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PART I 

1. INTRODUCTION AND SUMMARY 

A. We consider a pair of nonlinear integral equations of Hammerstein 
type of the form 

x1(s) = &) + Y jlL& +l(qXZ(t) & + Y jlL& ~&12(~) 4 
0 

O&l, j = I, 2, (1.1) 

for x1(s) and x2(s), with gj(s) and L&s, t) given (cf. Section 2, A) and 
0 < y < co. The problem is from nonlinear elasticity theory. It pertains to 
the buckling of a thin shallow spherical shell clamped at the edge and under 
uniform external pressure. The functions xi and xs represent, respectively, 
the ratios of the slope of the displacement function and of the radial stress 
to the pressure; y is a loading parameter proportional to the pressure. 
Specific definitions are given in the Appendix. The overall discussion of 
the physical problem, derivations of equations, detailed numerical results 
and their physical significance are given in [I]. This paper is devoted mainly 
to the theoretical analysis and practical solution of (1.1). Some new techniques 
are used for these purposes. 

This mathematical study was motivated by the gross disagreement 
between various theoretically predicted and experimentally observed 
buckling loads. Indeed, part of the problem is to establish a suitable theoretical 
definition of buckling. Experimentally, buckling is said to occur when a 
“small” increase in load causes a “sudden large” increase in displacement. 

* Sponsored by the Mathematics Research Center, United States Army, Madison, 
Wisconsin, under Contract No.: DA-ll-022-ORD-20.59. Also supported in part by 
the National Science Foundation Grant GP 2492. 

476 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82028133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EXTENSION OF THE NEWTON-KANTOROVIE METHOD 477 

Theoretically, the “classical” critical load has been taken to mean the smallest 
y for which the derivative with respect to y of some parameter representing 
displacement becomes infinite [2]. For example, the parameter1 

s 

1 

p:=y x1( t)t2 dt 
0 

U-2) 

represents the volume displacement of the shell. Mathematically, the 
critical value of y in integral equation formulations of similar stability 
problems has been taken as the first bifurcation point [3, p. 1611. 

The results of this study suggest that certain energy comparisons may be 
important in determining buckling loads (Section 7, E and [I]). Let 

1 1 0: =- 
4y2 s 

x12( t)x2( t) dt. 
0 

(1.3) 

Then (in suitable units) the elastic strain energy of the deformed shell is 

u = Y(P - 4 (1.4) 

and the potential energy of the applied load is 

v = -2yp. 

Thus, the total energy of the system is 

(1.5) 

7J + v = --Y(P + 4. (1.6) 

For the application of energy criteria for buckling, solutions of (1.1) are 
needed for all y > 0. For sufficiently small y, the contractive mapping 
principle and the Schauder fixed point theorem can be used to solve (1.1). 
For arbitrary y, the continuation method described below was employed. 
(Cf. [l] for a description of the method in more classical terms.) 

B. Abstractly, Eq. (1.1) can be posed in a Banach space (cf. Section 3) 
in the form 

P(y,x): =(I-yLF)x-g=o, (1.7) 

where x = (x1 , x2), g = (g, , g2), Fx = (xixs , &xi”) and the operator L is 
determined by the kernels Ljk(s, t). If P(ro , x0) = 0 and the FrCchet derivative 
(cf. Section 5, A) of P with respect to x at (y. , x0) is nonsingular, then the 
Hildebrandt-Graves implicit function theorem (cf. Section 5, B) guarantees 

the existence of a locally unique solution x = u(y) such that x0 = u(yo). 
Moreover, u(y) is continuous. KantoroviE’s generalization of Newton’s 
method (cf. Section 5, C) yields successive approximations to these solutions 

1 We use A: = B to mean “the symbol A is by definition equal to the quantity 
or expression B.” 



478 ANSELONE AND MOORE 

as well as error bounds. Thus, we can construct a “curve” of solutions 
x = u(y) for y in some interval, beginning at y = 0 where x = g and 
incrementing y in small steps. 

This continuation method breaks down at the first (critical) point where 
the x-derivative of P is singular. For y near such a point, a change of para- 
meter y = y(p, x) was introduced to obtain an equivalent relation 

!a, 4: = fYY(P, 474 = 0, (1.8) 
for which the x-derivative of Q is nonsingular. In fact, (1.2) was used for 
this purpose. Now the solution curve can be continued in the form x = v(p) 
with p as the independent parameter and y as a function of both p and the 
solution. Once beyond the critical point, y can be used again as the inde- 
pendent parameter. 

By alternate use of y and p as the independent parameter, a “global” 
solution curve can be constructed. A typical y versus p graph is given in 
Fig. 1. For each point on the graph there is a locally unique solution of (1.1) 

1.4 

2680 1.2 

2400 1.0 

960 0.4 

480 0.2 

0 OO I 2 3 4 5 6 

Volume deformation, p 

FIG. 1. Pressure vs. volume deformation. Y = l/3, p = 7, 20 pt. parabolic rule. 
Y = Pr 4 = 2401~. (For p > 6, p decreases slowly to 0.19 near p = 12, thereafter 
increases monotonically, with p = 1 near p = 20.2.) 
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which varies continuously with y and p. The local maxima and minima of y 
are critical points in the sense used above; they are also bifurcation points 
of a rather simple type. 

C. A discrete numerical analog was obtained by replacing the integrals 
in (1.1) by sums. The extended Newton’s method described above was used 
on the discrete problem. The computations were carried out on the CDC 1604 
at the University of Wisconsin. Questions of convergence and errors of the 
approximate solutions are considered in Section 9. 

The programming and computing for the extended Newton’s method 
were the responsibility of Allen Reiter of the Mathematics Research Center. 
We take this opportunity to acknowledge his aid and considerable skill. 

