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1. INTRODUCTION

We present a new construction of Young’s seminormal representation |1]
of the symmetric group over a field of characteristic zero. Let 8% [2, p. 90,
[3, p- 14] be the Specht module, defined over a field X of characteristic zero,
corresponding to the partition 4 of n. We consider the effect on §% of the
linear operators

u—1
L,= Z (uv), u=2,3,..,n,

v=1

where (i v) denotes a transposition. The simultanecus eigenfunctions of the
L, are complete and non-degenerate, and form the basis for S% which gives
rise to Young’s seminormal representation of the symmetric group ©,. The
construction is elementary in the sense that it relies only on the standard
basis for the Specht module and the Garnir relations [2]. A number of
interesting corollaries arise, the principal one being a much simpler
derivation of the “branching theorem” for the determinants of the Gram
matrices of the Specht modules [4].

The analysis depends critically on the characteristic of the field, and in the
more interesting case when K has finite characteristic the crucial Lemma 2.2
does not hold in general, and the eigenfunctions of the L, are incomplete and
degenerate. However, the method does have applications in this case, which
will be explored in a later paper.
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2. TABLEAUX AND OPERATORS

We consider the partition g = (u;, 435 ld) of 1, with u, >, > -+ > u,,
and the corresponding Young diagram [u] with s rows of length u,, ¢, ..., 5.
For a u-tableau ¢, i.e., arrangement of the numbers 1, 2,..,n in [«], let r,,
denote the row occupied by u in ¢, and C, the group of column permutations
of t. We denote by z, the monomial in the indeterminates x,, x,,..., x,, defined
by

n
— rg—1
=[] x
u=1

and by e, the Specht polynomial

e= ) sgno-o0z,= ) sgnoz,
o€, geCy

We shall require two orderings of the monomials z,, a total order < and a
partial order <1{3, p. 10]. If ¢, t* are p-tableaux, then z, < z,. if for some
u < n, ry < Fpy, and for each v > u, r,, = rp,. If m, (t) denotes the number

of entries v < u in the first » rows of £, then 7z, <1z . if for all u, r we have

Ui ULIIUS v R or L WAV 110U 7 AUV D Py LUUIL Ly T L A1 UL G Gy Yo diaY

m,,,(t) < m,,(t*), and z, <z, if z, < z,. and for some u, r, m,,(t) < m,,(t*).
By considering the largest u for which this occurs, it is easy to see that
z, <1z, implies z, < z,., although the converse is not true.

The standard p-tableaux, i.e., those whose rows and columns are strictly
increasing, correspond to distinct monomials, and so are totally ordered by
<; we denote them by ¢, t,,..., t,;, with z, <z, <<z, For brevity we
write z;, e; for z, , e,, and i <0 j for z; <7 z;.

If ¢ is column standard and * = ot;ﬁt for some o € C,, then clearly
z,. <1z,. Thus e, has a leading monomial z,; in particular, if ¢, ¢ are column
standard, and z7 occurs in e,, then z; <1 z,.

2.1 LEMMA. Suppose u > v, and v occurs in a column to the right of u in
t;. Then there are numbers a;; such that

(uv)e, —Z a;e;.

J<ai

Progf. The e; form a basis for S¥ [2], so that there are certainly numbers
a;; such that

(uv)e, —Zau e.

We must show that a; =0 unless j <1 i.
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Suppose u is the r, th element of a column u,, u,,..., 4, of #;, and v the r,th
element of a later column v, v,,.., v}, SO that 7, > r,. Let f be the column
standard tableau obtained by ordering the columns of (xv)¢,. To obtain ¢
from ¢; we interchange u and v and allow each to “float” to its correct
position, i.e., we replace each v, with v v, % by min{z, v, ), or by u if
7 =1, and each u, with v <u, <u# by max(v, u,_,). Now let us compare the
set of elements in the first » rows of ¢, with the corresponding set of ‘4
ignoring individual positions. For r <r, or r > r, these are identical; for
r, < r<r, they differ only in that an element x,=max(v,%,) has been
removed, and replaced by y,=min(x,v,, ), or simply y,=u if r=1,
Because ¢, is standard, v,,, > u,, and y, > x,. Therefore

"nwr(t—):rnwr(l‘i)_1 if X, KWy, n<r iy,

=m,,(t,) otherwise,
so that ¢ <1 ¢;.

