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Let Γ be a Q-polynomial distance-regular graph with vertex set X ,

diameterD� 3andadjacencymatrixA. Fixx ∈ X and letA∗ = A∗(x)
be the corresponding dual adjacency matrix. Recall that the Ter-

williger algebra T = T(x) is the subalgebra of MatX(C) generated

by A and A∗. LetW denote a thin irreducible T-module. It is known

that the action of A and A∗ on W induces a linear algebraic object

known as a Leonard pair. Over the past decade, many results have

been obtained concerning Leonard pairs. In this paper, we apply

these results to obtain a detailed description of W . In our descrip-

tion, we do not assume that the reader is familiar with Leonard

pairs. Everything will be proved from the point of view of Γ . Our

results are summarized as follows. Let {Ei}Di=0 be a Q-polynomial

ordering of the primitive idempotents of Γ and let {E∗
i }Di=0 be the

dual primitive idempotents of Γ with respect to x. Let r, t and d

be the endpoint, dual endpoint and diameter of W , respectively.

Let u and v be nonzero vectors in EtW and E∗
r W, respectively. We

show that {E∗
r+iA

iv}di=0 and {Et+iA
∗iu}di=0 are bases for W that are

orthogonal with respect to the standard Hermitian dot product.

We display the matrix representations of A and A∗ with respect

to these bases. We associate with W two sequences of polyno-

mials {pi}di=0 and {p∗
i }di=0. We show that for 0� i � d, pi(A)v =

E∗
r+iA

iv andp∗
i (A

∗)u = Et+iA
∗iu.Next,we show that {E∗

r+iu}di=0 and

{Et+iv}di=0 are orthogonal bases for W; we call these the standard

basis and dual standard basis for W, respectively. We display the

matrix representations of A and A∗ with respect to these bases. The

entries in these matrices will play an important role in our theory.
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We call these the intersection numbers and dual intersection

numbers of W. Using these numbers, we compute all inner prod-

ucts involving the standard and dual standard bases. We also use

these numbers to define two normalizations ui, vi (resp., u
∗
i , v

∗
i )

for pi (resp., p∗
i ). Using the orthogonality of the standard and

dual standard bases, we show that for each of the sequences

{pi}di=0, {p∗
i }di=0, {ui}di=0, {u∗

i }di=0, {vi}di=0, {v∗
i }di=0 the polynomials

involved are orthogonal andwe display the orthogonality relations.

We also show that each of the sequences satisfy a three-term recur-

rence and a relation known as the Askey–Wilson duality. We then

turn our attention to two more bases for W. We find the matrix

representations of A and A∗ with respect to these bases. From the

entries of thesematriceswe obtain two sequences of scalars known

as the first split sequence and second split sequence ofW.We asso-

ciate withW a sequence of scalars called the parameter array. This

sequence consists of the eigenvalues of the restriction of A toW , the

eigenvalues of the restrictionofA∗ toW, thefirst split sequenceofW

and the second split sequence of W . We express all the scalars and

polynomials associated withW in terms of its parameter array. We

show that the parameter array ofW is determined by r, t, d and one

more free parameter. From this we conclude that the isomorphism

class ofW is determined by these four parameters. Finally, we apply

our results to the case in which Γ has q-Racah type or classical

parameters.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Terwilliger algebra T of a distance-regular graph was first introduced in [8]. This algebra has

been used extensively to study theQ-polynomial property [4,5,7]. In this paper, we continue this study

focusing on the structure of thin irreducible T-modules.

Let Γ be a Q-polynomial distance-regular graph with vertex set X , diameter D� 3, and adjacency

matrix A (see Section 2 for formal definitions). Fix x ∈ X and let A∗ = A∗(x) be the corresponding dual
adjacencymatrix. Recall that the Terwilliger algebra T = T(x) is the subalgebra of MatX(C) generated
byA andA∗. LetW be a thin irreducible T-module. It is known that the action ofA andA∗ onW induces a

linear algebraic object called a Leonard pair; this was first introduced by Terwilliger in [10]. The theory

of Leonard pairs has been developed over the past decade. We apply these results to obtain a detailed

description of W . In our description, we do not assume that the reader is familiar with Leonard pairs.

The results will be proved from the point of view of Γ .

Our results are summarized as follows. Let {Ei}Di=0 be a Q-polynomial ordering of the primitive

idempotents of Γ and let {E∗
i }Di=0 be the dual primitive idempotents of Γ with respect to x. Let r, t and

d be the endpoint, dual endpoint anddiameter ofW , respectively. Letu and v benonzero vectors in EtW

and E∗
r W, respectively.We show that {E∗

r+iA
iv}di=0 and {Et+iA

∗iu}di=0 are bases forW that are orthogonal

with respect to the standard Hermitian dot product.We display thematrix representations of A and A∗
with respect to thesebases.WeassociatewithW two sequencesof polynomials {pi}di=0 and {p∗

i }di=0.We

show that for 0� i � d, pi(A)v = E∗
r+iA

iv and p∗
i (A

∗)u = Et+iA
∗iu. Next, we show that {E∗

r+iu}di=0 and

{Et+iv}di=0 are orthogonal bases forW; we call these the standard basis and dual standard basis forW,

respectively.We display thematrix representations of A and A∗ with respect to these bases. The entries

in these matrices will play an important role in our theory. We call these the intersection numbers

and dual intersection numbers of W. Using these numbers, we compute all inner products involving

the standard and dual standard bases. We also use these numbers to define two normalizations ui, vi
(resp., u∗

i , v
∗
i ) for pi (resp., p

∗
i ). Using the orthogonality of the standard and dual standard bases, we
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show that for each of the sequences {pi}di=0, {p∗
i }di=0, {ui}di=0, {u∗

i }di=0, {vi}di=0, {v∗
i }di=0 the polynomials

involved are orthogonal and we display the orthogonality relations. We also show that each of the

sequences satisfy a three-term recurrence and a relation known as the Askey–Wilson duality.We then

turn our attention to two more bases for W. We find the matrix representations of A and A∗ with

respect to these bases. From the entries of these matrices we obtain two sequences of scalars known

as the first split sequence and second split sequence ofW. We associate with W a sequence of scalars

called the parameter array. This sequence consists of the eigenvalues of the restriction of A to W , the

eigenvalues of the restriction of A∗ to W, the first split sequence of W and the second split sequence

of W . We express all the scalars and polynomials associated with W in terms of its parameter array.

We show that the parameter array of W is determined by r, t, d and one more free parameter. From

this we conclude that the isomorphism class ofW is determined by these four parameters. Finally, we

apply our results to the case in which Γ has q-Racah type or classical parameters.

2. Preliminaries

In this section, we recall some basic concepts concerning Q-polynomial distance-regular graphs.

For more background information see [2,3].

