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1. hITRODUCTIQN 

e present a new construction of Young’s s~mi~o~rna~ re~r~se~tat~~~ [I j 
e symmetric group over a field of characteristic zero. Let Sg 12, p SSj, 

[3, p. 141 be the Specht module, defined over a field R of characteristic zero, 
corresponding to the partition p of n. We consider the effect on S$ of t 
linear operators 

enotes a transposition. The sirn~lta~e~~~s eigenfunc 
te and non-degenerate, and form the basis for 5’; 

rise to Young’s seminormal representation of the s:~rnrn~tr~~ group 
onstruction is elementary in the sense that it relies only on the st~da~~ 
asis for the Specht module and the Garnir reMions [a]. A ~~rnb~r of 

mteresting corollaries arise, the principal one being a much simpler 
derivation of the “branching theorem” for t e d~~errn~~a~~s of the 
matrices of the Specht modules 141. 

The analysis depends critically on the ~hara~t~r~~ti~ of the fiel 
more interesting case when K has finite characteristic the crucia 
does not hold in general, and the eigenfimctions of the L, are ~~~om~~~t~ an 
degenerate. However, the method does have a~~ii~~~~o~s in this case, which 
wi!i be explored in a later paper. 
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2. TABLEAUX AND OPERATORS 

We consider the partition ,LI = (u1,,uu2,...,,uus) of n, with pi >p2> ..a >,uu,, 
and the corresponding Young diagram [,u] with s rows of length ,u, , ,u~ ,..., ,u~. 
For a p-tableau t, i.e., arrangement of the numbers 1, 2,..., n in [,LL], let rtu 
denote the row occupied by u in t, and C, the group of column permutations 
of t. We denote by Z~ the monomial in the indeterminates x1, x2 ,..., x, defined 
by 

and by e, the Specht polynomial 

et= C sgno. czz,= C sgnaz,,. 
CrECt DEC, 

We shall require two orderings of the monomials zt, a total order < and a 
partial order Q [3, p. lo]. If t, t* are p-tableaux, then Z~ < ztX if for some 
u<n, rtu<rfku, and for each u > U, rrv = rtsv. If mu,(t) denotes the number 
of entries v < u in the first r rows of t, then zt 4 ztl if for all U, r we have 
mur(t) < mur(t*), and zt qz,, if zt I! zt* and for some U, r, m,,(t) < m,,(t*). 
By considering the largest u for which this occurs, it is easy to see that 
z1 U zt* implies zt < zt*, although the converse is not true. 

The standard y-tableaux, i.e., those whose rows and columns are strictly 
increasing, correspond to distinct monomials, and so are totally ordered by 
< ; we denote them by t,, t, ,..., t,, with zt, < ztZ < . . . < ztd. For brevity we 
write zi, e, for zti, eLj, and i (I j for zi 4 zj. 

If t is column standard, and t* = ut # t for some u E C,, then clearly 
zt* 4 zt. Thus e, has a leading monomial zt; in particular, if t, tare column 
standard, and zi occurs in e,, then Z~(I zt. 

2.1 LEMMA. Suppose u > v, and v occurs in a column to the right of u in 
ti. Then there are numbers aij such that 

(24 V) e, = C Uijej. 

jai 

Proof. The e, form a basis for Sr [2], so that there are certainly numbers 
aij such that 

(u v) ei = 5 aijej. 
j=l 

We must show that aij = 0 unless j Q i. 
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~~p~~se u is the r,th element of a column u,, u~,.,,.~ uk of li, and v the r,th 
element of a later column vl, v~,..., vI, so that rr > 8”*. Let 7 be t 
standard tableau obtained by ordering the cslumns of (U v) ei. To obtain ? 
from lj we interchange u and v and ahow each to Yloat” to its correct 
osition, i.e., we replace each v, with u < v, < 24 y min(u, u,+& or by u if 
= I, and each u, with v < 24, < u by max(v, u,- 1). Now let us compare the 

set of elements in the first r rows of ti with the corres~~~di~g set of &< 
ignoring individual positions. For r < r2 or r > rI these are identical; for 
T2 < y < rl they differ only in that an element X, = max(v: ak,) has been 
removed, and replaced by y, = min(u, v,+ 1), or simply p, = u if r = !. 

ecause ti is standard, v,+ I > u,, and y, > x,. Therefore 

Since iis obtained by a column permutation from (U v) ti, (U v) ei = t Ed* 
Suppose there is some j 4 i such that aij # 0; choose the largest su 
occurs in this term and no other on the right side of the expansion, 
must occur in e,. But this means that zj a zT (1 zis a contrad~ct~o~~ and so 
aii = 0 unless j 4 i. 

