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a b s t r a c t

Localities and a/sync places are two recent extensions to the Petri net model. Whereas
localities have been introduced as a modelling tool for membrane systems and more
general GALS (globally asynchronous locally synchronous) systems, a/sync places make it
possible to model synchronous communication between transitions. We investigate the
interaction between locally synchronous execution and synchronous communication. Our
focus is in particular on the causalities in the concurrent runs of a new Petri net model
combining these features.
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1. Introduction

Petri nets are a well-established framework for the modelling of concurrency in the behaviour of distributed systems.
Introduced originally by Petri [13], they were conceived as a foundational model to describe information flows based
on local states and local state changes. Over the years these basic insights have led to a vast area of research with a
wide range of theories and applications, methodologies and tools. Nowadays, as reported in collected works [5,15,16]
edited by Desel, Reisig and Rozenberg, Petri nets provide a framework of net-based models with many extensions and
variations introduced for ease of modelling and adapted to the modelling needs of different applications like business
process modelling, manufacturing systems, hardware circuits, and biological systems. This not only proves the flexibility
of modelling with Petri nets, but also the robustness of the approach.

A key feature of Petri nets is the local transformation rules that support modelling of causality and concurrency in a
direct way. The underlying structure of a Petri net is essentially a bipartite directed graph consisting of two types of nodes:
places and transitions. Places are used to carry local information on a system’s state whereas transitions represent actions
that can occur if certain local conditions (represented in neighbouring places) are satisfied. When a thus enabled transition
occurs (‘fires’), it ‘consumes’ from its input places and ‘produces’ in its output places. Hence each transition has only a limited
and local effect on the (global) state of the system. This basic rule for the dynamics of a Petri net allows one to consider also
concurrent and simultaneous occurrences of transitions and induces in a natural way a concept of (in)dependence. This then
leads to definitions of step semantics and firing policies describing the allowed steps (simultaneously occurring transitions)
at a given state which may depend on features added to the basic structure. All these many possible extensions give rise to
different Petri net models each with their own operational semantics.

In [8,9], Kleijn, Koutny and Rozenberg propose Petri nets as a model to describe what is going on during an evolution
of a membrane system. Membrane systems, also known as P systems, are inspired by the compartmentalisation of living
cells and the effect this has on their functioning [11,12]. Within each compartment enclosed by a membrane, chemical
reactions between molecules take place (modelled as transformations of multisets of objects into new objects). With both
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models based on multiset calculus, there is a direct connection between membrane systems and Petri nets which is also
already obvious in the structure underlying Petri nets: a certain type of object in a specific compartment can be represented
as a place, while reaction rules have a natural interpretation as Petri net transitions. To model the compartmentalisation
of membrane systems, transitions representing reaction rules are associated with specific compartments and so in [8]
the concept of locality of a transition is proposed as a new extension to Petri nets. The resulting class of Place/Transition
nets with localities or ptl-nets, is suitable for the modelling of membrane systems and actually also for more general so-
called GALS (globally asynchronous, locally synchronous) systems [2,3]. Such systems exhibit a mix of synchronous and
asynchronous behaviour rather than the strict global synchronicity of the original membrane systems which assumes that
as many reactions as possible occur in one time unit (of a global clock). The concept of localities allows one to discern
subsystems on basis of actions. As a consequence, in ptl-nets locally maximal steps (no transitions belonging to an active
locality can be added to the step) can be defined. With this step semantics, ptl-nets provide a faithful, operational model
for asynchronous systems consisting of subsystems that are internally fully synchronised (according to a local clock).