2. DERIVATION OF THE INTEGRAL EQUATIONS 

A. The equilibrium state of the shell is described mathematically by the 
differential equations 

x1”(t) + ; q’(t) - f q(t) + p%,(t) = $ xl(t)x2(t) - 2t, 

x2”(t) + f x,‘(t) - f x2(t) - p2Xl(t) = - 5 x,2(t), 
0 < t < 1, (2.1) 

and the boundary conditions 

%(O) = 0, q> = 0, 

x,(O) = 0, xi(l) - i%,(l) = 0, (2.21 

where (cf. Appendix) p is a geometric parameter which increases with the 
ratio of the center height of the shell to the thickness and Y is an elastic 
parameter (Poisson’s ratio). The parameter y is related to the external 
(dimensionless) pressure p by 

Y = PcL4* (2.3) 

Ranges of most physical interest are 

O<P<2, 3 < P < 10, +<v<+. (2.4) 

We outline here the derivation of the integral equation formulation of 
the above boundary value problem. For further details see [l]. 

With the right members in (2.1) replaced by arbitrary but fixed continuous 
functions n(t) and yz(t), one obtains an associated linear system. In this 
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system and in (2.2) let x = x1 + ix, and y = yi $ iyz to obtain the complex 
formulation 

2x : = x”(t) $ : x’(t) ~- cf -+ ipq x(t) = y(t), (2.5) 
-- 

x(0) = 0, x’(l) - x’(1) - 2VX(l) = 0. (2.6) 

(The complex conjugation in (2.6) makes this a nonlinear problem.) 
Note that 9% = 0 becomes Bessel’s equation of order 1 upon making 

the change of variable T = mt where m2 = -ip$. Thus, 9x = 0 has as 
fundamental solutions the modified Bessel and Neumann functions Jl(mt) 
and N,(mt). The general solution of (2.5) is obtained by means of the method 
of variation of parameters. The (two) arbitrary constants are determined by 
(2.6). 

Finally, y1 and ys are replaced by the right members of (2.1) to obtain 

x,(s) = gj(s) + Y J‘lb,(s, t)x&)x2(t> dt + Y @&, t>&12(t) & 
0 0 

O<S<l, j = 1,2, (2.7) 

where 

g,(s) = Re&), g2(4 = Im&+)* P-8) 

g(s) = - 2 - I-$ N,(m) + $ [C =@$ - Js$$] 1 jI(ms); (2.9) 

L,,(s, t) = Re[K(s, t) + R(s, t> + S(s, t>l, 
L&s, t) = Im[K(s, t) + R(s, t) + S(s, t)], 

L,,(s, t) = Im[K(s, t) + R(s, t) - S(s, t)], 

L,,(s, t) = -Re[K($ t) + Ii(s, t) - S(s, t)]; 

(2.10) 

K(S, t) = K(t, s) = z NI(ms)JI(mt), O<t<s<l, 
2 (6 t) f (0, O), 

(2.11) 

qs, t) = o<s,t< 1, (2.12) 

S(s, t) = - $ Jl(ms)Jl(mt>, o<s,t< 1; (2.13) 

-- 
C = 3 hh(m>~l’W + [mll’W - 2~JIWW&4h (2.14) 

D = I 2v.W) - mJl’(m>12 - I mh’(m)l”; (2.15) 

m = p$R’lb. (2.16) 
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The right member of (2.11) is indeterminate for (s, t) = (0,O). However, 
since [4, pp. 1341381 

Id.4 = ; + ~W4, 464 + - & as z -+ 0, 

(2.17) 

N,(z) = - 2 + bJ(4, -q(z) --+ 0 as z+O, 

K(s, t) is bounded in the neighborhood of (0,O) and, hence, is uniformly 
bounded in the unit square. It follows that the functions&(s, t) are continuous 
except at (0,O) and are bounded uniformly in the unit square. 

B. In order to display the system in its real formulation we introduce 
the Kelvin functions 

beam: = Re J1(ms), 6tir(p.s): = Im Jr(ms), 

Ned,: = Re Ni(ms), nei,(p): = Im N,(m). (2.18) 

For brevity we write (for fixed p) 

Then 

K(s, t> 

Let 

br s: = beY,(ps), bi s: = bez~(p), 

tw s: = ner,(p), nis: = nei,(ps). (2.19) 

K(t,s) =;(nrsbrt -nnisbit) +i;(nrsbit fnisbrt), 

(2.20) 
O<t,<s<l, (s, t) # (0, 0). 

c = ; (Cl + X,) (2.21) 

and note that D is real. Then 

R(s,t) =~(C,(brsbrt-~bisbit)-cC,(brsbit+bisbrt) 

+ i[C,(bY s bi t + bi s br t) + C,(br s br t - bi s bi t)]}; (2.22) 

S(s, t) = - % [br s br t + bi s bit) - i(br s bi t - bi s br t)]. (2.23) 

The kernels &(s, t) are obtained directly from these equations and (2.10). 
They comprise a (matrix) Green’s function for the linear system associated 
with (2.1) and (2.2). 
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PART II 

3. AESTRACT FORMULATION 

Let S? = V[O, l] be the Banach space of real continuous functions on 
[0, l] with the uniform norm iIf = max,,,, i If(t)/. Define the linear 
operators Lj, : % -+ %? by 

(3.1) 

where the kernels &(s, t) are given by (2.10). The operators Lik are bounded 
(equivalently, continuous) and 

IlLi, II = 05~e1 j1 I L& t)l 4 j,k = 1,2. 
” 0 

(3.2) 

Moreover, the operators Lj, are compact, i.e., they transform bounded sets 
into sets with compact closure. This follows by the usual argument based on 
the Arzell-Ascoli lemma on bounded equicontinuous functions. 