Let us define the class of the (k, I) node of [p] to be the difference E - k. 
Nodes in the same class therefore occur in diagonal lines, and the classes of 
the removable nodes of [,u], i.e., those nodes at the end of both a row 
column, are all distinct. Let a,i be the class of the node occupied by Al 

y considering the successive removal of nodes n, pE - I,..., 2 from ti, we See 
that the sequence (aUi), u = 1,2 ,..., IZ, determines ti completely. Also for fixed 
i, j, the sequence (Qis simply a permutation of (a& Together these give u.s 
a simple but important lemma. 

2.2 LEMMA. (a) If aOi = aUj for all v < n, t 

(b) If aOi = aUj for all v < n except possibly v = w, u - 1, then ti = .ti or 
tj=(u,u- l)tj. 

e shall make extensive use of the following commutation relations for 
the L,, which are easily verified. 

L,(u, u - 1) = (24, 24 - 1) L,- I + a; (2.3) 

LUpl(U, u - 1) = (U, u - 1) L, - 1; (2.4) 

E,(v, v - 1) = (27, v - 1) L,, u+uu,u--~l; (2.5) 

L,L, = L,L, for all u, v. (2.6) 

The distinct zt form a K-basis for the space t K ~ zt, where t PURS over ah 
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p-tableaux. Let ( , ) be the bilinear form [3, p. 141 defined on this space, 
such that 

(Zt, Z**) = 1 if zt=zt* 

=o otherwise. 

Since L, is a sum of transpositions and ( , ) is invariant under the action of 
G,, we have for any <, q E Sf 

Moreover, if E is any polynomial function of the L,, we may use (2.6) to 
give 

3. THE ORTHOGONAL BASIS 

We now consider the effect of operating with L, on ei. Suppose C is the 
set of elements in some column to the left of u in ti. By the simplest of the 
Garnir relations [2, p. 921 

JJ (2.4 V) ej = e,. (3.1) 
UEC 

If u is in the same column as U, 

(24 IJ) e, = -2,. (3.2) 

Let 

Y={y]y<uandyistotherightof~int~}, 

2 = {z ] z > u and z is to the left of u in ti}. 

Then if u is in the kth row and Ith column of ti, ti has the form 

xxxxyyx 
xxxxyx 
x x x u x 
x z z x 
z z 



in an sbvious notation. Using (3.1) and (3.2) 

u-1 
L,e,= C (uu)ei 

0=1 

=(l- l)C?-(k-l)ei- C (zu)e,+ x (yU)eia 
rez YEY 

(3.3) 

The first two terms on the right are just a,[eir and a!1 the remaining terms 
satisfy the conditions of Lemma 2.1, so that there are nu bers aii such that 

(L, - aui) “j = x aijej* (3.4,) 
jai 

(Luk - a& ei = 0. 
k=l 

ProoJ (~5,~ - OL,,~) ej is a sum of terms ek with k < j; since the factors 
commute the lemma follows by a simple ~~duct~~~ on i. 

efine 

n-l 

E,= n IT 
C-L 
;Y 

c=-a+1 (ula,~#c,u<n! c- %i 

Notice that the range of c includes all the distinct classes of [PI, an 
over all the indices of the standard p-tableaux. 

reX$ If i # j, Lemma 2.2 assures us that there is a u such that 
auf # aujm Thus for any j < i there is a sequence ui 9 u~,.~., tij such that Ef has 
a factor (Luk - CY,,J for any k < j; the ex~~~e~t il ensures that repeated 
terms occur sufficiently often. Thus by Lemma 3.5, 

Etej=Q for j < i, (3.7) 

and annoying Et to (3.4), 

(L, - aui) fi = 0. (3.8) 
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Consequently (c - L,)fi = (c - a,JJ;: for all c E K. Using the definition of 
Ei and the first line of the proof 

Eif,=fi> 
E&=0 if j#i. (3.9) 

Therefore if j # i, 

(fi, fj) = (EiJ;: 3 fj> = (J > Eifj) = 0, 

and the fi are mutually orthogonal. 

