetical molecules if
the whole matter is a mere thought experiment) are isomorphic. A one-to-one connection
between their atoms can be made respecting all links. The simplest way to obtain the
correspondence is by ordering the atoms of a multi-molecule in their order of creation. This
provides an enumeration of the atoms in each fluid generated by a computation starting in
the initial state. The isomorphism connects pairwise the atoms that have the same rank
number in the respective orders of creation.

4. Assertions and specification

An assertion language is usually needed to formalize properties of the states of a ma-
chine during a computation. In the case of molecular programming assertions must be
designed for capturing properties of molecules and fluids.1

For the assertion language a 3-valued logic is plausible. We shall adopt the logical
framework of [5]. Here the truth values compriseT (true),F (false) andD (undefined). The
binary logical operators∧❜ and ∨❜ are sequential—which means that evaluation proceeds

1 Using an algorithmic logic or a process algebra constitutes an alternative for the use of assertions.

200 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

from left to right—and are taken from [1]. The matching truth tables are given in Fig. 6.
The elementary assertions are as follows:
(1) Initiation init: This asserts thats is an empty fluid, the usual starting point for com-

putations.
(2) Field existence x/f : This assertion takes valueT (in fluid s) if the atom in focusx

is currently having a (possibly reflexive) field namedf. Otherwise the assertion takes
valueF.

(3) Identity: x.f1. · · · .fn == y.g1. · · · .gm: This elementary assertion returnsD if either
side is incorrect, i.e., is referencing non-existing fields. It returnsT if both sides denote
a unique atom ins. Finally it takes valueF if the sides denote distinct atoms ins.

Non-elementary assertions are built from elementary ones by means of negation (¬),
(left sequential) conjunction (∧❜) and (left sequential) disjunction (∨❜). An asserted pro-
gram is a triple of the form

[A]p [B]
with A andB assertions andp a program in PGLEc.mpp.[A]p [B] is valid if for all fluids
s, if A evaluates toT in s, thenp •md s terminates ins′, say, andB evaluates toT in s′.

Some examples illustrate this matter. It is assumed thatx, y, z, u, v, . . . are distinct
foci. (Of course different foci may share atoms in a given fluids.) The following asserted
programs are valid:
(1) [init] x = new; y = new [¬(x == y)]
(2) [¬(x == y)] z = new [¬(z == x) ∧❜ ¬(z == y)]
(3) [z.f == y.g.h] x = y.g [¬(z.f == x) ∨❜ y.g.h == y.g]
(4) [T] z. + f; z.f = y [z/f∧❜ z.f == y]
The following asserted programs are invalid.
(1) [init] x = new [F]
(2) [init] ! [¬(x.f == y.g)]
(3) [¬(z == y) ∧❜ ¬(y == x)] x.f = y [¬(z.f == y)]
(4) [T] z.f = x [¬(z == x)]

5. Program families

A molecular program family MPF is a collection of programs all of which are supposed
to act on the same molecules or fluids. The user of a program family may activate programs
in the family in varying order. Often there will be some constraints on the order of usage.
For instance there can be a programinitialize which is to be used only once, preceding
all others and so on. An MPF can have named programs or can be made up from a list or
can have an enumerated program collection. Below named listed MPFs will be used. The
notation employed in the examples is simply taken from set theory.

All of the three following examples concern the representation of natural numbers in
molecular dynamics.Z will be a constant representing 0 after the first call of the initializa-
tion programsetZero. Except for the initialization programs the other programs represent
well-known mathematical operations on numbers. The implicit notational conventions are
as follows:
(1) the argument isx or x1, x2, . . . if there is more than one argument,
(2) the result isy or y1, y2, . . . if there is more than one result,

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 201

(3) auxiliary foci areh, h1, h2, . . .; they must be initialized within each program,
(4) constants start with a capital.

Natural numbers 1: The first example MPFnn1 contains three programs:setZero, S and
P. setZero is an initialization program which will create an object representing zero.P and
S compute the predecessor and the successor of a natural number, respectively. In all cases
y contains the output andx contains the input forP andS. Thus MPFnn1={

setZero=def Z = new; y = Z

P=def −x/p{; y = x; }{; y = x.p; }
S=def −x/s{; x. + s; y = new; y. + p; y.p = x; x.s = y; }{; y = x.s; }

}. A typical molecule—obtained by activating the programs

setZero; x = y; S; x = y; S
in that order—is depicted in Fig. 7. Herey represents the natural number 2.