Let .?I? = % x V be the Banach space with elements denoted either by2 
x = (x1 , x2) or by x = (:I), as convenience dictates, and the norm 11 x jl = 
maxi1 x1 )I, (I x2 II). Define tie linear operator L : X + % by 

Then L is bounded and 

(3.3) 

(3.4) 

Moreover, L is compact. 

Define F : S --t % by (cf. (2.7)) 

Fx = (x1x2 , $=x1”). (3.5) 

Easy calculations yield 

II Fx II B II x IV, (3.6) 

IlFx -FY II < (II x II + IIY II)11 x -Y Il. (3.7) 

By (3.6), F is bounded (it transforms bounded sets into bounded sets). By (3.7), 
F is continuous (moreover, uniformly continuous on each bounded subset 
of 9). 

* In Section 2, x was used for x1 + ix, . It will not be used in that sense again. 
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Let I denote the identity operator on X. 
Let W denote the Banach space of real numbers with the absolute value 

for the norm. Consider W x S as a Banach space with elements (y, X) and 
norm Il(r, x)11 = max(/ y I, jl x 11). Define the nonlinear operator P :9 x %--+ 3 
bY 

P(y, x) : = (I -- yLF)x - g, (3.8) 

where g = (g, , gs) is determined by (2.8) and (2.9). Then the desired 
abstract formulation of (2.7) is 

P(y,x): =(I-yLF)x-g=o. (3.9) 

4. APPLICATION OF THE CONTRACTIVR MAPPING AND 
SCHAUDER FIXED POINT THEOREMS 

A. Define the operator A : 9 + 3” + 37 by 

A(y, x): = g + yLFx. (4-l) 

Then (3.9) is equivalent to 

A(y, x): = g + yLFx = x. (4.2) 

Thus, for y fixed, solutions x of (3.9) are fixed points of A(y, x). 
Let a,.(~ 2 0) denote the closed ball in S with center x = 0 and radius 

Y : LzJT = (x E ?i?: 1) x 11 < r}. 

LEMMA 4.1. Letr >jlgll. Then A(y,x)~ii?~forallx~i@~if 

PROOF. Apply (3.6) and (4.1). 

LEMMA 4.2. Let I > 0 andjx y such that 

(4.3) 

Then for x, y E gT 

II Jr, x) - 4Y9 Y)ll < 2yrllL II II x - Y II (4.5) 

with 2yrll L II < 1, SO that A(y, x) re p resents a contractive operator on ii?+. . 

PROOF. Apply (3.7) and (4.1). 
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We can now apply the contractive mapping principle: if a contractive 
operator 1’ maps a complete metric space M into itself, then T has a unique 
fixed point x* E M; moreover, the sequence defined by x, = TX,-, , with 
any x,, E M, converges to x*. 

Theorem 4.1. Let r > 0. If y satis$es (4.3) and (4.4), then there is a 
unique x E .C8r such that A(y, x) = x and, hence, P(y, x) = 0. Moreover, ~-7 
x, = A(y, x+J and x,, E gT, then /I x, - x I/ + 0 as n -+ 00. 

What are the limitations of this result? The right member of (4.3) attains 
the maximum value 1/411L Ij j/g I/ f or Y = 2//g Ij. The right member of (4.4) 
attains the same value for Y = 2/lg 11. Hence, Theorem 4.1 is applicable in 
some ball &‘r only for y < l/411 L /j 11 g //. 

B. The Schauder fixed point theorem [5] yields another existence result. 
Consider (4.1) for A(y, x). S ince L and F are continuous, LF is continuous. 
Since L is compact and F is bounded, LF is compact. Hence, LF is completely 
continuous, i.e., continuous and compact. It follows that, for each fixed y, 
A(r, X) represents a completely continuous operator on X. 

The Schauder theorem asserts that if a completely continuous operator in 
a Banach space maps a closed, bounded, convex set into itself, then the 
operator has at least one fixed point in the set. Note that for each Y > 0, gr 
is a closed bounded convex set. Hence, by Lemma 4.1, we have the following 
result. 

THEOREM 4.2. Let Y > 0. If y satisJies (4.3), then there is at least one 
x E g,. such that A(y, x) = x and, hence, P(y, x) = 0. 

This theorem applies only for y < l/(411 L 11 11 g 11). Thus, the applications 
of both the contractive mapping and Schauder theorems are limited to y 
sufficiently small. The methods given below do. not have this limitation. 

PART III 

5. IMPLICIT FUNCTION THEOREM AND NEWTON'S METHOD 

A. For the present, let % and (Y be arbitrary Banach spaces. Let Ip(9; g) 
be the Banach space of bounded (continuous) linear operators on % into ‘Y. 
An operator T on an open subset 9’ of I into 9Y is said to be (Frtchet) 
diSferentiabZe at x0 in 9 if there is an operator T,(x,J E 9(X; %Y) such that 

,/$q+, II W, + h) - TX, - TzhJh II = 0. 
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The operator T&V,) is called the (FrCchet) derivative of T at x,, . It is the 
appropriate local linear approximation of T (the Jacobian matrix in Euclidean 
n-space). 

The operator T is differentiable on a set 9, if it is differentiable at each 
point of Y, ; T is continuously differentiable on Y, if the map T, : Y, + 
9(X; 9Y) is continuous at each point of Y1 . If T, is differentiable at x0 with 
derivative T&x,,) E 9(CZ’; 2(X; g)), th en T is twice di@rentiable at x,, with 
second derivative T,,(x,). Thus, for h E %, T,,(x,)h E 2’(9?; 3’) and so acts 
on elements K E % : T,,(x,)hh E CY. The norm of the second derivative is 
that in LZ(%; 9(%; 3’)). Therefore 

II T,,(x&k II < II T,,(xJh II II k II G II Tz&Jll /I h II II k II- 

In a natural manner T&x0) may be viewed as an element of LZ(%, 3; ?V), 
the space of continuous bilinear maps from 3 x S into 9. Higher order 
derivatives are defined analogously. 