Let X be a non-empty finite set. Let MatX(C) denote the C-algebra of matrices whose rows and

columns are indexed by X and whose entries are in C. We let I (resp., J) denote the identity matrix

(resp., all 1’s matrix) in MatX(C). Let V = CX be the vector space over C consisting of column vectors

whose coordinates are indexed byX andwhose entries are inC. Observe thatMatX(C) acts onV by left

multiplication. For u, v ∈ V , define 〈u, v〉 := utv̄, where ut is the transpose of u and v̄ is the complex

conjugate of v. Observe that 〈, 〉 is a positive definite Hermitian form on V . Note that 〈Bu, v〉 = 〈u, Btv〉
for all B ∈ MatX(C) and u, v ∈ V . For y ∈ X , let ŷ denote the element in V with a 1 in the y coordinate

and 0 in all other coordinates. Observe that {ŷ|y ∈ X} is an orthonormal basis for V.
LetΓ = (X, R) be a finite undirected connected graphwithout loops ormultiple edges, with vertex

set X and edge set R. Let ∂ denote the path-length distance function for Γ . Set D = max{∂(x, y)|x, y ∈
X}.We refer toD as the diameter ofΓ . For x ∈ X and an integer i � 0, letΓi(x) = {y|y ∈ X, ∂(x, y) = i}.
Abbreviate Γ (x) := Γ1(x). For an integer k � 0, we say that Γ is regularwith valency kwhenever k =
|Γ (x)| for all x ∈ X . We say that Γ is distance-regular whenever there exists scalars phij (0� h, i, j �D)

such that phij = |Γi(x) ∩ Γj(y)| for all x, y ∈ X with ∂(x, y) = h. We refer to the phij as the intersection

numbersofΓ . For the restof thispaper, assumethatΓ isdistance-regularwithdiameterD� 3.Note that

by the triangle inequality, we have (i) phij = 0 if one of h, i, j is greater than the sum of the other two; (ii)

phij /= 0 if one of h, i, j is equal to the sum of the other two. We abbreviate ci := pi1i−1 (1� i �D), ai :=
pi1i (0� i �D), bi := pi1i+1 (0� i �D − 1). Fornotational convenience, definebD = 0, c0 = 0.Observe

that Γ is regular with valency k = b0. To avoid trivialities, we always assume that k � 3. Note that

ci + ai + bi = k for 0� i �D. For 0� i �D, let ki = p0ii. Observe that ki = |Γi(x)| for all x ∈ X . By [2,

p. 195],

ki = b0b1 · · · bi−1

c1c2 · · · ci (0� i �D). (1)

We refer to ki as the ithvalency of Γ.
We now recall the Bose–Mesner algebra of Γ . For 0� i �D, define Ai ∈ MatX(C) to have (x, y)-

entry equal to 1 if ∂(x, y) = i, and 0 otherwise. We refer to Ai as the ithdistance matrix of Γ . Note that

(i) A0 = I; (ii)
∑D

i=0 Ai = J; (iii) At
i = Ai (0� i �D); (iv) AiAj = ∑D

h=0 p
h
ijAh (0� i, j �D). Observe that

{Ai}Di=0 are linearly independent. Thus, they form a basis for a subalgebra M of MatX(C); M is called

the Bose–Mesner algebra of Γ . Abbreviate A := A1 and call this the adjacency matrix of Γ . By [2, p.

190], M is generated by A. By [2, p. 59], M has a second basis {Ei}Di=0 which satisfies the following: (i)

E0 = |X|−1J; (ii)
∑D

i=0 Ei = I; (iii) Eti = Ei = Ei (0� i �D); (iv) EiEj = δijEi (0� i, j �D). For notational
convenience, define E−1 = 0, ED+1 = 0. For 0� i �D, let mi denote the rank of Ei; we call mi the

multiplicity of Γ associated with Ei. Since {Ei}Di=0 is a basis for M, there exist complex scalars {θi}Di=0

such that A = ∑D
i=0 θiEi. Note that for 0� i �D, AEi = EiA = θiEi. Thus, EiV is an eigenspace for A, and
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θi is the corresponding eigenvalue. Since A is symmetric, θi ∈ R. Since A generates M, the {θi}Di=0 are

mutually distinct. Note that

V =
D∑

i=0

EiV (orthogonal direct sum), (2)

and that

Ei = ∏
0� j �D

j /=i

A − θjI

θi − θj
(0� i �D). (3)

We call θi the eigenvalue of Γ associated with Ei.

We now recall the Krein parameters of Γ . Observe that Ai ◦ Aj = δijAi for 0� i, j �D, where ◦ is

the entry-wise multiplication. Thus, M is closed under ◦. Consequently, there exist complex scalars

qhij (0� h, i, j �D) such that

Ei ◦ Ej = |X|−1
D∑

h=0

qhijEh (0� i, j �D).

The qhij are known as the Krein parameters or dual intersection numbers of Γ . By [2, p. 69], the qhij are

real and nonnegative.

We now consider the Q-polynomial property. The graph Γ is said to be Q-polynomial (with respect

to the given ordering {Ei}Di=0 of primitive idempotents) whenever both: (i) qhij = 0 if one of h, i, j is

greater than the sum of the other two; (ii) qhij /= 0 if one of h, i, j is equal to the sum of the other two.

For the rest of this paper, we assume that Γ is Q-polynomial with respect to {Ei}Di=0. We abbreviate

c∗i := qi1i−1 (1� i �D), a∗
i := qi1i (0� i �D), b∗

i := qi1i+1 (0� i �D − 1). For notational convenience,

define b∗
D = 0, c∗0 = 0. By [2, p. 67],mi = q0ii (0� i �D). By [2, p. 196],

mi = b∗
0b

∗
1 · · · b∗

i−1

c∗1c∗2 · · · c∗i
(0� i �D). (4)

We now recall the dual Bose–Mesner algebra of Γ . For the rest of this paper, fix x ∈ X . For 0� i �D,

define E∗
i = E∗

i (x) to be the diagonal matrix in MatX(C) with (y, y)-entry

(E∗
i )yy =

{
1 if ∂(x, y) = i

0 otherwise
(y ∈ X). (5)

We refer to E∗
i as the ith dual primitive idempotent of Γ with respect to x. For notational convenience,

define E∗−1 = 0, E∗
D+1 = 0. Note that (i)

∑D
i=0 E

∗
i = I; (ii) E∗t

i = E∗
i = E∗

i (0� i �D); (iii) E∗
i E

∗
j =

δijE
∗
i (0� i, j �D). Observe that {E∗

i }Di=0 are linearly independent. Thus, they form a basis for a commu-

tative subalgebraM∗ = M∗(x)ofMatX(C);M∗ is called thedual Bose–Mesner algebraofΓ with respect

to x. For 0� i �D, defineA∗
i = A∗

i (x) to be the diagonalmatrix inMatX(C) such that (A∗
i )yy = |X|(Ei)xy

for y ∈ X . By [8, p. 379], {A∗
i }Di=0 is a basis for M∗ and satisfies the following properties: (i) A∗

0 = I;

(ii)
∑D

i=0 A
∗
i = |X|E∗

0 ; (iii) A
∗t
i = A∗

i = A∗
i (0� i �D); (iv) A∗

i A
∗
j = ∑D

h=0 q
h
ijA

∗
h (0� i, j �D). We refer

to A∗
i as the ith dual distance matrix of Γ with respect to x. Abbreviate A∗ := A∗

1 and call this the dual

adjacency matrix of Γ with respect ot x. By [8, Lemma 3.11], M∗ is generated by A∗. Since {E∗
i }Di=0 is a

basis for M∗, there exist complex scalars {θ∗
i }Di=0 such that A∗ = ∑D

i=0 θ∗
i E

∗
i . Note that for 0� i �D,

A∗E∗
i = E∗

i A
∗ = θ∗

i E
∗
i . SinceA

∗ is real,θ∗
i ∈ R. SinceA∗ generatesM∗, the {θ∗

i }Di=0 aremutuallydistinct.

Observe that

E∗
i V = Span {ŷ|y ∈ X, ∂(x, y) = i} (0� i �D).
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Moreover,

V =
D∑

i=0

E∗
i V (orthogonal direct sum) (6)

and

E∗
i = ∏

0� j �D
j /=i

A∗ − θ∗
j I

θ∗
i − θ∗

j

(0� i �D). (7)

We call θ∗
i the dual eigenvalue of Γ associated with E∗

i .