To investigate the structure of the concurrent behaviour of ptl-nets, processes based on unfoldings of such nets are
considered in [8,9]. Processes characteristically belong to the classical Petri net approach aimed at obtaining a causality
semantics for Petri net models (see, e.g., [1,6,17]). Processes are labelled occurrence nets, i.e., acyclic Petri nets, providing
insight in the explicit, local causalities in a concurrent run of a Petri net. They can be derived from step sequences as
representatives of such runs by unfolding the Petri net in accordance with the execution of the step sequence. An important
property of such operationally defined process semantics is that it should be consistent [6] with the operational causal
relations in the original net by satisfying two properties: (cons-i) every step sequence executable in a process should
correspond to a step sequence of the original net; and (cons-ii) every step sequence of a Petri net should be represented by
a step sequence in each process it defines. For ptl-nets operating under the locally maximal step semantics, the standard
unfolding strategy does not yield a consistent process semantics (in particular (cons-i) is not satisfied). To overcome this
problem caused by lack of information on potential executability of (co-located) transitions, it is proposed in [8,9] to
employ so-called barb-events in the unfolding procedure. Indeed this is then proved to be sufficient for a consistent process
semantics.

On basis of different types of dependencies between evolving and communicating subsystems, occurrence nets
can be combined into structured occurrence nets [10,14]. In [7] the causality in communication structured occurrence
nets is investigated and a corresponding Petri net model is defined. This model combines Place/Transition nets with
explicit communication and interaction structures called a/sync places, to implement the specific causality expressed
by communication in structured occurrence nets. These new places incorporate a possibility for both synchronous and
asynchronous communication between transitions, meaning that a message sent through such a channel is handed over
directly or may be left there to be picked up later. Thus, in particular, a/sync places affect the concept of enabledness
of transitions. Using a/sync places as building blocks it is possible to force the synchronous occurrence of transitions.
Consequently, a/sync places imply a proper extension to the modelling power of Petri nets which by themselves lack a
structural possibility to express that a transitionhas towait in order to synchronisewith the occurrence of another transition.

In this paper, we further elaborate the idea of structured communication in concurrent systems by combining
synchronous execution and synchronous communication in one Petri net model. We do this by lifting the constraints on
a/sync communication. Rather than being channels between a pair of transitions (from different subsystems), a/sync places
are now shared communication places for multisets of transitions. In addition, we use localities to model synchronously
evolving subsystems. All this yields the new class of Place/Transition nets with localities and a/sync places or ptlas-nets.

The combination of synchronous execution and a/sync communication leads to complex causal relationships. To shed
light on the intricate interplay of these two phenomena we investigate how to unfold concurrent runs of ptlas-nets. We use
techniques from [7] and [9] to arrive as before in a natural way at occurrence nets with localities and a/sync places. In this
case however, it is not sufficient to introduce barb-events in the same way as in [9]. There each barb-event is given a single
location and is introduced to supply information about the existence of co-located enabled transitions in order to exclude
illegal executions. Here, to cater for possible enforced synchronicity between (transitions from) different localities due to
synchronous communication, barb-events need to have multiple localities.

2. PTL-nets with a/sync places

In what follows, we use mostly standard mathematical notation. In addition, let us fix some notation for multisets.
Recall that a multiset over a set X is a function U : X → N = {0, 1, 2, . . .}. Sets may be treated asmultisets andmultisets

may be represented by listing their elements with repetitions, e.g., U = {y, y, z} is a multiset such that U(y) = 2, U(z) = 1,
andU(x) = 0 otherwise. The emptymultiset 0defined by 0(x) = 0, for all x ∈ X , may bewritten simply as∅. For amultisetU
(overX),wedenote by supp(U) its supporting set consisting of all elements (ofX) forwhichU(x) > 0. If supp(U) is finite, then
the cardinality of |U| is U =


x∈supp(U) U(x). Applying a function ℓ to a (multi)set Z = {z1, . . . , zk} of elements of X yields a

multiset ℓ(Z) = {ℓ(z1), . . . , ℓ(zk)}. Then, for a sequence of (multi)sets Z1 . . . Zn, we define ℓ(Z1 . . . Zn) = ℓ(Z1) . . . ℓ(Zn).
For two multisets U and V over X , their sum U ⊕ V and difference U ⊖ V are the multisets given respectively by