We note the following properties of the derivative. 

(i) If T is linear, then T,(x,) = T and T&x,-J = 0 for all CC,, E L%. 

(ii) If T = U + V, then T,(x,,) = U&x,,) + V,,(x,,). 

(iii) If T = VU where U : 55 + SY and V : C!Y -+ 2, then 

T&o) = V,Po) U&o>- 

(iv) If T is continuously differentiable on the segment {x = x0 + th, 

0 < t < I}, then 

B. Now consider an operator T defined on an open subset of 9 x % 
with values T(ol, X) in a Banach space +Y. The partial (FrCchet) derivatives 
T& ,, , x0) and T*(cY.,, , x0) are defined in the usual manner by fixing x and 01, 
respectively. 

The Hildebrandt-Graves implicit function theorem is as follows [6,7]. 

THEOREM 5.1. Suppose T(q, , x,,) = 0, T is continuously di&mntiable 
with respect to x at (a,, , x,,), and [TC(% , x,)1-1 exists.3 Then there are constants 
z > 0 and 8 > 0 such that for I (Y - a0 1 < E the equation T(a, x) = 0 has a 
unique solution x = w(m) with I/ w(a) - x0 I/ < E. Moreover, w(m) is continuous. 

8 Here and elsewhere, it is understood that the inverse operator is defined on all 
of the range space. The phrase, “Tz(q,, x0) is nonsingular” will have the same 
meaning. 
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C. Again, consider an operator T : 9” --f Y, (e.g., T(cx, x) with 01 fixed, 
as above). The Newton-Kantorovi? method for solving 

TX := 0 (5-l) 

is based on the iterative scheme 

Gln+l = xn - [T&PTx,, (5.2) 

where x,, is a given initial approximation. Let SY(x,, , r) = (x : /I x - x,, 11 <. r> 
and a(x0, r) = (x : Jj x - x,, Jj < Y>. The fundamental theorem is as follows 
[S-lo]. 

THEOREM 5.2. Suppose that 

(1) T is twice di@-rentiable and 1) Tz,(x)lj < K on 9(x, , rO), where r,, is 
defined by (5.3); 

(2) I’,, : = [Tz(x,,)]-l exists and 11 F, Ij < /3, ; 

(3) II x1 - xo II = II ToTxo II < rlo ; 
(4) To : = BorloK < 4 ; 

where 

Woho T N(T) : = 
1-W r. : = 

7 (5.3) 

Then TX = 0 has a solution x* in &f(x o , ro), (5.2) dejines a sequence {xn} which 
converges to x*, and 

II % - x* II d & (2ho)2”-1vo - 

i” (1) holds in 9(x0 , qo), where 

q. : = Meoh 9 
1+dC--Z 

M(T) : = 7 , (5.5) 

then the so&ion x* is unique in @x0 , q,,). 

Remarks. 1”. If (1 TX, /I < co, then (3) holds with Q < /3,,[, and (4) holds 
if ro’: = fl:‘&K d 4. 

2”. By (5.3), N(7,) < 2 and y. < 2ro if 70 < 9. Hence by (4) it suffices 
to require (1) on SY(xo, 27,). 

3”. In 0 < T < 9, N(T) is an increasing and M(T) a decreasing function 
of 7. 
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4”. Suppose T,, < i. From 11 x* - x,, j/ < r,, = (1 - 1/l -- 27,,)/&c, we 
have by (iv) in Section 5, A 

which implies that [Tz(x*)]-l exists and 

lI[~&*)lrl II d 
PO PO 

1 - [(l - 2/l - 2T0)/&$?o = 1/i=& = : B** (56) 

6. DERIVATIVE OPERATORS AND THEIR NORMS. CHANGE OF PARAMETER 

A. The implicit function theorem and Newton’s method will be applied 
to solve P(y, x): = (I- $F)x - g = 0. By (3.5), 

F,(x,) = (22, ‘z’), where x,, = (z*t), (6-l) 

(This is an ordinary Jacobian matrix.) Thus, 

(6.2) 

It is not difficult to show that 

ll~&o)ll = 4 x0 II. (6.3) 

By (6.1), the map F,:X+ 9(%;%) is 1 inear. Therefore, its derivative 
F&x,), which is in 9(X; 8(%; %)), is constant (independent of x0): 

(6.4) 

By (6.3) and (6.4), 
II F&o)lI = 2. (6.5) 

For p(y, x): = (I - yLF)x -g, we obtain 

Pz(Yo 7 x0) = 1 - Y&F&o), Pa&o , x01 = --r&~&o), 

Py(ro 3 xo) = --LI;xo , Pqho v xo> = -~-a@,). (6.6) 

In particular, for ‘y. > 0, 

II P&o 3 s)ll G 2YollL II. (6.7) 
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This furnishes a value for K in condition (1) of Theorem 5.1 which is inde- 
pendent of x,, and r0 . Corresponding estimates can be obtained for the norms 
of the other derivatives in (6.6). 

3. Both the implicit function theorem and Kewton’s method fail at 
points on the solution curve where P&y,, , x,,) is singular. To deal with this 
situation, we employ a suitable change of parameter 

defined on some open set in @ x Z. Let 

CXP, 4: = wf7 4, 4 (6.9) 

on this set. If y(p, X) is differentiable with respect to x at (pO , x,,) and 
y. = “/(p. , x0), then 

Mfo , X”> = PE(YO 3 x3 + Pdro 9 XOMPO 9 x0), (6.10) 

where yE(po , x0) E 9*: = 9(%; W) and P&r0 , x0) E Y(9; X), which is 
isometrically, isomorphic to % (an operator YE 9(9?; 3) corresponds to an 
element y E 55 if and only if YOU = ay for all LY E W). Identifying 9(9; %)with 
55, we have P,,(ys , x0) E 9. Thus, Qz(po , x0) is an operator in 8(S; 9) of 
the form B + yp, where B E 9(X; S), y E .!% and y E X*. 