We now recall the Terwilliger algebra of Γ . Let T = T(x) denote the subalgebra of MatX(C) gen-

erated by M and M∗. We refer to T as the Terwilliger algebra of Γ with respect to x. Observe that T is

generated by A, A∗. Moreover, T is semi-simple. By [8, Lemma 3.2],

E∗
i AhE

∗
j = 0 if and only if phij = 0 (0� h, i, j �D), (8)

EiA
∗
hEj = 0 if and only if qhij = 0 (0� h, i, j �D). (9)

It follows from (8) and (9) that

AE∗
i V ⊆ E∗

i−1V + E∗
i V + E∗

i+1V (0� i �D),

A∗EiV ⊆ Ei−1V + EiV + Ei+1V (0� i �D).

Moreover,

E∗
i A

hE∗
j =

{
0, h < | i − j|
/= 0, h = | i − j| (0� h, i, j �D), (10)

EiA
∗hEj =

{
0, h < | i − j|
/= 0, h = | i − j| (0� h, i, j �D). (11)

Lemma 2.1. For 0� i, j, k, l �D with i + j = |k − l|,

E∗
l A

i+jE∗
k =

{
E∗
l A

iE∗
l+iA

jE∗
k , i + j = k − l

E∗
l A

iE∗
k+jA

jE∗
k , i + j = l − k

.

Proof. In E∗
l A

i+jE∗
k , write Ai+j as AiIAj with I = ∑D

m=0 E
∗
m. Evaluate the result using (10). �

Lemma 2.2. For 0� i, j, k, l � d with i + j = |k − l|,

El(A
∗)i+jEk =

{
ElA

∗iEl+iA
∗jEk, i + j = k − l

ElA
∗iEk+jA

∗jEk, i + j = l − k
.

Proof. Similar to the proof of Lemma 2.1. �

3. T-Modules

In this section, we recall some basic facts concerning the T-modules of Γ .

Let W be a subspace of V . We say that W is a T-module whenever TW ⊆ W. Note that V is a

T-module.We refer toV as the standardmodule. LetW andW ′ be T-modules. By a T-module isomorphism

from W to W ′, we mean a vector space isomorphism σ : W → W ′ such that (σB − Bσ)W = 0 for

all B ∈ T . If such a map exists, we say that W and W ′ are isomorphic as T-modules. A T-module W is

said to be irreducible whenever W /= 0 and W contains no T-modules besides 0 and W . W is said to
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be thinwhenever dim E∗
i W � 1 for 0� i �D. Similarly,W is said to be dual thinwhenever dim EiW � 1

for 0� i �D.

We now recall the notion of endpoint, dual endpoint, diameter and dual diameter. Observe that

W = ∑
E∗
i W (orthogonal direct sum) where the sum is taken over all indices i(0� i �D) such that

E∗
i W /= 0. Similarly, W = ∑

EiW (orthogonal direct sum) where the sum is taken over all indices

i(0� i �D) such that EiW /= 0. Let r = min{i|0� i �D, E∗
i W /= 0} and t = min{i|0� i �D, EiW /= 0}.

We call r and t the endpoint and dual endpoint ofW , respectively. Let d = |{i|0� i �D, E∗
i W /= 0}| − 1

and d∗ = |{i|0� i �D, EiW /= 0}| − 1. We refer to d and d∗ as the diameter and dual diameter of W,

respectively.

Lemma 3.1 [8, Lemma 3.9]. Let W be an irreducible T-module with endpoint r, dual endpoint t, diameter

d and dual diameter d∗.Then (i) and (v) below hold:

(i) AE∗
i W ⊆ E∗

i−1W + E∗
i W + E∗

i+1W (0� i �D).

(ii) E∗
i W /= 0 if and only if r � i � r + d (0� i �D).

(iii) E∗
i AE

∗
j W /= 0 if |i − j| = 1 (0� i, j �D).

(iv) W = ∑d
i=0 E

∗
r+iW (orthogonal direct sum).

(v) Suppose W is thin. Then EiW = EiE
∗
r W for 0� i �D. Moreover, W is dual thin and d = d∗.

Lemma 3.2 [8, Lemma 3.12]. Let W be as in Lemma 3.1. Then (i)–(v) below hold:

(i) A∗EiW ⊆ Ei−1W + EiW + Ei+1W (0� i �D).
(ii) EiW /= 0 if and only if t � i � t + d (0� i �D).
(iii) EiA

∗EjW /= 0 if |i − j| = 1 (0� i, j �D).

(iv) W = ∑d
i=0 Et+iW (orthogonal direct sum).

(v) Suppose W is dual thin. Then E∗
i W = E∗

i EtW for 0� i �D. Moreover, W is thin and d∗ = d.

Lemma 3.3 [8, Lemma 3.6]. There exists a unique irreducible T-module of endpoint 0, dual endpoint 0 and

diameter D. Moreover, it is thin and dual thin. We refer to this module as the trivial T-module.

For the rest of this paper, we will have the following assumption on W.

Assumption 3.4. From now on, W will denote a thin irreducible T-module with endpoint r, dual

endpoint t and diameter d. Unless otherwise stated, we assume that d > 0.

4. Generators for End(W)

With reference to Assumption 3.4, let End(W) = EndC(W) denote the C-algebra of all C-linear

transformations from W to W . In this section, we will look at bases and generators of End(W). We

begin with two lemmas whose proofs are routine and left to the reader.

Lemma 4.1. For 0� i � d, let wi be a nonzero vector in E∗
r+iW . Note that {wi}di=0 is a basis for W. With

respect to this basis:

(i) the matrix representation of E∗
r+i has (i, i)-entry 1 and all other entries 0 (0� i � d);

(ii) the matrix representation of A∗ is diag
(
θ∗
r , θ

∗
r+1, . . . , θ

∗
r+d

)
;

(iii) the matrix representation of A is tridiagonal with each entry nonzero on the superdiagonal and

subdiagonal.

Lemma 4.2. For 0� i � d, let w∗
i be a nonzero vector in Et+iW. Note that {w∗

i }di=0 is a basis for W. With

respect to this basis:
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(i) the matrix representation of Et+i has (i, i)-entry 1 and all other entries 0 (0� i � d);
(ii) the matrix representation of A is diag(θt , θt+1, . . . , θt+d);
(iii) the matrix representation of A∗ is tridiagonal with each entry nonzero on the superdiagonal and

subdiagonal.

Definition 4.3. We refer to the sequence {θt+i}di=0 (resp., {θ∗
r+i}di=0) as the eigenvalue sequence (resp.,

dual eigenvalue sequence) ofW.

Lemma 4.4. On W,

d∏
i=0

(A − θt+iI) = 0,

d∏
i=0

(
A∗ − θ∗

r+iI
)

= 0.

Proof. Immediate from Lemmas 4.1(ii) and 4.2(ii). �

Lemma 4.5. Let B (resp., B∗) denote the matrix representation of A (resp., A∗) with respect to the basis

given in Lemma 4.1 (resp., Lemma 4.2). Then

(Bh)ij =
{
0, h < |i − j|
/= 0, h = |i − j| (0� h, i, j � d),

(B∗h)ij =
{
0, h < |i − j|
/= 0, h = |i − j| (0� h, i, j � d).

Proof. Routine using Lemmas 4.1(iii) and 4.2(iii). �

Using Lemma 4.5 we obtain the following strengthening of (10) and (11).