Observe that the following two asserted programs are valid in each fluid resulting from
a succession of the programs in MPFnn1.
(1) [x == y] P [y == x ∨❜ y == x.p]
(2) [x == y] S [y == x.s]
The program family MPFnn1 can be extended. For instancemod2 computesx mod 2:

mod2 =def y = x; L0; +y == Z; !; y = y.p;
−y == Z{; y = y.p;##L0; }{; y = y.s;}

Natural numbers 2: Computingx mod 2 (or equivalently, deciding whetherx is even) is
‘slow’. A simple redesign of MPFnn1 into MPFnn2 resolves this efficiency problem (at the
cost of more memory usage). Each even number object is equipped with a reflexive field
even, each odd number with a reflexive fieldodd. Thus MPFnn2={

setZero=def Z = new; Z. + even; y = Z

P=def −x/p{; y = x; }{; y = x.p; }
S=def −x/s{; x. + s; y = new; y. + p; y.p = x; x.s = y;

+x/even{; y. + odd; }{; y. + even; }; }{; y = x.s; }
mod2=def +x/even{; y = Z; }{; y = Z.s; }

Fig. 7. A typical molecule created by MPFnn1.

Fig. 8. A typical molecule created by MPFnn2.

202 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

Fig. 9. A typical molecule created by MPFnn3.

}. In Fig. 8 we depict the MPFnn2 version of the molecule depicted in Fig. 7. We extend
MPFnn2 by a program which decides the ordering between its arguments. The resulttrue
is represented byy == Z andfalse by y == Z.s.

less =def h1 = x1; h2 = x2; L0; +h2 == Z{; y = Z.s; }
{; +h1 == Z{; y = Z; }{; h1 = h1.p; h2 = h2.p; ##L0; }; }

Natural numbers 3: Again the programless in the family MPFnn2 is quite inefficient. The
third version of the natural numbers MPFnn3 is a program family admitting fast compu-
tation of the ordering relation. Here each even number object is equipped with a fieldhalf
containing the number object representing its half. Fig. 9 depicts the third version of our
typical molecule. Thus MPFnn3 = {

setZero=def Z = new; Z. + half; y = Z

P=def −x/p{; y = x; }{; y = x.p; }
S=def −x/s{; x. + s; y = new; y. + p; y.p = x; x.s = y; +x/half; !;

y. + half; h1 = x.p; h2 = h1.half; h3 = h2.s; y.half = h3; }
{; y = x.s; }

mod2=def +x/half{; y = Z; }{; y = Z.s; }
}. A program for computing the order relation is then as follows:

less=def h1 = x1; h2 = x2; y = Z; L0; +h1 == h2{; y = y.s; }{; H0; }
where

H0 =def +h1 == Z; !; H1
H1 =def +h2 == Z{; y = y.s; }{; H2; }
H2 =def +h1/half{; h1 = h1.half; H3; }{; h1 = h1.p; H4; }
H3 =def +h2/half{; h2 = h2.half; }{; h2 = h2.p; h2 = h2.half; h2 = h2.s; }; ##L0

and

H4 =def+h2/half{; ; }{; h2 = h2.p; }; ##L0

Correctness of the program follows from the equivalences

2n + 1 < 2m + 1 ⇔ 2n < 2m

2n < 2m ⇔ n < m

2n + 1 < 2m ⇔ 2n < 2m

2n < 2m + 1 ⇔ n < m + 1

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 203

6. Garbage: detection, collection and removal

Assuming that a program starts its operation inSinit , i.e., no objects exist yet, the concept
of garbage is easy to define. Letm be a multi-molecule describing an intermediate state of
the computation. Atoms ofm are now classified as garbage or non-garbage according to
their reachability by any focus through successive field selection. Non-garbage atoms are
inductively defined as the smallest collection of atoms ofm that satisfies the following two
criteria:
(1) the objects in any focus are non-garbage,
(2) if a is a non-garbage atom with some fieldf which contains the atomb, thenb is a

non-garbage atom as well.
Garbage atoms are the atoms that have not been classified as non-garbage.