U ⊕V (x) = U(x)+V (x) and U ⊖V (x) = max{0,U(x)−V (x)}, for all x ∈ X . We write U ≥ V whenever U(x) ≥ V (x), for all
x ∈ X , and U > V if, in addition, U ≠ V . The restriction of a multiset U to Y ⊆ X is the multiset U|Y given by U|Y (x) = U(x),
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Fig. 1. A ptlas-net modelling a one-producer/two-consumers system.

for all x ∈ Y , and U|Y (x) = 0 otherwise. The multiplication of U by k ∈ N is the multiset V given by V (x) = k · U(x), for all
x ∈ X .

We now introduce the class of Petri nets with localities and a/sync places extending the standard pt-net model [4].
A pt-net with localities and a/sync places (or ptlas-net) is a tuple:

PTLAS = (P,P, T ,W , ℓ,M0), (1)

where: P is a set of places and P is a set of a/sync places with their union being denoted by P; T is a set of transitions;
W : T × P ∪ P × T → N is the arc weight function; ℓ : T → N is the localitymapping; andM0 is a multiset over P called the
initial marking (in general, any multiset over P is a marking). It is assumed that the setsP ,P , and T are finite and mutually
disjoint. We refer to the elements of P and T as nodes (of PTLAS). In diagrams, places are represented by circles; a/sync places
by thick circles; transitions by rectangles with their locality displayed in the middle; the arc weight function by directed
arcs with the weight n annotated if n ≥ 2 and arcs with weight 0 are omitted; and a marking by tokens (small black dots)
drawn inside places.

Fig. 1 depicts a ptlas-net representing a producer, an unbounded a/sync buffer (the middle a/sync place p0), and two
consumers. The producer can execute one of three transitions: m (making item(s)), a (adding two new items to the buffer),
and f (failing to add two items, but still adding one item to the buffer). Each of the two consumers represented by the two
tokens in place p3 can cyclically execute: g (getting an item), and u (using the item). Transitions modelling the actions of the
producer belong to locality 1, and those representing the actions of the two consumers to locality 2. Initially, the system is
in the markingM0 = {p0, p1, p3, p3}.

For any transition t ∈ T , we define its inputs in(t) and outputs out(t), as multisets over P such that, for every p ∈ P:
in(t)(p) = W (p, t) and out(t)(p) = W (t, p). The notions of inputs and outputs are lifted to arbitrary multisets U of
transitions in the usual way, for example:

in(U) =


t∈T

U(t) · in(t).

We also denote in(α) = in(α)|P and in(α) = in(α)|P (and similarly for outputs), for any transition or multiset of
transitions α. It is then assumed that the place inputs as well as place outputs of any transition t ∈ T are non-empty,
i.e., in(t) ≠ ∅ ≠ out(t).

For the ptlas-net in Fig. 1, we have in(g) = {p3} andout(a) = {p0, p0}, as well as:

in({a, g, g})= {p0, p0, p1, p3, p3}
out({a, g, g})= {p0, p0, p2, p4, p4} .

(2)

The above notation is extended to (a/sync) places p ∈ P: in(p) and out(p) are multisets of transitions such that respectively
in(p)(t) = W (t, p) and out(p)(t) = W (p, t), for every t ∈ T .

The operational behaviour of PTLAS is captured by its step sequences, where a step U is a multiset of transitions. We
begin by defining what it means for such a step to be enabled, considering two such notions. The first (standard) one –
called token-enabledness – only checks whether its transitions’ input places contain enough tokens (for a/sync input places
also counting the tokens that will be supplied synchronously by executing the step). The second one – called lmax-enabled-
ness (or locallymaximal enabledness) – also takes into account its transitions’ localities by requiring that no extra transitions
can be executed in the localities involved in the current step.

Given a markingM of PTLAS, a step U of transitions is:

• token-enabled atM ifM ⊕ out(U) ≥ in(U).
• lmax-enabled at M if U is token-enabled at M , and no step V > U satisfying supp(ℓ(V )) = supp(ℓ(U)) is token-enabled

at M .