Since 7 is obtained by a column permutation from (uv)t;, (¥ v)e;= £ ¢5.
Suppose there is some j <17 such that a;; # 0; choose the largest such j. z;
occurs in this term and no other on the right side of the expansion, and so
must occur in e,. But this means that z; <I z; <d z;, a contradiction, and so
a;= 0 unless j <1 i

Let us define the class of the (k, /) node of [¢] to be the difference [ — k.
Nodes in the same class therefore occur in diagonal lines, and the classes of
the removable nodes of [u], i.e., those nodes at the end of both a row and a
column, are all distinct. Let a,; be the class of the node occupied by « in #;.
By considering the successive removal of nodes n, 7 — 1,..., 2 from ¢;, we see
that the sequence (a,;), 4 = 1, 2,..., n, determines ¢; completely. Also for fixed
i, j, the sequence (a,,)is simply a permutation of (e, ;). Together these give us
a simple but important lemma.

22 Lemma. (a) If a,;=a,; for all v n, then i, =1;.
() Ifa,=a, for all v < n except possibly v =u, u— 1, then t;=1; or
=, u—1)t.

We shall make extensive use of the following commutation relations for
the L,, which are easily verified. .

Luu—D)=@w@u—1)L,_ ,+1L 2.3
L, (uu—1=@u—1)L,—1; (2.43
Lw,v—1)=@v-10L, vEU U1 (2.5)
L, L,=L,L, forall wu,v. (2.5)

The distinct z, form a K-basis for the space ), K - z,, where ¢ runs over all
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u-tableaux. Let (, ) be the bilinear form [3, p. 14] defined on this space,
such that

(Zps2py=1 if z,=z.
=0 otherwise.

Since L, is a sum of transpositions and (, ) is invariant under the action of
8,, we have for any & n € S

& Lym)= (L& n).
Moreover, if E is any polynomial function of the L,, we may use (2.6) to
give

(& Eny = (E& m).

3. THE ORTHOGONAL BASIS

We now consider the effect of operating with L, on e;. Suppose C is the
set of elements in some column to the left of # in ¢;. By the simplest of the
Garnir relations (2, p. 92|

> uv)e;=e;. (3.1)

veC

If » is in the same column as u,
(v v) e, =—e;. 3.2)
Let
Y={y|y<uandy is to the right of u in ¢;},
Z={z|z>u and z is to the left of u in ¢;}.
Then if u is in the kth row and /th column of ¢,, ¢, has the form

X X X X y X

y
X y X
X X
z

NX X X
NN X X
X = X
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in an obvious notation. Using (3.1) and (3.2)

-~
Lo
£a2

R

-1
L,e,= 2 (uv)e;
v=1

=(-De—(k—1De—> (zu)e,+ > (yu)e,.

zeZ yeY

The first two terms on the right are just o,;e;, and all the remaining terms
satisfy the conditions of Lemma 2.1, so that there are numbers a;; such that

L,—a,)e= Z a;;e;. (3.4

J<ai
3.5 LemMa.  Let 4y, u, .., u; < n be any sequence of integers; then
i
H (Luk - aukk) €;= 0.
k=1

Proof. (L, —a,;)e; is a sum of terms e, with k < j; since the factors
commute the lemma follows by a simple induction on i.
Define

n—1 c— L

E;= H H

c=—n+1 {ulay#c,ugnl

fizE?ei‘

U

9
C-%au,-

Notice that the range of ¢ includes all the distinct classes of [u], and / runs
over all the indices of the standard y-tableaux.

3.6 LEMMA.  {f}, frs fu} is a set of mutually ovthogonal simultaneous
eigenfunctions of the L, 2 <u < n).

Progf. W i#j, Lemma?2.2 assures us that there is a u such that
a,; # a,;. Thus for any j < there is a sequence ¥, , i;,..., 4; such that E¢ has
a factor (L, —a,,) for any k< j; the exponent d ensures that repeated
terms occur sufficiently often. Thus by Lemma 3.5,

Efe;=0  for j<i, (3.7

and applying E¢ to (3.4),

(Lu - aui)fi =0. (3'8}'
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Consequently (¢ —L,)f;= (¢ —a,;)f; for all ¢ € K. Using the definition of
E; and the first line of the proof

Eifizfia
Ef,=0 if j#i : (3.9)
Therefore if j + i,
<»fl’f]>= <Elf;7f[>= <.f;’Ezf1> =O=

and the f; are mutually orthogonal.