Lemma 4.6. For 0� h, i, j � d, the following hold on W:

E∗
r+iA

hE∗
r+j =

{
0, h < |i − j|
/= 0, h = |i − j| , (12)

Et+iA
∗hEt+j =

{
0, h < |i − j|
/= 0, h = |i − j| . (13)

Proof. Let B denote matrix representation of A with respect to the basis given in Lemma 4.1. By

construction, the matrix representation of E∗
r+iA

hE∗
r+j with respect to this basis has (i, j)-entry (Bh)ij

and all other entries are 0. Line (12) follows from this and Lemma 4.5. The proof of (13) is similar. �

Theorem 4.7. Each of the following forms a basis for the C-vector space End(W):

(i) the actions of {AmE∗
r A

n|0�m, n� d} on W,

(ii) the actions of {A∗mEtA∗n|0�m, n� d} on W .

Proof. Let S denote {AmE∗
r A

n|0�m, n� d}. Observe that |S| = (d + 1)2 and this is equal to the dimen-

sion of End(W). It suffices to show that the actions of the elements of S onW are linearly independent.

Let {wi}di=0 be the basis for W in Lemma 4.1. With respect to this basis, let B and F∗
r be the matrix

representations of A and E∗
r . We claim that for 0�m, n� d, BmF∗

r B
n has entries

(
BmF∗

r B
n)

ij =
{
0, i > m or j > n

/= 0, i = m and j = n
(0� i, j � d). (14)

By Lemma 4.1(i), F∗
r has (0, 0)-entry 1 and all other entries are 0. Thus,(

BmF∗
r B

n)
ij = (Bm)i0(B

n)0j (0� i, j � d).
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Combining this with Lemma 4.5, we obtain (14). It follows from (14) that actions of the elements of S

on W are linearly independent and hence form a basis for End(W). Similarly, (ii) can be shown to be

a basis for End(W). �

Theorem 4.8. Each of the following is a generating set for the C-algebra End(W):

(i) the actions of A, E∗
r on W,

(ii) the actions of A∗, Et on W,

(iii) the actions of A, A∗ on W.

Proof. By Theorem 4.7, (i) and (ii) are generating sets for End(W). The set (iii) is a generating set for

End(W) by (i) and since E∗
r is a polynomial in A∗. �

Definition 4.9. DefineD (resp.,D∗) to be the subalgebra of End(W) generated by the action of A (resp.,

A∗) onW.

Lemma 4.10. Each of the following forms a basis for the C-vector space D:

(i) the actions of {Ai}di=0 on W,

(ii) the actions of {Et+i}di=0 on W.

Proof. (i) By Lemma 4.5, {Ai}di=0 are linearly independent on W . Combining this with Lemma 4.4, we

obtain the result.

(ii) Immediate from (3) and (i). �

Lemma 4.11. Each of the following forms a basis for the C-vector space D∗ :
(i) the actions of {A∗i}di=0 on W,

(ii) the actions of {E∗
r+i}di=0 on W.

Proof. Similar to the proof of Lemma 4.10. �

Corollary 4.12. Each of the following forms a basis for the C-vector space End(W) :
(i) the actions of {Et+iE

∗
r Et+j|0� i, j � d} on W,

(ii) the actions of {E∗
r+iEtE

∗
r+j|0� i, j � d} on W.

Proof. Immediate from Theorem 4.7 and Lemmas 4.10 and 4.11. �

5. The scalars ai(W) and xi(W)

LetW be as in Assumption 3.4. In this section, we associate withW two sequences of scalars called

the ai(W) and xi(W). We will then describe the algebraic properties of these scalars.

Notation 5.1. For any Y ∈ T , trWY denotes the trace of the action of Y onW.

Definition 5.2. Define

ai(W) = trW

(
E∗
r+iA

)
a∗
i (W) = trW

(
Et+iA

∗) (0� i � d), (15)

xi(W) = trW

(
E∗
r+iAE

∗
r+i−1A

)
x∗
i (W) = trW

(
Et+iA

∗Et+i−1A
∗) (1� i � d). (16)

For notational convenience, define x0(W) = 0 and x∗
0(W) = 0.
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Lemma 5.3. For 0� i � d, let wi be a nonzero vector in E∗
r+iW . Let B denote the matrix representation of

A with respect to {wi}di=0. Then (i)–(iii) below hold:

(i) Bii = ai(W) (0� i � d).
(ii) Bi,i−1Bi−1,i = xi(W) (1� i � d).
(iii) xi(W) /= 0 (1� i � d).

Proof. (i) By Lemma 4.1(i), (iii), the (j, j)-entry of the matrix representation of E∗
r+iA with respect to

{wi}di=0 is Bii if j = i and 0 otherwise (0� j � d). Taking the trace of this matrix and using (15), we

obtain the desired result.

(ii) By Lemma 4.1(i), (iii), the (j, j)-entry of the matrix representation of E∗
r+iAE

∗
r+i−1Awith respect

to {wi}di=0 is Bi,i−1Bi−1,i if j = i and 0 otherwise (0� j � d). Taking the trace of this matrix and using

(16), we obtain the desired result.

(iii) Immediate from (ii) and Lemma 4.1(iii). �

Lemma 5.4. For 0� i � d, let w∗
i be a nonzero vector in Et+iW . Let B∗ denote the matrix representation of

A∗ with respect to {w∗
i }di=0. Then (i)–(iii) below hold:

(i) B∗
ii = a∗

i (W) (0� i � d).
(ii) B∗

i,i−1B
∗
i−1,i = x∗

i (W) (1� i � d).

(iii) x∗
i (W) /= 0 (1� i � d).

Proof. Similar to the proof of Lemma 5.3. �

Theorem 5.5. Let v be a nonzero vector in E∗
r W. Then for 0� i � d, E∗

r+iA
iv is nonzero and hence is a basis

for E∗
r+iW . Moreover, {E∗

r+iA
iv}di=0 is a basis for W .

Proof. Since v spans E∗
r W , E∗

r+iA
iv spans E∗

r+iA
iE∗

r W . By Lemma 4.6, E∗
r+iA

iE∗
r W /= 0. Hence, E∗

r+iA
iv /=

0. The rest of the assertion follows. �

Theorem 5.6. Let u be a nonzero vector in EtW . Then for 0� i � d, Et+iA
∗iu is nonzero and hence is a basis

for Et+iW . Moreover, {Et+iA
∗iu}di=0 is a basis for W .

Proof. Similar to the proof of Theorem 5.5. �

Theorem 5.7. With respect to the basis given in Theorem 5.5, the matrix representation of A is

⎛
⎜⎜⎜⎜⎜⎜⎝

a0(W) x1(W) 0

1 a1(W) x2(W)
1 · ·

· · ·
· ad−1(W) xd(W)

0 1 ad(W)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (17)

Proof. Let {wi}di=0 be the basis forW in Theorem 5.5. Let B denote the matrix representation of Awith

respect to this basis. Note that for 0� i � d − 1, E∗
r+i+1Awi = Bi+1,iwi+1. By Lemma 2.1,

E∗
r+i+1Awi = E∗

r+i+1AE
∗
r+iA

iE∗
r v = E∗

r+i+1A
i+1E∗

r v = wi+1.

Thus, Bi+1,i = 1 for 0� i � d − 1. The rest of the assertion follows from Lemma 5.3(i), (ii). �
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Theorem 5.8. With respect to the basis given in Theorem 5.6, the matrix representation of A∗ is⎛
⎜⎜⎜⎜⎜⎜⎝

a∗
0(W) x∗

1(W) 0

1 a∗
1(W) x∗

2(W)
1 · ·

· · ·
· a∗

d−1(W) x∗
d(W)

0 1 a∗
d(W)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof. Similar to the proof of Theorem 5.7. �

Lemma 5.9. The following hold on W:

(i) E∗
r+iAE

∗
r+i = ai(W)E∗

r+i (0� i � d).

(ii) E∗
r+iAE

∗
r+i−1AE

∗
r+i = xi(W)E∗

r+i (1� i � d).