Under the assumption that storage of atoms has some cost, the mere existence of garbage
atoms is potentially problematic for a computation. Of course in ‘reality’ only a bounded
number of atoms can be stored. Then the problem may surface because the creation of a
new object fails by lack of freely available memory space. As it stands PGLEc.mpp has no
facility to express any commands regarding garbage removal.

We assume the possibility to store an atom in combination with a so-calledreference
count. The reference count indicates how many references to an atom exist. The reference
count is updated with each assignment, mutation, focus or atom removal. Moreover, we
assume the existence of a unique atomnull—i.e. a constant focusnull—which collects
all existing foci which do not explicitly focus atoms different fromnull. Three natural
instructions come to mind as an extension of MPP:
(1) Removing a focusx: This removal is permitted only if the atom in focusx has reference

count 1. Its removal is obtained by turning the atom into a proto-atom and putting the
atomnull in focusx instead of its original atom. Each atom directly reachable from
the degraded atom has its reference count decreased by 1. Notation:

rma x

(rma for removeatom.)
(2) Restricted garbage collection: This garbage collection invokes the cumulative removal

of all atoms that have reference count 0. After turning such an atom into a proto-atom
(see also Section 1) each atom directly reachable from it (by field selection) has its
reference count decreased by 1. Atoms thereafter having reference count 0 will be
removed by turning them into proto-atoms and so on. Notation:
rgc

(restrictedgarbagecollection). Not all garbage will be removed by means of restricted
garbage collection: cycles in the reference structure will be left intact.

(3) Full garbage collection: This is an extensive process resulting in the removal of all
garbage atoms. Notation:
fgc

Full garbagecollection will remove cyclic garbage as well as garbage which can be
identified on the basis of reference counting.

The different phases of a typical garbage collection process are displayed in Fig. 10.
Here field names are omitted and proto-atoms are rendered as circles. It should be noticed
that as a program notation PGLEc.mpp+rma is unproblematic whereas PGLEc.mpp+rgc
and PGLEc.mpp+fgc are—although being safe—very high-level and will take an amount
of time which is hard to predict.

204 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

Fig. 10. Garbage collection process in different phases.

7. Values

The exposition of molecular dynamics thus far fails to take notice of the concept of a
value. Values are central to most program notations. Nevertheless it is far from easy to
explain why values exist and how they differ from objects. Some preliminary remarks can
set the stage for a contemplation of values.
(1) Most program notations allow a fixed and finite number of basic types (such asbool-

ean andint) each containing a fixed and finite number of elements. These elements
are values.

(2) Usually for each value there is at least one so-called literal. A literal is an expression
denoting the value in a notation most likely to be known ‘outside’ the program notation
as well (such astrue, false, 0, 1, . . .).

(3) From the viewpoint of object-orientation, values are objects for which it cannot pay
off to arrange storage indirectly via a reference. The reference is at least as expensive
(‘big’) as the object itself.

(4) It is consistent with molecular dynamics to view a value as a terminal object (an object
without outgoing arrows) labeled with a literal. Two valuesp andq are identical if they
are terminal objects carrying the same label. Non-value objects do not carry a label but
a•.

Fig. 11 gives an intuitive idea of how values can be depicted in a diagram. We will
split fields into two categories: those referring to objects remain unchanged; value fields,
however, carry a type indication and point to a label. In the present case, there are the

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 205

Fig. 11. A molecule with value fields.

three value fieldse, g, andf. e points to the integer label0, g points to the boolean label
false, andf points to the integer label17. Moreover, values can be put into focus. In our
case, the value 17 is focussed byy. The collection of instructions MPPV extends MPP with
instructions for dealing with values.
(1) Mutations. Value mutations change the molecule by adding new values or by modify-

ing them. Field withdrawal works for value fields as well and is not repeated.
(a) Value field introduction: Introduce a new value fieldf of type t for an atom in

focusx. The value will be initialized by a type dependent label (e.g.,0 in the case
of integers,false in the case of booleans, etc.)

x. + f : t
Value field introduction returns the boolean valuetrue if the atom focussed byx
does not yet own a fieldf of typet; otherwisefalse is returned and the instruction
is ignored.