3.10 THEOREM. The fi form an orthogonal basis for S;, obtained from 
the standard basis by a unimodular linear transformation, and 

where aii = 1, aij = (ei, fj)/(fj, 4). 

Proof. Each factor of Ei is of the form 1 - (L, - Q)/(c - Q). 
Considering the effect of this on ei, and on any ej with j u i, we see that 
Efei is the sum of e, and a set of terms ej with j 4 i, ie for some b,, 

with bii = 1. The transformation matrix is lower triangular, with l’s on the 
diagonal, and so is unimodular; the inverse transformation is of the same 
form, i.e., 

ei= C aijA.7 
jgi 

and since the fi are orthogonal, aij = (ei, &)I(&,&). Operating with Ei, and 
using (X9), we have immediately 

3.11 COROLLARY. J;: = Eiei. 

We now construct the matrix representing the transposition (u - 1, u) with 
respect to the basis fi ,f2 ,..., fd. 

3.12 THEOREM (Young’s seminormal representation) [ 1, p. 217; reprint 
p. 4531. Let tj = (u - 1, u) ti if this is standard. Then 

(u - 12 u>fi = &.A + Pzfi, 



Proof. The denominators of Ei, Ej me in fact i~d~~ende~t of the 
particular tabieaux, depending only on the partition, and are identical. The 
numerators have common factors 

C-&, VIzl,U- 1 (3.13) 

and common pairs of factors 

(c - Lu)(c - L 11, c f aui, au-l,is f3,14) 

and differ only in that Ei has factors (a,i - LuP,)(a,-,,, -L,), where 

hi - -hXa,- l.i - L,- d, since avi = auj, v f u, u - 1, and aui = a,_,~j, 
u-1 i= auj* It is easy to verify, using (2.3) to (2.63, that (u - 1,zk) 

~~rn~~t~s with (3.13) and (3.14), while 

(u - 1; u)(aui - L,-l)(a,-‘,,i - L,) = (aui -k,)(au-,,j - -L,-,>(zl, u - 1) 

+ L,,j - ad. (3.15) 

Consequently, if we write 

E,z (a,i-L,-I)(a,-l~i-L.) 

’ (%i - %i,iX%-1,; - %i) ” 

E,= (aui-L,)(a,-l,i--L,-l) 

J C%j -a,-l,i>(a,-l,i - auj) ” 

(3.16) 

(ti - I, u) commutes with F, and 

(U-ll,U)Ej=Ej(u-l,u)+(a,i-aa,~,,i)-’H;. (3.1-J) 

If (u - I, u) ti is not standard, tj and Ej are not defined; however, we may 
take (3.16) as the definition of Ej in this case. Comparing (3.16) an 
we see that Ff! = J;:, Ffj = &. If k # i, j, then by Lemma 2.2(b) F has a factor 

kbk - L,) for some v, so that F& = 0. Therefore, unless i > j, Fe, =4;: by 
Theorem 3.10. 
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Now let us apply (3.17) to e,. If (U - 1, u) ti is standard, and j > i, then 

(u- 1, u)&=Ejej+ ((Y,~-cI,-~,~)-~F~~ 

=& +p1fi. (3.18) 

If (U - 1, u) ti is not standard, then F is a projection operator for fi, so that 
Ej annihilates the whole of the orthogonal basis, and therefore every element 
of SF, in particular Ej(u - 1, u) e, = 0, so that 

(u - 1, u)fi = (aui - au-l,i)-l Fei =p,fi. (3.19) 

If (U - 1, u) ti is standard, and j < i, we may reverse i, j and the sign of p1 in 
(3.18) to obtain 

so that operating again with (U - 1, u) and collecting terms, 

(I.4 - 1, u>fi=fi+p&- 1, u)h= (1 -P:)fj+Plfi. (3.20) 