(iii) E∗
r+i−1AE

∗
r+iAE

∗
r+i−1 = xi(W)E∗

r+i−1 (1� i � d).

(iv) Et+iA
∗Et+i = a∗

i (W)Et+i (0� i � d).
(v) Et+iA

∗Et+i−1A
∗Et+i = x∗

i (W)Et+i (1� i � d).
(vi) Et+i−1A

∗Et+iA
∗Et+i−1 = x∗

i (W)Et+i−1 (1� i � d).

Proof. (i) Let {wj}dj=0 be the basis for W in Theorem 5.5. By (17), E∗
r+iAE

∗
r+iwj = δijai(W)E∗

r+iwj . The

result follows.

(ii) LetGi denote the action of E∗
r+i onW . SinceW is thin,Gi End(W)Gi has dimension1. Observe that

Gi is a nonzero element of Gi End(W)Gi. Thus there exists α ∈ C such that E∗
r+iAE

∗
r+i−1AE

∗
r+i = αE∗

r+i
on W . Take the trace of both sides of this equation. Evaluating this using Definition 5.2 and the fact

that trW (E∗
r+i) = 1, we find that α = xi(W).

(iii) Similar to (ii).

(iv)–(vi) Similar to the proofs of (i)–(iii). �

Lemma 5.10. The following hold:

(i)
∑d

i=0 ai(W) = ∑d
i=0 θt+i.

(ii)
∑d

i=0 a
∗
i (W) = ∑d

i=0 θ∗
r+i.

(iii) ai(W) ∈ R, a∗
i (W) ∈ R (0� i � d).

(iv) xi(W) ∈ R, xi(W) > 0 (1� i � d).
(v) x∗

i (W) ∈ R, x∗
i (W) > 0 (1� i � d).

Proof. (i) Immediate from Theorem 5.7 and the fact that {θt+i}di=0 are the eigenvalues of the action of

A onW.

(ii) Similar to the proof of (i).

(iii) By Lemma 5.9(i), ai(W) is an eigenvalue of the real symmetric matrix E∗
r+iAE

∗
r+i. Thus, ai(W) ∈

R. Similarly, a∗
i (W) ∈ R.

(iv) By Lemma 5.9(ii), xi(W) is an eigenvalue of the real symmetric matrix E∗
r+iAE

∗
r+i−1AE

∗
r+i. Thus,

xi(W) ∈ R. Since

E∗
r+iAE

∗
r+i−1AE

∗
r+i =

(
E∗
r+i−1AE

∗
r+i

)t (
E∗
r+i−1AE

∗
r+i

)
is positive definite, xi(W) > 0.

(v) Similar to the proof of (iv). �

6. The polynomial pi

Let W be as in Assumption 3.4. In the previous section, we defined two bases for W. In this

section, we will use these bases to obtain two sequences of polynomials. We will investigate some
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properties of these polynomials. Let C[λ] denote the C-algebra of polynomials in λ with coefficients

in C.

Definition 6.1. For 0� i � d + 1, define pi = pWi in C[λ] by p0 = 1,

λpi = pi+1 + ai(W)pi + xi(W)pi−1 (0� i � d), (18)

where xi(W) and ai(W) are as in Definition 5.2 and p−1 = 0.

Definition 6.2. For 0� i � d + 1, define p∗
i = p∗W

i in C[λ] by p∗
0 = 1,

λp∗
i = p∗

i+1 + a∗
i (W)p∗

i + x∗
i (W)p∗

i−1 (0� i � d), (19)

where x∗
i (W) and a∗

i (W) are as in Definition 5.2 and p∗−1 = 0.

Lemma 6.3. For any nonzero u ∈ EtW and nonzero v ∈ E∗
r W,

pi(A)v = E∗
r+iA

iv (0� i � d), (20)

p∗
i (A

∗)u = Et+iA
∗iu (0� i � d). (21)

Moreover, pd+1(A)v = 0 and p∗
d+1(A

∗)u = 0.

Proof. For 0� i � d + 1, let wi = E∗
r+iA

iv and w′
i = pi(A)v. Recall that by Theorem 5.5, {wi}di=0 is a

basis forW. By (17),

Awi = wi+1 + ai(W)wi + xi(W)wi−1 (0� i � d). (22)

By (18),

Aw′
i = w′

i+1 + ai(W)w′
i + xi(W)w′

i−1 (0� i � d). (23)

Comparing (22) and (23) andusing the fact thatw0 = w′
0,wefind thatwi = w′

i for 0� i � d + 1.Hence

(20) holds. Since wd+1 = 0, pd+1(A)v = 0. The rest of the assertion is proved similary. �

Theorem 6.4. For 0� i � d,

pi(A)E
∗
r W = E∗

r+iW, (24)

p∗
i (A

∗)EtW = Et+iW . (25)

Proof. Let v be a nonzero vector in E∗
r W. By (20), E∗

r+iA
iv spans pi(A)E

∗
r W. By Theorem 5.5, E∗

r+iA
iv

spans E∗
r+iW . From these comments, we obtain (24). The proof for (25) is similar. �

Theorem 6.5. For 0� i � d, the following hold on W:

pi(A)E
∗
r = E∗

r+iA
iE∗

r ,

p∗
i (A

∗)Et = Et+iA
∗iEt .

Proof. Abbreviate 	 := pi(A)E
∗
r − E∗

r+iA
iE∗

r . We will show that 	 = 0 onW . For 0� j � d, let wj be a

nonzero vector in E∗
r+jW. Note that 	wj = 0 for 1� j � d. By Lemma 6.3, 	w0 = 0. Therefore, 	 = 0

onW . The second assertion is proved similary. �

Theorem 6.6. The following hold:

(i) pd+1 is both the minimal polynomial and the characteristic polynomial of the action of A on W .

(ii) pd+1 = ∏d
i=0(λ − θt+i).
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(iii) p∗
d+1 is both the minimal polynomial and characteristic polynomial of the action of A∗ on W.

(iv) p∗
d+1 = ∏d

i=0

(
λ − θ∗

r+i

)
.

Proof. (i) By Lemma 6.3, pd+1(A)E
∗
r W = 0. For 1� i � d,

pd+1(A)E
∗
r+iW=pd+1(A)pi(A)E

∗
r W by (24)

=pi(A)pd+1(A)E
∗
r W

=0.

Therefore, pd+1(A)E
∗
r+iW = 0 for 0� i � d. Hence by Lemma 3.1(iv), pd+1(A) = 0 on W . By Theorem

5.5 and (20), pi(A) /= 0 on W for 0� i � d. From these comments, pd+1 is the minimal polynomial of

the action of A on W. Since the characteristic polynomial of the action of A on W has degree d + 1, it

follows that pd+1 is also the characteristic polynomial of this action.

(ii) Immediate from (i) and the fact that {θt+i}di=0 are the eigenvalues of the action of A onW.

(iii) and (iv) Similar to the proofs of (i) and (ii). �

7. The scalars ν ,mi

Let W be as in Assumption 3.4. In this section, we will investigate the algebraic properties of two

more scalars associated with W, called the mi(W) and the ν(W).

Definition 7.1. For 0� i � d, define

mi(W) = trW
(
Et+iE

∗
r

)
, (26)

m∗
i (W) = trW

(
E∗
r+iEt

)
. (27)

Lemma 7.2. For 0� i � d, the following (i)–(iv) hold on W:

(i) Et+iE
∗
r Et+i = mi(W)Et+i.

(ii) E∗
r Et+iE

∗
r = mi(W)E∗

r .
(iii) E∗

r+iEtE
∗
r+i = m∗

i (W)E∗
r+i.

(iv) EtE
∗
r+iEt = m∗

i (W)Et .