(b) Value field mutation: For an atom in focusx, replace the label of the value con-
tained in fieldf by the label of the value in focusy.

x.f = y

Herereplace means copy andnot share the label. Value field mutations return the
boolean valuetrue if the atom focussed byx owns a fieldf of the appropriate type;
otherwisefalse is returned and the instruction is ignored.

(c) Constant value field mutation: For an atom in focusx, replace the label of the value
contained in fieldf by u.

x.f = u

Constant value field mutations return the boolean valuetrue if the atom focussed
by x owns a fieldf of the appropriate type; otherwisefalse is returned and the
instruction is ignored.

(2) Assignments.
(a) Value field selection: Bring a copy of the value in fieldf of the atom in focusy into

focusx.

x = y.f

Value field selection returns the boolean valuetrue if the atom focussed byy owns
a fieldf; otherwisefalse is returned and the instruction is ignored.

206 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

(b) Value assignment: Put a copy of the value in focusy in focusx.

x = y

Value assignment returns the boolean valuetrue by default.
(c) Constant value assignment: Place a value with labelu in focusx.

x = u

Constant value assignment returns the boolean valuetrue by default.
(3) Tests. Just as the tests of MPP these tests do not change the state. The field membership

test works for value fields as well and is not repeated.
(a) Value identity test: Returntrue if the values in the focix andy carry the same

labels andfalse otherwise.

x == y

(b) Constant value identity test: Returntrue if the value in focusx carries the labelu
andfalse otherwise.

x == u

Given the above-listed instructions, one possible program resulting in the multi-molecule
depicted in Fig. 11 is the following:

x = new; z = new; y = 17;
x. + e : int; x. + a; x.a = z; z. + g : bool; z. + f : int; z.f = y

8. Projection semantics for method calls

In this section we will discuss the syntax and semantics of a couple of extensions of
PGLEc.mpp, beginning with the return and returning goto instruction.

8.1. Recursion

The introduction of recursion on top of PGLEc.mpp can be achieved by introducing two
new instructions: thereturning goto instruction and thereturn instruction. The syntax of
these instructions is as follows:
• R##Lk, with k a natural number and
• R.

The returning goto instructionR##Lk performs a goto together with the command to
jump to the instruction immediately following itself whenever a return instruction is reached
in the computation followingLk. The return instructionR jumps to the instruction just after
the last returning goto instruction to which a return has not yet taken place.

As an example consider the following recursive definition of addition on natural num-
bers. The program assumes the conventions stated in Section 5;S is the successor program

add=def−x2/p{; y = x1; }
{; L0; −x2/p; R; x2 = x2.p; x = x1; S; x1 = y; R##L0; y = x1; }

A better description of the semantics of these instructions is given in terms of a stack. Thus
let us assume that there is a stack of control points (e.g. instruction numbers).

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 207

• A returning goto instruction first puts the control point just following it on the stack
and then performs the goto instruction.

• A return instruction performs a look-up on the stack and finds the return point on top
of the stack. It then issues a goto towards this control point. After that goto has been
performed the stack is popped.

We will translate the two return instructions into PGLEc.mpp using this intuition as a
guide.

Our translation presupposes the existence of a fieldless atom focussed bystackframe. In
other words, we assume that every programp is preceded by the instructionstackframe =
new. Moreover, since the translation introduces labels some precaution has to be taken. In
order to avoid clashes with already existing labels, we assume that in a given program
u1; u2; · · · ; un ordinary goto and corresponding label catch instructions are labelled by
powers of 2; return and returning goto instructions will then introduce fresh labels carrying
powers of 3. We now translate the programu1; u2; · · · ; un intoψ1(u1);ψ2(u2); · · · ;ψn(un),

whereψi(ui) = ui if ui is a PGLEc.mpp instruction, and

• ψi(R##Lk) =
aux = new;
aux. + back;
aux.back = stackframe;
stackframe. + next;
stackframe.next = aux;
aux. + label : int;
aux.label = 3k;
stackframe = aux;
##Lk;
L3k