It may happen that Q5(po , x0) is nonsingular even though P&J,, x,,) is 
singular. Thus, the change of parameter may permit the further use of 
Theorems 5.1 and 5.2. This situation is examined in Section 6, C. But first, 
a special case is considered. 

In the buckling problem, (1.2) was used to define the change of parameter 

Y(P, “4: = PW (6.11) 

c(x) = P(W1, b(x) = j1 xl(t)t2 dt, (6.12) 
0 

for all p E 9 and x = (x1 , ~a) E 9” such that b(x) # 0. Then 

Q(p, 4: = wp, x), 4 = x - PC(XP~ -g 

on this set. Assume 6(x0) # 0. Since b is a linear functional 

&o) = 4 Uxo) = 0, 

4x0) = -[4%)12~~ c,&oW = W~o)13WPW 

(6.13) 

(6.14) 

(6.15) 
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Therefore, 

Qdfo 9 xo)h = [I - Pl&o)~~&o)l~ + POK%)12~(~)~~~0 9 @m 
Q,(Po 3 x0) = - 4XoP~o 9 (6.17) 

Q&o , xoP = - f04~0)~~&0)h~ + Po[C(Xo)12b(K)LF~(xo)h 
+ Po[c(xo)12b(h)LF~(x,)K - 2po[c(x,)13b(K)b(h)LFx, * (6.18) 

By (6.12), 11 b 11: = SU~,,~,,=~ 1 b(x)1 = *. Hence, by (3.6), (6.3) and (64, 

II Q&Al > xo)ll d I foc(Xo)l IlL IIm~&o)ll + 21 +*)I II b II II~&oIl 

+ 21 4%)1211 6 l1211el II>, 

II Bm?@o 9 %)ll < 4 Po4%)l IIL IIU + %I 4%~l II x0 II + &I c(~o1211 %I II219 

II Q&o ? xo)ll G 2 Po4Xo)l IIL 110 + +I c@o)l II x0 II>“* (6.19) 

C. Suppose that Pz(yo , x0) is singular. We seek changes of variable (6.8) 
and (6.9) such that the operator Q&p0 , x0) given by (6.10) is nonsingular. 
Note that P,,(ro , x0) is independent of y(p, x). Note also that for any 9 E %* 
there exists y(p, X) such that ‘y2(po, x0) = v, e.g., let y(p, x): = (p - p. + l)p(x). 

The addition of an operator to a singular operator to make the sum non- 
singular is a fairly common device in linear algebra and functional analysis. 
For example, it is used to reduce the second case of the Fredholm alternative 
to the first case. Other examples occur in connection with bordered matrices. 

Before stating the results, some additional notation is introduced. For 
each x E 3, let [x]: = {ax : (Y E .%?‘>. For each B E LZ(SY, E), denote its null 
space by .M[B] and its range by BZ. Recall that the codimension of a sub- 
space ?EI of I is defined (uniquely) by codim. [SYr] = dim. [s2], where %, 
is any subspace of X such that 

ST- = x, + 9-2, X, n X2 = [O]. 

LEMMA 6.1. Assume P&J, , x0) is singular. Then there exist changes of 
variabZe (6.8) and (6.9) such that Q&p0 , x0) is nonsingular if and only $7 

(1) dim .N[P,(y, , x0)] = 1, i.e., for some nonze~o ho E 9, 

J’lpd~o , xo)l = [hoI; 
(2) codim.[P,(y, , x0)X] = 1; 

(3) P&o 3 x0) + P&o 7 XOF. 

Under these conditions, Qz(po , x0) is nonsingular if and only if 

(4) y&o 3 xo)ho $r 0. 
Since the proof is not difficult, it is omitted. 
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In the buckling problem, (6.6) gives P&, , x0) -= I - $.~z(~O), where 
LF,(x,) is compact. Therefore, (1) and (2) of Lemma 6.1 are equivalent to 
each other and to the condition that y0 is a simple characteristic value 
(reciprocal eigenvalue) of LF,(x,). In (l), h, is an associated eigenvector. 
Condition (3) now becomes 

Mx, 6 [f - yoLF*(xo)]~. (6.20) 

If y(p, X) is defined by (6.1 l), then (4) is equivalent to 

PO f 0, @o) f 0, W,) # 0. (6.21) 

7. A GLOBAL CURVE OF SOLUTIONS BY CONTINUATION WITH 
NEWTON'S METHOD 

A. In this section we seek to obtain the curve discussed in the Introduc- 
tion. Heuristically, let us suppose that the solutions of P(y, X) = 0, and of 
the equivalent Q(p, x) = 0, together form a one-dimensional manifold go 
given locally by suitable functions x = u(y) or x = v(p). Let x0 be an 
approximate solution for y = ‘yo. (The statements below will have obvious 
analogs for p = p. .) In general, x0 will be the finally accepted approximation 
to zl(y,) obtained by Newton’s method applied to P(y, , x) = 0. We wish to 
apply Newton’s method to P(rr, X) = 0. As an initial approximation for 
u(yr) it is natural to consider 

x0 + u,(roh - Yo) (7.1) 

where uy is obtained by differentiating P(y, U(Y)) = 0 and solving: 

u,<ro, = -[P&o Y 4roNl-1~,hl 7 4Yob (7.2) 

Since x0 is an approximation to u(y,), in practice one uses in (7.2) 

Go : = P’z(n > ~o)l-~ 

which is available from the Newton method computations at y = ‘y. . Thus, 
as an initial approximation for u(n), we take instead of (7.1) 

x0 - GZy(?/, ) XO)(Yl - Yo). (7.3) 

Newton’s method then yields a sequence of points which one hopes will 
converge to a solution of P(n , X) = 0. 