Proof. (i) Let Hi denote the action of Et+i on W . Since W is thin, Hi End(W)Hi has dimension 1. Note

that Hi is a nonzero element of Hi End(W)Hi, hence a basis for Hi End(W)Hi. Thus there exists α ∈ C
such that Et+iE

∗
r Et+i = αEt+i onW . Taking the trace of both sides of this equation and using Definition

7.1 and the fact that trW (E∗
r ) = 1, we find that α = mi(W).

(ii) Let Lr denote the action of E∗
r on W . Since W is thin, Lr End(W)Lr has dimension 1. Note that

Lr is a nonzero element of Lr End(W)Lr , hence a basis for Lr End(W)Lr . Thus there exists α ∈ C such

that E∗
r Et+iE

∗
r = αE∗

r onW . Arguing as in the proof of (i), we find that α = mi(W).
(iii) and (iv) Similar to the proofs of (i) and (ii). �

Lemma 7.3. The following hold:

(i)
∑d

i=0 mi(W) = 1.

(ii)
∑d

i=0 m
∗
i (W) = 1.

(iii) mi(W) ∈ R, mi(W) > 0 (0� i � d).
(iv) m∗

i (W) ∈ R, m∗
i (W) > 0 (0� i � d).

Proof. (i) Observe that on W,
∑d

i=0 Et+i = I. In this equation, multiply each term on the right by E∗
r ,

take the trace and use Definition 7.1 to obtain
∑d

i=0 mi(W) = 1.
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(ii) Similar to the proof of (i).

(iii) By Lemma 7.2(i), mi(W) is an eigenvalue of the real symmetric matrix Et+iE
∗
r Et+i. Hence

mi(W) ∈ R. Since Et+iE
∗
r Et+i = (E∗

r Et+i)
t(E∗

r Et+i) is positive definite, mi(W) > 0.

(iv) Similar to the proof of (iii). �

Definition 7.4. Note that m0(W) = m∗
0(W). We denote the multiplicative inverse of this common

value to be ν(W).

The following is an immediate consequence of Lemma 7.2 and Definition 7.4.

Lemma 7.5. The following hold on W:

(i) ν(W)EtE
∗
r Et = Et .

(ii) ν(W)E∗
r EtE

∗
r = E∗

r .

8. Two bases forW

LetW be as in Assumption 3.4. In this section, we will look at two bases for W called the standard

basis and dual standard basis.

Theorem 8.1. Let u and v be nonzero vectors in EtW and E∗
r W, respectively. Then (i) and (ii) below hold:

(i) {E∗
r+iu}di=0 is a basis for W .

(ii) {Et+iv}di=0 is a basis for W .

Proof. (i) By Lemma 3.1(iv), it suffices to show that E∗
r+iu /= 0 for 0� i � d. By Lemmas 3.1(ii) and

3.2(v), E∗
r+iEtW = E∗

r+iW /= 0. Since u spans EtW, E∗
r+iu spans E∗

r+iEtW . Therefore, E∗
r+iu /= 0.

(ii) Similar to (i). �

Definition 8.2. Let u and v be nonzero vectors in EtW and E∗
r W, respectively. We call {E∗

r+iu}di=0 (resp.,

{Et+iv}di=0) a standard (resp., dual standard) basis forW .

Theorem 8.3. Let {wi}di=0 be a standard basis for W and {w′
i}di=0 be a sequence of vectors in W. Then the

following are equivalent:

(i) {w′
i}di=0 is a standard basis for W .

(ii) There exists a nonzero α ∈ C such that w′
i = αwi for 0� i � d.

Proof. By Definition 8.2, there exists a nonzero u ∈ EtW such that wi = E∗
r+iu for 0� i � d. Note that

{w′
i} is a standard basis forW if and only if there exists a nonzero u′ ∈ EtW such that w′

i = E∗
r+iu

′ for
0� i � d. Since u spans EtW , u′ = αu for some nonzero α ∈ C. The conclusion follows. �

Theorem 8.4. Let {vi}di=0 be a dual standard basis for W and {v′
i}di=0 be a sequence of vectors in W . Then

the following are equivalent.

(i) {v′
i}di=0 is a dual standard basis for W .

(ii) There exists a nonzero α ∈ C such that v′
i = αvi for 0� i � d.

Proof. Similar to the proof of Theorem 8.3. �

We now give various characterizations of a standard basis and dual standard basis.

Theorem 8.5. Let {wi}di=0 be a sequence of vectors in W, not all 0. Then {wi}di=0 is a standard basis for W

if and only if both (i) and (ii) below hold:
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(i) wi ∈ E∗
r+iW(0� i � d).

(ii)
∑d

i=0 wi ∈ EtW .

Proof. Suppose that {wi}di=0 is a standard basis for W . By Definition 8.2, there exists a nonzero u ∈
EtW such that wi = E∗

r+iu for 0� i � d. Thus, (i) holds. Combining Lemma 3.1(ii) and the fact that∑D
j=0 E

∗
j = I, we have u = ∑d

i=0 E
∗
r+iu. From this comment, we find that

∑d
i=0 wi = ∑d

i=0 E
∗
r+iu =

u ∈ EtW . Hence, (ii) holds. Conversely, suppose that {wi}di=0 satisfies (i) and (ii). Let u = ∑d
i=0 wi. By

(ii) and the fact that not all of {wi}di=0 are 0, u is a nonzero vector in EtW . By (i), E∗
r+iu = wi for 0� i � d.

Therefore, {wi}di=0 is a standard basis forW . �

Theorem 8.6. Let {vi}di=0 be a sequence of vectors in W, not all 0. Then {vi}di=0 is a dual standard basis for

W if and only if both (i) and (ii) below hold:

(i) vi ∈ Et+iW(0� i � d).

(ii)
∑d

i=0 vi ∈ E∗
r W .

Proof. Similar to the proof of Theorem 8.5. �

Lemma 8.7. Let {wi}di=0 be a basis for W . With respect to this basis, let B and B∗ denote the matrix

representations of A and A∗, respectively. Then {wi}di=0 is a standard basis for W if and only if both (i) and

(ii) below hold:

(i) B has constant row sum θt .

(ii) B∗ = diag
(
θ∗
r , θ

∗
r+1, . . . , θ

∗
r+d

)
.

Proof. Let w = ∑d
i=0 wi. Note that Aw = ∑d

i=0

∑d
j=0 Bjiwj . Since EtW is the eigenspace of A corre-

sponding to θt , by the previous statement, B has constant row sum equal to θt if and only if w ∈ EtW .

Observe also that wi ∈ E∗
r+iW if and only if B∗ = diag(θ∗

r , θ
∗
r+1, . . . , θ

∗
r+d). The result follows from

these comments and Theorem 8.5. �

Lemma 8.8. Let {vi}di=0 beabasis forW .With respect to thisbasis, letBandB∗ be thematrix representations

of A and A∗, respectively. Then {vi}di=0 is a dual standard basis for W if and only if both (i) and (ii) below
hold:

(i) B∗ has constant row sum θ∗
r .

(ii) B = diag(θt , θt+1, . . . , θt+d).

Proof. Similar to the proof of Lemma 8.7. �

Definition 8.9. Define the two maps � : End(W) → Matd+1(C) and � : End(W) → Matd+1(C) as

follows: For every Y ∈ End(W), Y� (resp., Y�) is the matrix representation of Y with respect to a

standard basis (resp., dual standard basis) for W . Note that Y� (resp., Y�) is independent of the choice

of standard basis (resp., dual standard basis) by Theorem 8.3 (resp., Theorem 8.4).

Theorem 8.10. With reference to Definition 8.9, the following hold:

(i) A� has constant row sum θt .