• ψi(R) =
−stackframe/label; !;
label = stackframe.label;
stackframe = stackframe.back;
stackframe. − next;
##L[label]

The focus depending goto ##L[label] in the last instruction ofψi(R) abbreviates

+label == 30; ##L30; +label == 31; ##L31; . . . ; +label == 3m; ##L3m

where3m is the maximal return label on the stack.
A typical stack generated by a couple of returning goto instructions is depicted on the

left of Fig. 12. Herel1, . . . , lj+2 are the return labels. On the right the stack is shown after
two return instructions without any intermediate garbage collection.

8.2. Void unparameterized static method calls

The definability of both the returning goto and the return instruction serve as a basis
for a projection semantics for method calls. We shall introduce the syntax and semantics
for method calls in stages starting withvoid unparameterized static methods which simply
perform a computation without returning a value. Throughout this and the following sub-

208 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

Fig. 12.

sections we work—in object-oriented terminology—in the framework of a single anony-
mous class, i.e., a local class without a name (see e.g. [6]).

The syntax for declaration and call of void unparameterized static methods are the fol-
lowing:
• mk(){;ui+1; . . . ; ui+m; } with k a natural number, and
• mk().

Hereui+1; . . . ; ui+m make up the body of the method. In order to avoid clashes of
labels during translation, fresh labels carry powers of 5. Given the returning goto and the
return instruction, a projection semantics can be given simply by
• ψi(mk(){;ui+1; . . . ; ui+m; }) = L5k;ψi+1(ui+1); . . . ;ψi+m(ui+m); R
• ψi(mk()) = R##L5k

8.3. Non-void unparameterized static method calls

On a value-returning method we impose the restriction of focussing the value to be
returned by the focusthat; thus the body of such a method must contain at least one
assignment of the formthat = y. Syntax and semantics are now easily given by
• mk(){;ui+1; . . . ; that = y; . . . ; ui+m; }
• x = mk()
• ψi(x = mk()) = mk(); x = that

The semantics for the declaration of a method is similar to the void case.

8.4. Non-void static method calls with parameters

In order to incorporate parameters, we assume the existence of fixed additional fo-
ci arg1, . . . , argn which may occur in the body of a parameterized method and which

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 209

during the call focus its parameters. The temporary storage of the objects originally fo-
cussed byarg1, . . . , argn is achieved by the introduction of additionalstackframe fields
arg1, . . . , argn. Thus including parameters requires the following adaptations of syntax
and semantics:
• mk(arg1, . . . , argn){; ui+1; . . . ; ui+m; }
• x = mk(v1, . . . , vn)
• ψi(x = mk(v1, . . . , vn)) =

stackframe. + arg1; . . . ; stackframe. + argn;
stackframe.arg1 = arg1; . . . ; stackframe.argn = argn;
arg1 = v1; . . . ; argn = vn;
x = mk();
arg1 = stackframe.arg1; . . . ; argn = stackframe.argn;
stackframe. − arg1; . . . ; stackframe. − argn

Methods with arbitrary parametersp1, . . . , pn can now easily dealt with usingα-conver-
sion. That is, the syntax and semantics of arbitrarily parameterized method declarations
can be given by
• mk(p1, . . . , pn){; ui+1; . . . ; ui+m; }
• ψi(mk(p1, . . . , pn){; ui+1; . . . ; ui+m; }) =

mk(arg1, . . . , argn){;ψi+1(ui+1[�p := �arg]), . . . , ψi+m(ui+m[�p := �arg]); }
whereuj [�p := �arg] denotes the instruction obtained by substitutingp1, . . . , pn by
arg1, . . . , argn.

The semantics for the declaration of a method is similar to the unparameterized case.