For the case of P(y, X) a second order initial approximation is easily 
available (assuming sufficient differentiability). By (6.6) 
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Differentiate with respect to y and use F,,(x)h = F,(h) to obtain 

This can be solved for uw. AS a initial approximation for u(y,) we then may 
take 

xd + %(YO)(Yl - Yo) + &$&%)(Yl - YJ2. (7.4) 

Higher order extrapolations can be obtained similarly. 

B. We find in the next theorem that if the initial approximation (7.3) is 
used in the case P(y, X) = 0 then the Newton iterates do converge if the 
increment in y is small enough. We remark however that a much larger step 
than that given in Theorem 7.1 may work, especially if a higher order extra- 
polation is used, e.g. (7.4). 

The continuous curve of solutions thus obtained by varying y continuously 
is approximated by linear segments, with error estimates and uniqueness 
regions given by this theorem. 

THEOREM 7.1. For y = y,, , let x0 be an approximate solution of P(y,, x) = 0 
such that [P,(y,, , x0)1-l exists and the q, , /3,, , &, of Theorem 5.2 satisfy 

TO ’ : = ,do2&,Ko < + with K. : = 2yol where 11 L 11 < L (cf. Remark 1” after 
Theorem 5.2). Let the quantities d, e,f be defined by (7.10), (7.12), (7.14) 
below. Suppose 0 < 6 < l/f3,d and 

Tie : = To’ +fa 
(1 -/30dS)2 <;* 

If Newton’s method is applied for y with 1 y - y. / < 6 u&g as initial 
approximation 

XO(Y): = xo - GO&(YO 9 x,)(Y - ~oyo), Go : = [Pdyo , x0)1-‘, (7.6) 

then the Newton iterates at y converge to a solution x = u(y). Moreover, these 
u(y) form a continuous arc of solutions, P(y, u(y)) = 0; this arc is approximated 
by the linear segment x0(y) de$ned by (7.6); the error of approximation is 
uniformly bounded by 

II U(Y) - xo(r)ll < + 
10KIO 

(1 - 2/l - 2Ti,) (7.7) 
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where B. and K~,, are defined by (7.11) and (7.13); and the u(y) are unique in 
the balls @x,(y), r) of uniform radius 

(7.X) 

PROOF. With y fixed, for brevity let xIO : -= x,(y) in (7.6). We show that 
the conditions of Theorem 5.2 (and Remark 1” following it) hold for (y, xIo) 
with B~0510~lo < 2 I. First, for pro, recall that if S is an invertible operator 
and /I R - S // < I/// S-l I/ then R is invertible and 

// R-l I/ < 11 S-l !I/(1 - !) S-l // /I R - S II). 
From (7.6), 

II x10 - $0 II G II Go II !I p,(ro 7 xo)ll I Y - ~0 I G Pa4 xo l12S, (7.9) 

II x10 II d (1 + so4 x0 II% x0 II* 

Using (iv) of Section 5, A together with the bounds in Section 6, A and (3.6) 
we have 

< ;sql II pt&o + t(Y - Yo’o), %I1 I Y - Yo I 

+ o=& II ~m(Yo 7 x0 + Gho - x3)11 II *lo - x0 II 

where 
d: = P(1 + Bo~ll xo IIS) + PodI xo Ill6 xo Il. 

Thus, for 6 < l/pod, I’&, xIo) has an inverse G,, and 

I/ Go 11 < 810 : = 1 -‘; & - 
0 

(7.10) 

(7.11) 

Similarly, for &, we have 

II P(Y, x10)ll < SUP Ii p&f, x0 + t(%0 - x0))ll II x10 - *O II 
O<Kl 

+ sup II Py(Yo + t(y - Yo), xo)ll 6 + II mo > xo)lI 
o<t<1 

where 

< [I + 2rQll xo II + II x10 - xo iI)1 II X10 - x0 II + Jll x0 II2 8 + 50 

G Co + e 8 = : Lo 

e: = (1 + [I + 2(~, + Wb, ii(l + Po41~o llWle,>~ll x0 112. (7.12) 
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For ~~~ , we note 11 P,,(ro, x0)11 < 2yoe = :K~ independent of X, so that 

KIO * . = 2(ro + 8)tf = K. + 2b 

will serve to bound P&y, x) for y < y. + 6 and for all x. 
Thus, letting 

(7.13) 

we have 
f : = &‘Y?I,~ + eKo + 2e&, (7.14) 

(7.15) 

This yields the convergence part of the theorem by (7.5). 
The estimates (7.7) and (7.8) are applications of (5.3), (5.5), and Remark 3” 

following Theorem 5.2. Finally, Remark 4” implies [P.Jy, u(r))]-’ exists so 
that, in view of the uniqueness, u(y) is continuous by the implicit function 
theorem. q.e.d. 

Remarks. It is clear that for 11 x 11 < B and y < C the quantities d, e, f as 
well as P&J, X) can be bounded uniformly in terms of PO, /, B, C. Con- 
sequently, if the I’&, u(y)) h ave uniformly bounded inverses (uniform j30) 
for 0 < y < C, then a uniform step 6 can be employed. (Cf. also [ll].) 
Conversely, as Pz(y, u(y)) becomes singular, the steps in y become smaller. 
Indeed, for successive ‘y. ,3/r , ya , . . . the steps may decrease so rapidly that 

cj (n+1 - n) . 1 1s ess than the desired upper limit of y. (Something like this 
is to be expected in view of the buckling behavior.) 

C. It is not hard to see that using Section 7, B, essentially the same results 
can be derived for Q(p, x): If x0 is an approximate solution for p = p. such 
that [Q5(po, x0)]-l exists and 6(x,) # 0 (cf. (6.12)), then with a sufficiently 
small increment in p, an extrapolation analogous to (7.3) starts a Newton 
sequence converging to a solution v(p); the e)(p) form a continuous arc 
approximated by a linear segment and surrounded by balls of uniqueness 
with uniform radius. (One may argue on physical grounds that, in view of 
(1.2), b(x) # 0 for any displacements of interest.) 