(ii) A∗� = diag
(
θ∗
r , θ

∗
r+1, . . . , θ

∗
r+d

)
.

(iii) A∗�
has constant row sum θ∗

r .

(iv) A� = diag(θt , θt+1, . . . , θt+d).

Proof. Immediate from Lemmas 8.7 and 8.8. �
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9. The scalars bi(W), ci(W)

LetW be as in Assumption 3.4 and let �, � be themaps in Definition 8.9. In this section, wewill take

a close look at the entries of A� and A∗�.

By Lemmas 4.1 and 4.2, the matrices A� and A∗� are tridiagonal. Moreover, by Lemma 5.3, the

(i, i)-entry of these matrices are ai(W) and a∗
i (W), respectively. We now take a close look at the

superdiagonal and subdiagonal entries of these matrices.

Definition 9.1. Define

bi(W) = (A�)i,i+1, b∗
i (W) = (A∗�)i,i+1 (0� i � d − 1),

ci(W) = (A�)i,i−1, c∗i (W) = (A∗�)i,i−1 (1� i � d).

Thus,

A� =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0(W) b0(W) 0

c1(W) a1(W) b1(W)
c2(W) · ·

· · ·
· ad−1(W) bd−1(W)

0 cd(W) ad(W)

⎞
⎟⎟⎟⎟⎟⎟⎠
, (28)

A∗� =

⎛
⎜⎜⎜⎜⎜⎜⎝

a∗
0(W) b∗

0(W) 0

c∗1(W) a∗
1(W) b∗

1(W)
c∗2(W) · ·

· · ·
· a∗

d−1(W) b∗
d−1(W)

0 c∗d (W) a∗
d(W)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (29)

For notational convenience, define bd(W) = 0, c0(W) = 0 (resp., b∗
d(W) = 0, c∗0 (W) = 0). Ob-

serve that by Lemmas 4.1(iii) and 4.2(iii), bi(W), b∗
i (W) (0� i � d − 1), ci(W), c∗i (W) (1� i � d) are

all nonzero.

Definition 9.2. By the intersection numbers (resp., dual intersection numbers) ofW,wemean the ai(W),
bi(W), ci(W) (resp., a∗

i (W), b∗
i (W), c∗i (W)).

Lemma 9.3. The following hold:

(i) bi−1(W)ci(W) = xi(W) (1� i � d).
(ii) ci(W) + ai(W) + bi(W) = θt (0� i � d).
(iii) b∗

i−1(W)c∗i (W) = x∗
i (W) (1� i � d).

(iv) c∗i (W) + a∗
i (W) + b∗

i (W) = θ∗
r (0� i � d).

(v) bi(W) ∈ R, ci(W) ∈ R (0� i � d).
(vi) b∗

i (W) ∈ R, c∗i (W) ∈ R (0� i � d).

Proof. (i) Immediate from Lemma 5.3(ii).

(ii) Immediate from Theorem 8.10(i).

(iii) and (iv) Similar to the proofs of (i) and (ii).

(v) Recall that a0(W) ∈ R by Lemma 5.10(iii). Since θt ∈ R and a0(W) + b0(W) = θt , we have

b0(W) ∈ R. By Lemma 5.10(iii) and (iv), we obtain ai(W) ∈ R and xi(W) ∈ R for 0� i � d. Combining

this with (i), (ii) and the fact that b0(W) ∈ R and bi(W) /= 0 for 0� i � d − 1, we find that bi(W) ∈ R
and ci(W) ∈ R for 0� i � d.

(vi) Similar to the proof of (v). �
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Lemma 9.4. For 0� i � d,

b0(W)b1(W) · · · bi−1(W) = pi(θt), (30)

b∗
0(W)b∗

1(W) · · · b∗
i−1(W) = p∗

i

(
θ∗
r

)
, (31)

where pi = pWi , p∗
i = p∗W

i are from Definitions 6.1 and 6.2.

Proof. We prove (30) by induction on i. It can be verified that (30) is true for i = 0, 1. Fix 2� i � d. By

(18),

pi(θt) = (θt − ai−1(W))pi−1(θt) − xi−1(W)pi−2(θt). (32)

Eliminate xi−1(W) and ai−1(W) in (32) using Lemma 9.3(i), (ii). Evaluate the result using the

inductive hypothesis to obtain the desired result. Eq. (31) is proved similarly. �

Theorem 9.5. The following (i)–(iv) hold:

(i) bi(W) = pi+1(θt)
pi(θt)

(0� i � d − 1).

(ii) ci(W) = xi(W)pi−1(θt)
pi(θt)

(1� i � d).

(iii) b∗
i (W) = p∗

i+1(θ
∗
r )

p∗
i (θ∗

r )
(0� i � d − 1).

(iv) c∗i (W) = x∗i (W)p∗
i−1(θ

∗
r )

p∗
i (θ∗

r )
(1� i � d).

In the above lines, pj = pWj , p∗
j = p∗W

j are from Definitions 6.1 and 6.2.

Proof. (i) Immediate from Lemma 9.4.

(ii) Immediate from (i) and Lemma 9.3(i).

(iii) and (iv) Similar to the proofs of (i) and (ii). �

Lemma9.6 [9, Theorem4.1(vi)]. LetW be the trivial T-module. For0� i �D, let ai, bi, ci (resp., a
∗
i , b

∗
i , c

∗
i )

be the intersection (resp., dual intersection) numbers of Γ . Then

(i) ai(W) = ai, bi(W) = bi, ci(W) = ci,

(ii) a∗
i (W) = a∗

i , b
∗
i (W) = b∗

i , c
∗
i (W) = c∗i .

We finish this section with a few comments.

Lemma 9.7. Let W, W ′ be thin irreducible T-modules. The following are equivalent.

(i) W and W ′ are isomorphic T-modules.
(ii) W and W ′ have the same endpoint, dual endpoint, diameter and intersection numbers.
(iii) W and W ′ have the same endpoint, dual endpoint, diameter and dual intersection numbers.

Proof. (i) ⇒ (ii) Suppose that W and W ′ are isomorphic T-modules. Let φ : W → W ′ be an isomor-

phismofT-modules. Thus,φ(EiW) = EiW
′. HenceEiW /= 0 if andonly ifEiW

′ /= 0. Similarly,E∗
i W /= 0

if and only if E∗
i W

′ /= 0. Therefore, W and W ′ have the same endpoint, dual endpoint and diameter.

SinceW andW ′ are isomorphic, the matrices representing the action of A onW andW ′ are the same.

Hence they have the same intersection numbers.

(ii)⇐ (i) Suppose thatW andW ′ have the sameendpoint r, dual endpoint t anddiameterd. Suppose

also that theyhave the same intersectionnumbers. For 0� i � d, letwi = E∗
r+iu andw′

i = E∗
r+iu

′, where
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u and u′ are nonzero vectors in EtW and EtW
′, respectively. SinceW andW ′ both have dimension d + 1,

there exists a vector space isomorphismφ : W → W ′ such thatφ(wi) = w′
i . Sincewi ∈ E∗

r+iW , it can

be easily verified that (φA∗ − A∗φ)wi = 0 for 0� i �D. By (28) and the fact that W and W ′ have the

same intersection numbers, (φA − Aφ)wi = 0 for 0� i � d. From these comments, (φA − Aφ)W = 0

and (φA∗ − A∗φ)W = 0. Since T is generated by A, A∗, we find that φ is a T-module isomorphism.

Therefore,W and W ′ are isomorphic T-modules.

(i) ⇔ (iii) Similar to the proof of (i) ⇔ (ii). �

10. The scalar ki(W)

LetW be as in Assumption 3.4. In this section, we will look at a sequence of scalars closely related

with themi(W).