Whenever U is lmax-enabled at M , we will use M[U⟩M ′ to denote that M ′ is the successor marking resulting from the
execution of U atM , where:

M ′
= M ⊕ out(U)⊖ in(U) .



188 J. Kleijn, M. Koutny / Theoretical Computer Science 429 (2012) 185–192

a

c

b

d

Fig. 2. Two ptlas-nets (a, b); and two attempts to construct a process of the latter net: with barb-events (c), and without barb-events (d).

For the ptlas-net in Fig. 1 and U = {a, g, g}, we have:

M0 ⊕ out(U) = {p0, p0, p0, p1, p3, p3} ≥ {p0, p0, p1, p3, p3} = in(U)

and so U is token-enabled atM0. In fact, U is lmax-enabled atM0 and we have, by (2),M0[U⟩{p0, p2, p4, p4}.
The condition for token-enabledness, M ⊕ out(U) ≥ in(U), and the subsequent definition of the successor marking

imply that tokens in a/sync places produced by U can be consumed in the same executed step. However, the same does
not hold for the (ordinary) places inP since we have that M ≥ in(U) asP andP are disjoint. We further observe that one
can replace the condition for token-enabledness by M ≥ res(U), where res(U) = in(U) ⊖ out(U) captures precisely the
tokens needed to make the execution of U possible. As we have seen in the ptlas-net in Fig. 1, the step U = {a, g, g} is
token-enabled atM0 which shows that one of the customers will get a completely fresh item via the buffer.

ptlas-nets extend the ptl-nets of [9] by including a/sync places in addition to the standard ones. Moreover, their
semantics is a conservative extension of that given for ptl-nets. There is, however, an important difference in the actual
formulation of lmax-enabledness which, in the case of ptl-nets, takes V > U such that |V | = |U| + 1, i.e., assumes that V
is extended by (a single copy of) one transition. Due to the intended behaviour of a/sync places, such an assumption would
be too restrictive for ptlas-nets and |V | = |U| + 1 is no longer wanted. Consider, for example, the ptlas-net in Fig. 2(a). The
step U = {t, z} is not lmax-enabled at M0 as V = {t, z, u, v} is token-enabled and supp(ℓ(V )) = supp(ℓ(U)) = {1, 2}. On
the other hand, the steps {t, z, v}, {t, z, u}, {t, t, z} and {t, z, z} are not token-enabled at the initial marking. Note that this
marking forces a synchronous execution of u and v.

As it was already the case for ptl-nets [9], due to conflicts between transitions coming from different localities, an lmax-
enabled step does not necessarily consist of maximal steps w.r.t. the individual localities. In other words, restricting such a
step to transitions coming from a single localitymay yield a stepwhich fails to be lmax-enabled. In the case of ptlas-nets this
observation can be further strengthened as the latter steps may even fail to be token-enabled. Consider again the ptlas-net
in Fig. 2(a) and the step U = {t, z, u, v}which is lmax-enabled in the initial marking. By projecting U onto the two localities,
1 and 2, we obtain steps U ′

= {t, u} and U ′′
= {v, z} which are not token-enabled at M0. Furthermore, the same U can be

used to demonstrate that an lmax-enabled step does not have to consist of transitions which are individually token-enabled
as {u} and {v} are not token-enabled at the initial marking. This is in contrast with the step semantics of ptl-nets whose
lmax-enabled steps are composed out of token-enabled transitions.

Finally, a step sequence of PTLAS is a sequence σ = U1 . . .Un (n ≥ 0) of steps such that there are markings M1, . . . ,Mn
satisfying M0[U1⟩M1, . . . ,Mn−1[Un⟩Mn. Moreover, M0U1M1 . . .Mn−1UnMn is a mixed step sequence of PTLAS, and each Mi is
a reachablemarking.