D. Now view the points (y, x) as lying in the product space I: = %Y x $. 
Let Y denote the set of points (y, X) E %” satisfying P(y, X) = 0. By the 
foregoing Y contains a continuous curve 9 through (0, g), defined locally by 
(y, u(y)), which can be approximated by a stepwise procedure beginning at 
(0, g). The balls of uniqueness in Theorem 7.1 then appear as horizontal 
sections of a “tube” of uniqueness surrounding 9. See Fig. 2. If as y 
approaches some yc , U(Y) approaches uc and P&J, u(y)) becomes singular 
(SO PO -+ OJ), then the tube constricts to zero diameter. But if Q&, X) is 
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not singular near such “critical points”, then 3 can be continued, now locally 
defined by (P, V(P)) as in Section 7, C, so (yc , u,) is obtained from (pc , v(pe)) 
for some pe. Also, 9 has further stepwise linear approximations, and the 

Disks on hypersurfaces of constant p 

FIG. 2. 

corresponding balls of uniqueness (now “bent disks” on the hypersurfaces 
of constant p in 6) comprise a new tube of uniqueness about B in the very 
region where the previous tube constricted to zero radius. With p as inde- 
pendent parameter, one computes the corresponding y = y(p, v(p)) from 

(6.10 If (P, V(P)> am roaches a point where Q&, X) becomes singular, then 
one returns to y as independent parameter (providing P& u(y)) is not 
simultaneously nearly singular). In so doing the steps in y are taken consistent 
with the current sign of dy/dp (actually one decrements or increments 
according as the successive computed values of y were decreasing or 
increasing). 

Alternate use of y and p as needed may yield a continuous global curve B 
of solutions in %” such that along 9, y passes continuously (but not necessarily 
monotonically) from 0 to 00. One obtains with 3 a tube of uniqueness 
surrounding it. In particular this precludes geometrical branch points (as in 
Fig. 3). Furthermore, no other branch of 9 can pass through (0, g); in fact, 
other branches must tend to infinity as y + 0 since in Theorem 4.1 the 
smaller y is, the larger the balls of uniqueness aT may be taken. 

We do not investigate here the conditions under which 9 constitutes all 

FIG. 3. 
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FIG. 4. Pressure vs. volume deformation, Y = l/3. 

of Y, nor when geometric branching may occur, nor when y must eventually 
tend monotonically to infinity on 9. The desirable properties were found by 
computation to be present in the problem at hand. In particular, use of y and 
&he p defined in (1.2) as parameters proved wholly adequate for all cases 
computed. The values of y were advanced through the range given in (2.3), 
(2.4), in particular exceeding the ranges of applicability of the contractive 
mapping and fixed point theorems of Section 4. 

Selected graphs are shown in Figs. 1 and 4. We comment that p may be 
viewed as a component of x in X (cf. 1.2). Thus, with other parameters, one 
may obtain other components, and hence vastly different graphs (as in the 
case of a helix in space projected onto various planes). 

E. The “classical” critical loads of Section 1, A were found in the present 
case merely to be points where 3 has a “horizontal tangent” in %? x %, i.e. 
(cf. (7.2)) where 
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can be satisfied with y = yC and h in the null space of P,(y, , x,). Perhaps 
more than warranted importance has been attached to these points in the 
classical theory of buckling. By contrast, intrinsic physical significance is 
attached to the energies. These can be estimated using (1.2)-(1.5). If there 
is more than one solution for any y or p then “preferred” solutions are 
distinguishable on the basis of relative energies. (Cf. [l, 121.) If 9 constitutes 
all of Y then this permits a complete discussion of the physical possibilities. 
(See Fig. 5.) 

0 0.2 0.4 0.6 

Pressure, p 

FIG. 5. Potential energy vs. pressure, Y = l/3. 

PART IV 

8. DISCRETE NUMERICAL REPRESENTATION 

A. For numerical purposes, the integrals in (1.1) are replaced by quadra- 
tures with abscissas Sk, k = 1, . . . . m, 0 < s1 < sa < *-- < s, < 1, and 
corresponding weights W, , . . . . W, . The two equations (1.1) are thereby 
replaced by analogous equations for vectors xi : = col(xi, , . . . . x?,), j = 1, 2: 
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For the abstract setting (cf. Section 3), let gj” denote the m-dimensional 
real Banach space with elements xj and norm 

II xj II = ma% xi1 I, . . . . I 9, I), (j = 1,2). 

Let Em : = gr” x gzrn be the Banach space with elements x = col(x, , x2) 
and norm 11 x I/ = maxi1 x1 11, I/ x2 11). Then (8.1) has the abstract formulation 
(cf. (3.9)) 

P(y, x): = (I - yLF)x - g = 0 (8.2) 
where 

gzz g1 
( 1 g2 9 gj = COU(~l), *-*, &(%J), j = 1,2, 

Fx = col(x,x, , +(x1>“> = col(x,,x, , . . . . +ncm , &J2, . . . . &n)2), 

L = (2 3 Lik = i 

-Gk(Sl 3 4 *** -hk(Sl I &n) 

L,(s,, sl) ..qi ) s,) 

and I is the identity matrix. Also, 

Given a solution, or approximate solution, (x1, x2) of (8.1) we obtain 
naturally an approximate solution (5r , 5&) of (1.1) by allowing the Sk in (8.1) 
to vary continuously: 

zds) : = g,(s) + Y ~w~,h~x,,w + Y &2(4 ~z)~(~1z)2w 9 
Z=l z-1 

(j = I, 2). (8.3) 