8.5. Non-void instance method calls with parameters

The last step consists of includingcalling objects. A method called for a specific object
provides the implementation of the dynamic behaviour of that object and may change its
state. In order to model this process we equip the stack in Fig. 12 with an additional field
namedthis which is temporarily referencing the current object. The object for which the
method is called will then be put into the focusthis and the method is called. After the
call the current object is returned into focusthis. Thus syntax and semantics for the call
of this kind of methods are given by
• y = x.mk(v1, . . . , vn)
• ψi(y = x.mk(v1, . . . , vn)) =

stackframe. + this;
stackframe.this = this;
this = x;
y = mk(v1, . . . , vn);
this = stackframe.this;
stackframe. − this

Syntax and semantics for the declaration of such methods remain unchanged.

9. Static fields in Java

The definition and initialisation of static fields in the programming language Java is
not a trivial matter. Below three Java programs are displayed that produce remarkable

210 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

results which can hardly be guessed by someone with marginal knowledge of Java only.
We will use program algebra and molecular programming to provide ad hoc projections
for these programs. As it turns out, projection semantics may be helpful for understanding
the behaviour of individual programs.

9.1. Preliminaries

In what follows we assume that running a program from the series of examples below
results from the fixed commandjava s which will call main() of classs. The execution
of main() consists of a call of a methodm() of classc. All Java programs, when translated
into a program algebra based notation, will then be projections of a program of the form

make − c(); c.m(); !; X
with X describing classc and other classes when present. As an example, we consider the
program

class c {

static void m() {

co.p(true);

}
}
public class co {

public static void p(boolean b) {

System.out.println(b);

}

}

which—when executed—prints a line containingtrue on the console. In order to project
this program a further ingredient is needed: instructions with externally observable (side)
effects. Here two such instructions are needed:
• co-p-true: print true on the console followed by a new line,
• co-p-false: print false on the console followed by a new line.

Both instructions return the boolean valuetrue. A projection of our program can now be
given by

make-c();c.m();!;
make-c(){;+c == null{;c = new;};};
m(){;f = true;make-co();co.p(f);f = null;};
make-co(){;+co == null{;co = new;};};
p(f){;+f == true{;co-p-true;}{;co-p-false;};}

Here each class is represented by an object. Moreover, the class will be named by a focus
carrying the name of the class throughout the program. Initially that focus, like all other
foci contains the same object as the focusnull. There will never be made assignments to
null, it is a constant focus (in the programs that will serve as projections below). A method
make-c() will be responsible for constructing the object for classc, and for generating
fields for each of its static fields. Thus, whenever a non-inherited field or a non-inherited

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 211

method or a constructor of a classc is used the methodmake-c() is called just before the
instruction that makes the use.make-c() checks itself that only a single object representing
c will be introduced. After that has been done its effect is neutral—the state/molecule is
not changed.

The three examples discussed below will all involve the print method in classco. For
reasons of brevity, we will omit this class in the sequel.

9.2. Circular dependence of static booleans

As a first example, we consider the program obtained from

class c {

static void m(){

co.p(c1.b1);

co.p(c2.b2);

}
}
class c1 {
static boolean b1 = !c2.b2;
}
class c2 {
static boolean b2 = !c1.b1;
}

This program produces
false
true

To obtain a projection the methodmake-c() needs to be more involved in order to take
static fields into account. We thus letmake-c() call two further methods:
• make-statics-c() which is responsible for producing all static fields of the class—

modeled as fields of the class object—and providing these with a default initialisation
(false in the case of booleans, 0 in the case of integers), and

• init-statics-c(), responsible for computing all non-default initialisations of static
fields.

The whole point of this projection is that it brings about the following mechnism of Java.
Wheninit-statics-c() is executed, that execution may involve a call tomake-c’() for
some classc’. When executing this second call, all static fields ofc can be used, and those
fields for which the non-default initialisation has not been completed still have their default
initial value.