3. Processes of PTLAS-nets

We now show how to construct processes of ptlas-nets from their step sequences. Each process of a net PTLAS as in (1),
will be formalised as an occurrence net with localities and a/sync conditions (or olas-net):

OLAS = (B,B, E, F ,L, ψ,E, F,L)
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which employs suitably adapted notions from ptlas-nets, but also includes other components, as described next:

• B is a set of places (or conditions).
• B is a set of a/sync places (or a/sync conditions).
• E is a set of transitions (or events).
• F ⊆ B × E ∪ E × B, where B =B ∪B, is a flow relation (or arc weight function which returns only 0 or 1).
• L : E → N is a locality mapping.
• ψ : B ∪ E → P ∪ T is a mapping preserving the types of various kinds of nodes, i.e.,ψ(B) ⊆P ,ψ(B) ⊆P andψ(E) ⊆ T .
• E is a set of barb-events (represented by shaded rectangles).
• F ⊆ B × E are arrows leading to barb events (defining in(e), for e ∈ E).
• L : E → 2N gives non-empty sets of localities (shown inside rectangles representing barb-events).

The default initialmarking of OLAS is the setMOLAS
0 comprising all (a/sync) places without incoming arcs in F .

Markings and execution rules for an olas-net as above, are defined as before for ptlas-nets under the following
assumptions. A step U is a multiset of events (and does not include any barb-events), and U is lmax-enabled whenever,
in addition to the previously stated requirements, we have that:

• there is no barb-event e ∈ E such thatM ⊕ out(U) ≥ in(U)⊕ in(e) and L(e) ⊆ supp(L(U)).

The role of barb-events should now be clear. They are not ‘real’ events, but rather indicators of the enabledness of some
transitions. Hence, although they are never executed, they can still influence lmax-enabledness of steps made-up of the
standard events.

We will now describe how to construct a process of a ptlas-net by following the execution of one of its step sequences.
Let σ = U1 . . .Un be a step sequence of PTLAS as in (1). An olas-net

OLAS = (B,B, E, F ,L, ψ,E, F,L)
=


n

j=0

Bj,

n
j=0

Bj,

n
j=0

Ej,
n

j=0

Fj,
n

j=0

Lj,

n
j=0

ψj,

n
j=0

Ej,

n
j=0

Fj,

n
j=0

Lj


(3)

generated by σ is the last net in the sequence OLAS0, . . . ,OLASn where each

OLAS j = (Bj,Bj, Ej, Fj,Lj, ψj,Ej, Fj,Lj)

is constructed as described below, where:

• each non-barb-event node of OLAS is of the form z = xi, where x is a node of PTLAS and i ∈ N; we also setψ(z) = x and,
if z is an event, L(z) = ℓ(x).

• each barb-event is of the form e = eLC , where L ⊆ N is a non-empty set of localities and C ⊆ B is a non-empty set of
(a/sync) conditions; we also set in(e) = C and L(e) = L.

Step 0 of the process construction.We set:

B0 = {pm | p ∈ P ∧ 1 ≤ m ≤ M0(p)} and E0 = F0 = ∅ .

Moreover, E0 comprises all barb-events eLC (where C ⊆ B0) for which there exists a multiset V of transitions of PTLAS
satisfying res(V ) = ψ(C) and supp(ℓ(V )) = L.
Step j (1 ≤ j ≤ n) of the process construction. To constructOLAS j, we extend the components ofOLAS j−1, as follows (below
△x denotes the number of nodes of OLAS j−1 labelled by x ∈ P ∪ T ):

Bj = Bj−1 ∪ {pm+△p
| p ∈ P ∧ 1 ≤ m ≤ out(Uj)(p)}

Ej = Ej−1 ∪ {tm+△t
| t ∈ T ∧ 1 ≤ m ≤ Uj(t)} .