B. The program of solution described in Section 7 is now applied to (8.2), 
beginning with the solution x = g when y = 0. The formulas of the previous 
chapter can be used merely by replacing vectors and operators in .5? by their 
analogs in Zm . For example F,(x,) is just the Jacobian matrix. (Here and 
below we write subscript x instead of subscript x.) Of course, for b in (6.12) 
we now use 

b(x) : = 2 XlkSk2Wk 
k=l 

(8.4) 

to change to the parameter p. Thus, when y is the parameter, one approximates 
p by p”: = y&x). As P,(y, x) b ecomes singular, p is raised to the status of 
independent parameter, and y, or rather the approximation p, is computed 
from f: = p * [h(x)]-I. Up on such change of parameter, care must be taken 
as to the sign of the new parameter increments. 
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Initial approximations for Newton’s method are obtained from the analog 
of (7.3) (or (7.4)) for P(r, x) or Q(p, x as appropriate. Denote these extra- ) 
polations by X~YJ or xdd. 

To obtain the inverse G,, of P& , x&rr)) it is convenient to use an 
iterative procedure with G, : _ [Pl(rO , x~)]--~ as first approximation. 
(Similar statements apply to Q.) Specifically, the inverse of B is obtained as 
the limit of Ak given by (cf. [I 31, p. 100) 

A k+l = AI, + A,[1 - BAJ. 

The same iteration starting with G,, provides G,, = [Pz(yl , xu,(yl))]-l for 
the second cycle of the Newton iteration; similarly for G,, _ 

For computational economy, the increments in the independent parameter 
should be as large as possible while still permitting a usable first approximate 
solution to be obtained by extrapolation. On the other hand, in the neigh- 
borhood of singularities of the derivative operators these increments will 
necessarily be small. Thus, a “variable step size” is called for in the actual 
computation. 

C. Remarks on Computation. The smallness of step needed in some cases 
is illustrated in Fig. 4 for p = 10. In the neighborhood of the (actually, 
blunt) tip of the “spike” it was necessary to take dp = 0.0001 and 
Ap = 0.000125; in other regions Ap = 0.1 and dp = 0.1, even Ap = 1.0, 
were applicable. (A different change of parameter might have been more 
efficient.) The computer program provided for halving the current step 
width when the initial approximation obtained by extrapolation failed to 
yield a convergent sequence in the Newton iteration; conversely, the step 
was doubled when the extrapolation was successful for the preceding step. 

With the iterative procedures described, most of the computer time is 
spent multiplying matrices, so that economy demands a highly efficient 
machine language matrix multiply routine. 

Some computations were performed using the series mentioned after (7.4). 
With up to six terms expanded about y = 0, where G, = I, the series 
provided successful initial approximations for Newton’s method for values 
of p as large as p = 0.6 when p = 3, and p = 0.5 when p = 4 (cf. (2.3)). 
Such a procedure may be appropriate in other problems. 

9. JUSTIFICATION OF THE NUMERICAL RESULTS 

The statements of Section 7 apply to P and Q in 9 x X or to P and Q 
in W x CZm _ In [14], Anselone and Moore have shown that for linear 
equations 

(I-y@ -g = 0, (9.1) 
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if m is sufficiently large then whenever there is a solution of 

(I - yL)x - g = 0 

there is also a solution of (9.1) g iven approximately as in (8.3), and one can 
obtain an error estimate. 

Baluev [15] considered Newton’s method for Urysohn equations 

x(s) + j-l H(s, t> 40) dt = g(4. 
0 

(9.3) 

He showed that, under suitable smoothness assumptions, if (9.3) has a 
solution then the discrete analog (cf. (8.1)) using Gaussian quadrature also 
has a solution, obtainable by Newton’s method (using as first approximation 
the discrete representation of the solution of (9.3)!) 

Using [14] one can show that for differentiable kernels L(s, t) the 
Hammerstein equation 

x(s) - flL(s, t)F(x(t)) dt = g(s) 
JO 

has a solution (approximated as in (8.3)) w h enever criteria related to those of 
KantoroviE’s Theorem 5.2 can be satisfied for the discrete analog (as in (8.1)); 
of course, m must be sufficiently large. This result was not available at the 
time the data reported here were computed, so the necessary criteria related 
to the discretization were not verified. The KantoroviE criteria for the discrete 
equation (8.1) were satisfied with typical terminal value of 7 = &K on the 
order of 10-4. 

0.7 - 

0.6 I I I I I I I I I I I 

1.3 1.4 I.5 1.6 I.? I.6 I.9 2.0 2.1 2.2 2.3 2.4 

Volume deformation, p 

FIG. 6. Comparison of different integration methods. 
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Incidentally, the Newton method, as an iterative procedure, mitigates 
against accumulation of round-off error. 

Lastly, to test the sensitivity of results with regard to order and type of 
quadrature, comparison in the case ,J = 7 was made for 

#1 m = 20 parabolic quadrature 

#2 m = 20 Gaussian quadrature 

#3 m = 10 Gaussian quadrature 

#4 m = 10 trapezoidal quadrature. 

The results are indicated by the graphs in Fig. 6, all pertaining to the first 
loop in Fig. 1 (but to a different scale.) 

APPENDIX 

The functions x1(t) and x2(t) are defined as follows: 

where 

t = r/a, a = base radius of shell, r = radial coordinate, 

h = thickness of shell 

E = Young’s modulus, Y = Poisson’s ratio, 

q = normal pressure, 

,3(r) = dw/dr where w(r) = vertical displacement from unloaded position, 

#(Y) = rN, where N, = longitudinal (radial) stress in shell, 

The dimensionless load is defined by p = q/q,, where q. is the buckling 
pressure (from the linear theory) of the complete spherical shell of the same 
radius of curvature R = a2/2H where H = center height of shell: 

The geometric parameter p defining the shape of the shell is given by 

p2 = 7 2/3(1 - 3). 
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