3.10 THEOREM. The f; form an orthogonal basis for S%, obtained from
the standard basis by a unimodular linear transformation, and

€= Z Qs
j<i
where a; =1, a;= (e;, [;)/{f;» [;)-

Progf. Each factor of E; is of the form 1—(L,—a,)/(c—a,)
Considering the effect of this on e;, and on any e; with j <1i, we see that
Efe; is the sum of e; and a set of terms e; with j < i, ie for some b;;,

Ji= Z bye;
J=<ui

with b;,; = 1. The transformation matrix is lower triangular, with 1’s on the
diagonal, and so is unimodular; the inverse transformation is of the same
form, i.e.,

&= ayfp

J<ai

and since the f; are orthogonal, a; = {e;, f;)/{ f}» f;)- Operating with E;, and
using (3.9), we have immediately

3.11 COROLLARY. fi=E;e;.

We now construct the matrix representing the transposition (x — 1, %) with
respect to the basis f}, /3., f5-

3.12 THEOREM (Young’s seminormal representation) [I, p.217; reprint
p-453]. Let t;= (u— 1,u) ¢, if this is standard. Then

(u—Lu)fi=pf; + 02055
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where
pri=a,—a,
and
p,=0 if (u—1,u)t, is not standard,
=1 i j>i

=1-pi i j<i

Proof. The denominators of E;, E; are in fact independent of the
particular tableaux, depending only on the partition, and are identical. The
numerators have common factors

c—L,, vEu,u—1 (3.13)
and common pairs of factors
(C_Lu)(c_Lu~l)’ Ciauiﬁau—l,is (314}

and differ only in that E, has factors (o, — L, )a,_, ;—L,), where E; has
(e~ L Ma, ,,—L, ), since a,;=a,, v#¥uu—1, and a,=a,
@, ;;=0a,. It is easy to verify, using (2.3) to (2.6), that (u—1,u}
commutes with (3.13) and (3.14), while

(u - 15 u)(aui _Lu——l)(au—‘l,i "Lu) = (aui _Lu)(au—l,i - Lu-l)(uﬁ U — 1}
+ @y — G (3.15)

Consequently, if we write

E. = (aui —Luml)(au—l,i _Lu)
' (aui - au—i,i)(auwl,i - aui)

Ej= (aui—Lu)(au—l,i—Lu-i)\ F, (336}
(aui - au—-l,i)(au—l,i — Oy

b4

(# — 1, u) commutes with F, and

u—LwE=Eu—1,u)+(a,,—a, ;)" F. 3.7

If (u—1,u)¢ is not standard, ¢; and E; are not defined; however, we may
take (3.16) as the definition of E; in this case. Comparing (3.16) and (3.9),
we see that Ff, = f;, Ff;= f;. If k #1, j, then by Lemma 2.2(b} ¥ has a factor
(a,, — L,) for some v, so that Ff, =0. Therefore, unless i > j, Fe;= f; by
Theorem 3.10.

4R1/69/2-4
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Now let us apply (3.17) to e;. If (u — 1, u) ¢; is standard, and j > i, then
(u—1u)fi=E;e;+ (@ — 1) ' Fe;
=fi+pifie (3.18)

If (u— 1,u) ¢, is not standard, then F is a projection operator for f;, so that
E; annihilates the whole of the orthogonal basis, and therefore every element
of S§, in particular E;(u — 1, u) e; = 0, so that

(u_19“)];':(aui_au—l,i)_lFei:pl.fi' (319)

If (u— 1, u) ¢, is standard, and j < i, we may reverse i, j and the sign of p, in
(3.18) to obtain

(u—1, u).f; =/ _p1.f;'9
so that operating again with (x — 1, u) and collecting terms,

W—Lwfi=fi+nu—1Luf=0-pf+pfi  (3.20)