Then, for every new event e = t i ∈ Ej\Ej−1, we arbitrarily choose1 four sets of (a/sync) conditions:Ie ⊆ Bj−1,Ie ⊆ Bj,Oe ⊆Bj\Bj−1 andOe ⊆Bj\Bj−1 in such a way that:

ψ(Ie ∪Ie) = in(t) and ψ(Oe ∪Oe) = out(t) (4)

and after setting:

Fj = Fj−1 ∪


e∈Ej\Ej−1

(Ie ∪Ie)× {e} ∪


e∈Ej\Ej−1

{e} × (Oe ∪Oe)

it is the case that |in(b)| ≤ 1 ≥ |out(b)|, for every b ∈ Bj.
Finally, the set Ej extends Ej−1 by including barb-events eLC (C ⊆ Bj and C ⊈ Bj−1), for which there exists a multiset V of

transitions of PTLAS satisfying res(V ) = ψ(C) and supp(ℓ(V )) = L.
We will provide an example of the above construction later on.

1 This means that, in general, more than one process can be constructed for σ . We will later show that suitable setsIe ,Ie ,Oe andOe can always be found.
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3.1. Properties of the construction

The above construction is a conservative extension of that developed for pt-nets and occurrence nets [4], allowing us to
import some useful properties to the current framework. Let PT = (P, T , W ,M0), where W = W |P×T∪T×P and M0 = M0|P ,
be the pt-net underlying PTLAS in (1), and ON = (B, E,F ,ψ), whereF = F |B×E∪E×B and ψ = ψ |B∪E , be the occurrence net
underlyingOLAS in (3). The step semantics of PT andON is essentially that of token-enabled step semantics of ptlas-nets and
olas-nets with no a/sync places/conditions and barb-events. It is clear that each step sequence of PTLAS is a step sequence
of PT , and the construction described above can be used to derive ON from PT and (the same) σ . Moreover, as shown next,
the semantics of OLAS is set-based rather than multiset-based, similarly as that of ON .

Proposition 3.1. If G0H1G1 . . .Gm−1HmGm is a mixed step sequence of OLAS, then G0, . . . ,Gm are sets, and H1, . . . ,Hm are
mutually disjoint sets.

Proof. It is easily seen that G0|BH1G1|B . . .Gm−1|BHmGm|B is a mixed step sequence of ON which, in particular, means that
H1, . . . ,Hm are mutually disjoint sets. Moreover, by construction, G0 = MOLAS

0 is a set, in(MOLAS
0 ) = ∅, and |in(b)| ≤ 1 for

all b ∈ B. Hence G1, . . . ,Gm are sets. �

Our aim is to show that the process construction we presented is consistent, i.e., it satisfies (cons-i) and (cons-ii). We
first show (cons-i) which means that every step sequence of the constructed olas-net corresponds to a legal step sequence
of the original ptlas-net.

Theorem 3.2. If ζ is a (mixed) step sequence of OLAS, then ψ(ζ ) is a (mixed) step sequence of PTLAS.

Proof. We first observe that, by (4), for every event e ∈ E:

ψ(in(e)) = in(ψ(e)) and ψ(out(e)) = out(ψ(e)). (5)

We only need to prove that the result is satisfied for a mixed step sequence ζ = G0H1G1 . . .Gm−1HmGm. We proceed by
induction onm. For m = 0 the result follows from the definition of OLAS0.

In the induction step, we assume ζ ′
= ζHG is amixed step sequence ofOLAS andψ(ζ ) is amixed step sequence of PTLAS.

Let U = ψ(H), M = ψ(Gm) and K = ψ(G). As H is token-enabled at Gm, Gm ≥ in(H)⊖ out(H). Hence:
M = ψ(Gm) ≥ ψ(in(H)⊖ out(H))

= ψ(in(H))⊖ ψ(out(H)) (by (5))
= in(ψ(H))⊖ out(ψ(H)) = in(U)⊖ out(U).