The detailed analysis along the lines just mentioned yields the following projection:

make-c();c.m();!;
make-c(){;+c == null{;c = new;

make-statics-c();init-statics-c();};};

make-statics-c(){;};
init-statics-c(){;};

212 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

m(){;make-c1();f = c1.b1;co.p(f);

make-c2();f = c2.b2;co.p(f);

f = null;

};
make-c1(){;+c1 == null{;c1 = new;

make-statics-c1();init-statics-c1();};};

make-statics-c1(){;c1.+b1:bool;};
init-statics-c1(){;make-c2();f = c2.b2;f = !f;

c1.b1 = f;f = null;};

make-c2(){;+c2 == null{;c2 = new;

make-statics-c2();init-statics-c2();};};

make-statics-c2(){;c2.+b2:bool;};
init-statics-c2(){;make-c1();f = c1.b1;f = !f;

c2.b2 = f;f = null;}

(with f = !f abbreviating+f == false{;f = true;}{;f = false;}). In addition with
the convention that a boolean field will be initialized asfalse in molecular programming,
this projection explains the result of the Java program. The corresponding molecule is
depicted in Fig. 13.

The phenomenon of unexpected outcome of initializations can be phrased in terms of
sensitivity for declaration orders. By simply changing the order in which classes are con-
structed one may obtain different output. In the following program classc2 is constructed
prior to classc1:

class c {

static void m(){

boolean b = c2.b2;

co.p(c1.b1);

co.p(c2.b2);

}
}

Fig. 13.

J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214 213

class c1 {

static boolean b1 = !c2.b2;

}

class c2 {

static boolean b2 = !c1.b1;

}

Having understood the previous projection the output of this program is not surprising:
true
false

Our third program
class c {
static void m(){

co.p(c1.b1);

co.p(c2.b2);

co.p(c1.d1);

co.p(c2.d2);

}
}
class c1 {

static boolean b1 = c2.d2;

static boolean d1 = true;

}
class c2 {

static boolean d2 = true;

static boolean b2 = c1.d1;

}
produces

true
false
true
true

Here the reason for this remarkable output is of a slightly different nature. The detailed
analysis in terms of projections yields:

make-c();c.m();!;
make-c(){;+c == null{;c = new;

make-statics-c();init-statics-c();};};

make-statics-c(){;};
init-statics-c(){;};
m(){;make-c1();f = c1.b1;co.p(f);

make-c2();f = c2.b2;co.p(f);

214 J.A. Bergstra, I. Bethke / Journal of Logic and Algebraic Programming 51 (2002) 193–214

make-c1();f = c1.d1;co.p(f);

make-c2();f = c2.d2;co.p(f);

f = null;

};
make-c1(){;+c1 == null{;c1 = new;

make-statics-c1();init-statics-c1();};};

make-statics-c1(){;c1.+b1:bool;c1.+d1:bool;};
init-statics-c1(){;make-c2();f = c2.d2;c1.b1 = f;

f = true;c1.d1 = f;f = null;};

make-c2(){;+c2 == null{;c2 = new;

make-statics-c2();init-statics-c2();};};

make-statics-c2(){;c2.+d2:bool;c2.+b2:bool;};
init-statics-c2(){;f = true;c2.d2 = f;make-c1();

f = c1.d1;c2.b2 = f;f = null;}

This shows that the creation of the classesc1 andc2 are intertwined in such a way that
initialization ofc2.b2 happens at a moment whenc1.d1 still has the default valuefalse.

10. Conclusion

In this paper it is shown that molecular dynamics is able to model with fairly primitive
means object-oriented programming techniques. The authors are convinced that this low-
level and almost naive approach gives a clear insight into the nature of a whole range of
aspects which are common to all kinds of object-oriented programming dialects.

References

[1] J.A. Bergstra, I. Bethke, P. Rodenburg, A propositional logic with 4 values: true, false, divergent and mean-
ingless, J. Appl. Non-classical Logics 5 (2) (1995) 199–218.

[2] J.A. Bergstra, M.E. Loots, Program algebra for component code, Formal Aspects Comput. 12 (2000) 1–17.
[3] J.A. Bergstra, M.E. Loots, Program algebra for sequential code, J. Logic Algebr. Programming 51 (2002)

125–156.
[4] B. Diertens, The PGA—ProGramAlgebra website. Available from http://www.science.uva.nl/re-

search/prog/projects/pga.
[5] S.C. Kleene, On a notation for ordinal numbers, J. Symbolic Logic 3 (1938) 150–155.
[6] D. Flanagan, P. Ferguson (Eds.), Java in a Nutshell: A Desktop Quick Reference, O’Reilly & Associates,

Incorporated, 1999.