3.21 COROLLARY. [fi>j then {f;,[f;) =p,{f;>[})-

Proof. Taking the inner product of (3.20) with itself, and using the
orthogonality of f;, f;,

oSy = —=pD) s [ + i Sis fi)r
so that {f}, f;) = p2{f}s [)-

4. DIAGONALIZATION OF THE GRAM MATRIX

We may use Corollary 3.21 to calculate (f,f;). Let us number the
removable nodes of [u] as r,, r,,..., starting at the top, e.g.,

X X X X X n

X r,
X X
X ¥y

The (i, j) hook of {u] consists of the node (7, f) together with the nodes to the
right of it in the ith row and below it in the jth column, and has length A;;;
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here the (2, 2) hook is illustrated, and #,, = 6. If the ith removable node is in
the (k, /) position, we define the “hook quotient” ¢, by

Simply, if [¢(i)] is the diagram obtained by removing this node, g, is the
ratio of the product of the hooks in the /th column of {g] to that in [u({}].

The removal of all nodes larger than u from ¢, leaves a tableau ¢ for some
partition of u. u occupies a removable node of ¢/, and we denote the
corresponding hook quotient by v,,;.

The partition conjugate to g is ', where [u'] is the transpose of y. We
denote the transpose of ¢, by £}, and similarly the corresponding quantities e;,
v.i» f3. Note that transposition reverses the standard ordering, so that
g <ty < e < HL

4.1. TueoreM. {(fi, fo =114z V-

Proof. We proceed by induction. If ¢’ has s’ parts, then [¢] has columns
of length 4|, ity ., ity Now e, = f;, and it is simple to verify that

5
(er,e)= ;{T upt.
=1

u is the last element in 74, and so y,, is simply the length of the last colummn.
Consequently the product of the v,, for all u in the /th column of 7, is just
4!, which gives

H Vir = ;—Iﬂ'[!:<f;ef1>=
u=1 =1

Suppose the corollary is true for f1, fy,. fi_;. 1> 1, there is a u such that
u — 1 is to the right of u in #;, so that 1, = (u — 1, u} {; is standard, with { > j.
For any v, ,; depends only on v and the shape of #{, so that y,, =y, for all
v#Eu, u—1,and y,_, ;= 7y, Let h be the hook joining u and u — I in %, 50
that h=a, , ;—a, +1=1—p;" Then y,, differs from y,_, ; only in that
the former has a factor h/(h — 1), the latter (h —1)/{h —2), and

A(h—2) 5
yuiz—myu-l,j: {1 "':01) Vu—1,i-

Consequently, by Corollary 3.21 and the inductive hypothesis,

[:[1 Vui = P2 H yuj:p2<.f}’./{}>: {Sis fo)-
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4.2 COROLLARY. (f;, f){[fi, fi) is the product of all the hooks of [u].

Proof. The corollary is equivalent to the statement that the hook product
is )
II Vut Vi
u=1

We prove this by induction on #. It is trivially true for n = 1, suppose it is
true for 1,2,..,n— 1. Let [1] be the diagram for 7 ~'; then by the inductive
hypothesis the product of the hooks in [4] is

n—1

[T 77
yuiyui'

u=1

Now if n is in the (k, /) position of |¢], y,;¥,; is just the product of the hooks
in the kth row and the /th column of [¢] divided by the product for the same
row and column of [4]. But the former are the [u] hooks which are not also
[4] hooks, and conversely for the latter; the corollary follows.

Let G* be the Gram matrix [3, p3] of §* with elements (e;,¢;),
i,j=1,2,.,d By transforming to the basis {f;} we apply a unimodular
transformation to G* which reduces it to diagonal form with diagonal
elements (f;, f;), i=1,2,...,d. If again u(i) is obtained from u by removing
the ith removable node, we have the “branching theorem” for determinants
(4, p. 225].

4.3 COROLLARY. det G* =TT, g% det G*, where d; = dim(S“?).

Proof. From Corollary 4.2 we have

d d n
dCtGu=H<,f;,_fz>=H H Vui+
i=1 i=1 u=1

Now the tableaux with n in the ith removable node are simply the u(i)
tableaux with this node added; there are d, of them, and they contribute a
factor

g% det G*P,

and det G* is the product of such factors.
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