Thus U is token-enabled at M . If U is not lmax-enabled at M , then there is a step U ⊕ V > U which is token-enabled
at M and supp(ℓ(V )) = supp(ℓ(U)). From the fact that both U and U ⊕ V are token-enabled at M it follows that
M ⊕ out(U)⊖ in(U) ≥ res(V ). Hence

ψ(Gm ⊕ out(H)⊖ in(H)) ≥ res(V ).

Consequently, as Gm is a set by Proposition 3.1, there is a set

C ⊆ Gm ⊕ out(H)⊖ in(H)
such that ψ(C) = res(V ). Hence, by (5) and the construction, there is a barb-event e = eLC such that L = supp(ℓ(V )) and
C ⊕ out(H) ≥ in(H)⊕ in(e). This produces a contradiction with H being lmax-enabled at Gm. Hence U is lmax-enabled at
M .

We then observe that since G = Gm ⊕ out(H)⊖ in(H), we have:

K = ψ(G) = ψ(Gm ⊕ out(H)⊖ in(H))
= ψ(Gm)⊕ ψ(out(H))⊖ ψ(in(H)) (by (5))
= ψ(Gm)⊕ out(ψ(H))⊖ in(ψ(H))
= M ⊕ out(U)⊖ in(U).

HenceM[U⟩K , and so ψ(ζ ′) is a mixed step sequence of PTLAS. �

We then show that (cons-ii) holds, i.e., that the successively constructed sets of events form a legal step sequence of
OLAS corresponding to σ .

Theorem 3.3. Let D1 = E1,D2 = E2\E1, . . . ,Dn = En\En−1. Moreover, let

Cj = {b ∈ Bj | out(b) = ∅ in OLAS j},

for 0 ≤ j ≤ n. Then ζ = C0D1C1 . . . Cn−1DnCn is a mixed step sequence of OLAS.
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Fig. 3. Process OLAS generated for the ptlas-net in Fig. 1 and its step sequence σ = {a, g, g}{m, u} after removing redundant barb-events.

Proof. Let M0U1M1 . . .Mn−1UnMn be the mixed step sequence of PTLAS corresponding to the step sequence σ . We will
prove, by induction on j, that ζj = C0D1C1 . . . Cj−1DjCj is a mixed step sequence of OLAS such that we have ψ(C0) =

M0, . . . , ψ(Cj) = Mj.
In the base case ( j = 0), we have C0 = B0 = MOLAS

0 (any (a/sync) condition added after the initial step has an incoming
arc) and ψ(C0) = M0 directly by construction (note that in(b) = ∅, for all b ∈ B0).

In the induction step, we start by showing that Dj is lmax-enabled at Cj−1. First, we observe that in PTLAS we have
Mj−1 ⊕ out(Uj) ≥ in(Uj). Moreover, by the induction hypothesis, ψ(Cj−1) = Mj−1.

Hence it is possible to find the setsIe,Ie, Oe and Oe, as required by the process construction, which demonstrates its
well-definedness.

Furthermore, the choice of the sets must be such that Cj−1 ∪ (Bj \Bj−1) ≥ in(Dj). It therefore follows that Dj is token-enabled
at Cj−1. If Dj is not lmax-enabled at Cj−1, then one of the following holds:

Case 1: There is a multiset D ≠ ∅ over E such that supp(L(D)) ⊆ supp(L(Dj)) and H = Dj ⊕ D is token-enabled at Cj−1.
Then M ⊕ out(U) ≥ in(U) ⊕ in(e). Thus Cj−1 ⊕ out(H) ≥ in(H). Hence, by (5), ψ(Cj−1) ⊕ out(ψ(H)) ≥ in(ψ(H)).

Thus Mj−1 ⊕ out(H) ≥ in(H). Moreover, supp(ℓ(H)) = supp(ℓ(Dj)). Hence Uj is not lmax-enabled at Mj−1 in PTLAS, a
contradiction.