3.21 COROLLARY. If i > j tkv (fi,fi) =P2(fj,h>- 

Proof. Taking the inner product of (3.20) with itself, and using the 
orthogonality of fi, 5, 

4. DIAGONALIZATION OF THE GRAM MATRIX 

We may use Corollary 3.21 to calculate (fi,A). Let us number the 
removable nodes of [p] as Y,, rz ,..., starting at the top, e.g., 

The (i, j) hook of [p] consists of the node (i,j) together with the nodes to the 
right of it in the ith row and below it in the jth column, and has length h,; 
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here the (2, 2) hook is illustrated, and hz2 = f the ith removable node is in 
the (k, I) position, we define the “hook quotient” qi 

Simply, ii [p(i)] is the diagram obtained by removing this node, qi is the 
ratio of the product of the hooks in the Eth column of [p] to that in [p(i)]. 

The removal of all nodes larger than ZI from ti leaves a tableau tr for some 
partition of u. u occupies a removable node of $, and we denote the 
corresponding hook quotient by yUi. 

The partition conjugate to p is p’, where Q’ ] is the transpose of p, We 
denote the transpose of ti by ti, and similariy the corres~o~d~~g q~a~t~t~es e{. 
yLi, J”;, Note that transposition reverses the standard ordering, so that 
t&<tbei < *.~ <t;. 

4.1~ THEOREM. 

POOS. e proceed by induction. If ,B’ has s’ parts, then [,D] has columns 
of length pU; I pi >..*, &. Now e, = f, 9 and it is simple to verify that 

(edJ= pi!. 
/=I 

u is the last element in tft, and so yur is simply the length of the last co”numn. 
~ons~~~e~tly the product of the yuI for all u in the Ith column of t, is just 
,u; I, which gives 

n s’ 
Yul = PU;! = (fi9-f:)‘ 

Suppose the corollary is true for fI, f2,*..> f. r--: ~ Bf i > 1, there is a 24 such that 
u - 1 is to the right of u in ti, so that tj = (U - I, U) Oi is s 
For any v, yDi depends only on u and the shape of tY, SO t 
u # u, u - 1, and yU- r ,i = yUj. Let h be the hook joining u and u - E in rr 9 sc 
that h = CX,_~.~ - aui + 1 = 1 -p;‘. Then ?ui iffeP§ fl”om Y,- 19j Only in that 

the former has a factor h/(h - I), the latter ( - l)l(h - 2), md 

Consequently, by Corollary 3.21 and the inductive ~yp~tbesis~ 

n 
Yui = P2 Yuj=P2(&9.&)=(A).h). 

Zl=l 
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4.2 COROLLARY. (A, fi)( f ;, f i) is the product of all the hooks of [,u]. 

ProoJ The corollary is equivalent to the statement that the hook product 
is 

IfI YuiYhi- 
u=l 

We prove this by induction on n. It is trivially true for n = 1, suppose it is 
true for 1,2,.., n - 1. Let [A] be the diagram for tl-‘; then by the inductive 
hypothesis the product of the hooks in [A] is 

Now if n is in the (k, 1) position of [p], YniYlni is just the product of the hooks 
in the kth row and the Ith column of [,D] divided by the product for the same 
row and column of [A]. But the former are the [P] hooks which are not also 
[A] hooks, and conversely for the latter; the corollary follows. 

Let GP be the Gram matrix [3, p3] of S” with elements (ei, ej), 
i,j= 1, 2,..., d. By transforming to the basis {J;:} we apply a unimodular 
transformation to G” which reduces it to diagonal form with diagonal 
elements (x,h), i = 1, 2 ,..., d. If again ,u(i) is obtained from ,D by removing 
the ith removable node, we have the “branching theorem” for determinants 
[4, p. 2251. 

4.3 COROLLARY. det G” = ni qp det GMci), where di = dim(P”‘). 

Proof. From Corollary 4.2 we have 

det G’= (J (.h,fJ= fi fi Yui* 
i=l u=l 

Now the tableaux with IZ in the ith removable node are simply the p(i) 
tableaux with this node added; there are di of them, and they contribute a 
factor 

qp &t Gfl(‘), 

and det GU is the product of such factors. 
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