Case 2: There is a barb-event e = eLC ∈ E such that Cj−1 ⊕ out(Dj) ≥ in(Dj)⊕ C and L ⊆ supp(L(U)).
Let V be a multiset over T from which eLC has been derived. By proceeding similarly as in Case 1, we can show that

Uj ⊕ V is token-enabled at Mj−1 and supp(ℓ(Uj)) = supp(ℓ(Uj ⊕ V )), contradicting Uj being lmax-enabled at Mj−1. Hence
Dj is lmax-enabled at Cj−1, and one can see that Cj−1[Dj⟩Cj−1 as well as ψ(Cj) = Mj which follows from ψ(Cj−1) = Mj−1
and (5). �

3.2. Removing redundant barb-events

It is relatively straightforward to simplify the constructed processwithout invalidating the resultswehave just presented.
A barb-event eLC is redundant if one of the following holds:

• there is a barb-event eL
′

C ′ ≠ eLC such that C ′
⊆ C and L′

⊆ L.
• there is a multiset H over E such that C = res(H) and L = supp(L(H)).
• there are b1, . . . , bm ∈ B (m ≥ 2) such that (bi, bi+1) ∈ F ◦ F (for i < m) and b1, bm ∈ C and {b1, . . . , bm} ∩B ≠ ∅.

Intuitively, the first two cases exclude barb-events whose ‘enabledness’ implies enabledness of a smaller barb-event or
enabledness of a step of events which would require exactly the same tokens and localities as the redundant barb-event.
The third case excludes barb-events which can never be enabled at a marking reachable from the default initial marking of
OLAS. It therefore follows that Theorems 3.2 and 3.3 still hold if we remove all the redundant barb-events together with the
adjacent arcs.

Fig. 3 shows a process generated for the ptlas-net in Fig. 1 and its step sequence σ = {a, g, g}{m, u} after removing all
the redundant barb-events. In particular, the redundant barb-events in E0 were: e

{2}
{p10,p

2
3}
on account of g1; e

{1}
{p11}

on account of

a1; and e
{1,2}
{p11,p

1
3}
, e{1,2}

{p11,p
2
3}

and e
{1,2}
{p10,p

1
1,p

1
3,p

2
3}

on account of e
{1}
{p11}

. Moreover, e{2}
{p20,p

3
3}

belonging to E2\E1 has been removed as p14 ∈B
and (p20, g

2), (g2, p14), (p
1
4, u

1), (u1, p33) ∈ F .
Omitting (all) barb-events from the process construction would invalidate their consistency. Consider, for example the

ptlas-net in Fig. 2(b) and its step sequenceσ = {t, u, v}{w, z}. Fig. 2(c) depicts its processOLAS after removing all redundant
barb-events. We then note that deleting the only barb-event of OLAS leads to the net in Fig. 2(d) which can execute a step
sequence σ such thatψ(σ) = {u, v}{t, z}{w}. Thus Theorem 3.2 is violated since {u, v}{t, z}{w} is not a legal step sequence
of the ptlas-net in Fig. 2(b) (as {t, z, x, y} is token-enabled at the marking reached after executing {u, v}).
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a
b

c

Fig. 4. A ptlas-net (a); its (simplified) process constructed for σ = {t, u}; and an attempt to derive a process with barb-events based on single localities (c).

In the process construction developed for ptl-nets in [9], each barb-event has a single locality associated with it. Such
an approach would not work here. Consider, for example, the ptlas-net in Fig. 4(a) and its process corresponding to step
sequence σ = {t, u} shown in Fig. 4(b). If, in the process construction, the two-localities barb-event was replaced by two
‘equivalent’ single-locality barb-events, then the resulting net shown in Fig. 4(c) would fail to satisfy Theorem 3.3. In fact,
this net does not allow the event labelled by t to be executed in any reachable marking.

4. Conclusions

Wehave presented a process construction for ptlas-netswhich yields nets satisfying the consistency criteria of [6]. In our
future work we plan to extend this construction to include also inhibitor and activator arcs which are of practical relevance
when modelling, e.g., biological systems.
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