Definition 10.1. For 0� i � d, define

ki(W) = m∗
i (W)ν(W),

k∗
i (W) = mi(W)ν(W),

wheremi(W), m∗
i (W), ν(W) are from Definitions 7.1 and 7.4.

Lemma 10.2. The following (i)–(iii) hold:

(i) k0(W) = 1, k∗
0(W) = 1.

(ii)
∑d

i=0 ki(W) = ν(W).

(iii)
∑d

i=0 k
∗
i (W) = ν(W).

(iv) ki(W) > 0, k∗
i (W) > 0 (0� i � d).

In the above lines, ν(W) is from Definition 7.4.

Proof. (i) Immediate from Definition 10.1.

(ii) Immediate from Lemma 7.3(i) and Definition 10.1.

(iii) Similar to the proof of (ii).

(iv) Immediate from Lemma 7.3(iii), (iv) and Definitions 7.4 and 10.1. �

We now relate ki(W) (resp., k∗
i (W)) and the intersection (resp., dual intersection) numbers of W .

Lemma 10.3. For 0� i � d,

ki(W)ci(W) = ki−1(W)bi−1(W), (33)

k∗
i (W)c∗i (W) = k∗

i−1(W)b∗
i−1(W), (34)

where bj(W), b∗
j (W), cj(W), c∗j (W) are from Definition 9.1 and b−1(W) = 0, b∗−1(W) = 0.

Proof. We proceed by induction on i. Since c0(W) = 0, Eq. (33) holds for i = 0. Assume 1� i � d. By

Definition 9.1, onW

AE∗
r+iEt = bi−1(W)E∗

r+i−1Et + ai(W)E∗
r+iEt + ci+1(W)E∗

r+i+1Et , (35)

where cd+1(W) = 0. Take the trace of both sides of (35). Evaluate this using Definition 7.1 and the fact

that EtA = θtEt . Multiplying ν(W) on both sides of the resulting equation and using Definition 10.1

we obtain

θtki(W) = bi−1(W)ki−1(W) + ai(W)ki(W) + ci+1(W)ki+1(W). (36)
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Solving for ci+1(W)ki+1(W) in (36) using the inductive hypothesis and Lemma 9.3(ii), we find that

(33) holds for i + 1. The proof of (34) is similar. �

Theorem 10.4. For 0� i � d,

ki(W) = b0(W)b1(W) · · · bi−1(W)

c1(W)c2(W) · · · ci(W)
, (37)

k∗
i (W) = b∗

0(W)b∗
1(W) · · · b∗

i−1(W)

c∗1(W)c∗2(W) · · · c∗i (W)
, (38)

where bj(W), b∗
j (W), cj(W), c∗j (W) are from Definition 9.1.

Proof. Solve for ki(W) and k∗
i (W) in Lemma 10.3 recursively to obtain the desired result. �

Corollary 10.5. Let W be the trivial T-module. Then for 0� i �D,

ki(W) = ki, k∗
i (W) = mi,

where ki is the ith valency of Γ and mi is the multiplicity of Γ associated with Ei.

Proof. Immediate from (1), (4), Lemma 9.6 and Theorem 10.4. �

11. The polynomials ui and vi

LetW be as in Assumption 3.4. In this section,wewill look at twonormalizations of the polynomials

pi and p∗
i in Definitions 6.1 and 6.2.

Definition 11.1. Define vi = vWi and v∗
i = v∗W

i in C[λ] by
vi = pi

c1(W)c2(W) · · · ci(W)
(0� i � d), (39)

v∗
i = p∗

i

c∗1(W)c∗2(W) · · · c∗i (W)
(0� i � d), (40)

where pi = pWi , p∗
i = p∗W

i are from Definitions 6.1 and 6.2 and cj(W), c∗j (W) are from Definition 9.1.

For notational convenience, define v−1 = 0, v∗−1 = 0.

Lemma 11.2. For 0� i � d,

vi(θt) = ki(W), v∗
i

(
θ∗
r

) = k∗
i (W),

where vi = vWi , v∗
i = v∗W

i are from Definition 11.1.

Proof. Immediate from Lemma 9.4, Theorem 10.4 and Definition 11.1. �

Lemma 11.3. With reference to Definition 11.1, for 0� i � d − 1,

λvi = bi−1(W)vi−1 + ai(W)vi + ci+1(W)vi+1, (41)

λv∗
i = b∗

i−1(W)v∗
i−1 + a∗

i (W)v∗
i + c∗i+1(W)v∗

i+1, (42)

where b−1(W) = 0, b∗−1(W) = 0. Moreover,

λvd − ad(W)vd − bd−1(W)vd−1 = c−1pd+1,

λv∗
d − a∗

d(W)v∗
d − b∗

d−1(W)v∗
d−1 = c∗−1p∗

d+1,
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where

c = c1(W)c2(W) · · · cd(W),

c∗ = c∗1(W)c∗2(W) · · · c∗d (W).

Proof. To obtain (41), divide both sides of (18) by c1(W)c2(W) · · · ci(W) and eliminate xi(W) using

Lemma 9.3(i). The proof of (42) is similar. �

Theorem 11.4. With reference to Definition 11.1, for 0� i � d,

vi(A)E
∗
r u = E∗

r+iu, v∗
i (A

∗)Etv = Et+iv, (43)

where u and v are nonzero vectors in EtW and E∗
r W, respectively.

Proof. For 0� i � d, let wi = E∗
r+iu and w′

i = vi(A)E
∗
r u. By (28),

Awi = bi−1(W)wi−1 + ai(W)wi + ci+1(W)wi+1 (0� i � d − 1), (44)

where b−1(W) = 0. Using (41), we obtain

Aw′
i = bi−1(W)w′

i−1 + ai(W)w′
i + ci+1(W)w′

i+1 (0� i � d − 1). (45)

Using the fact that w0 = w′
0 and comparing (44) and (45), we obtain the equation on the left of (43).

The equation on the right of (43) can be similarly obtained. �

Definition 11.5. For 0� i � d, define ui = uWi and u∗
i = u∗W

i in C[λ] as follows:

ui = pi

pi(θt)
, (46)

u∗
i = p∗

i

p∗
i

(
θ∗
r

) , (47)

where pi = pWi , p∗
i = p∗W

i are from Definitions 6.1 and 6.2. For notational convenience,

define u−1 = 0, u∗−1 = 0.

Lemma 11.6. With reference to Definition 11.1, for 0� i � d,

vi = ki(W)ui, v∗
i = k∗

i (W)u∗
i ,

where ui = uWi , u∗
i = u∗W

i are from Definition 11.5 and ki(W), k∗
i (W) are from Definition 10.1.

Proof. Immediate from Lemma 9.4, Theorem 10.4 and Definitions 11.1 and 11.5. �

Lemma 11.7. With reference to Definition 11.5, for 0� i � d − 1,

λui = ci(W)ui−1 + ai(W)ui + bi(W)ui+1, (48)

λu∗
i = c∗i (W)u∗

i−1 + a∗
i (W)u∗

i + b∗
i (W)u∗

i+1. (49)

Moreover,

λud − cd(W)ud−1 − ad(W)ud = pd+1/pd(θt),

λu∗
d − c∗d (W)u∗

d−1 − a∗
d(W)u∗

d = p∗
d+1/p

∗
d

(
θ∗
r

)
.

Proof. To obtain (48), divide both sides of (18) by pi(θt) and eliminate xi(W) using Lemma 9.3(i).

Evaluate the result using Lemma 9.4. The proof of (49) is similar. �
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Theorem 11.8. With reference to Definition 11.5, for 0� i, j � d,

θt+jui(θt+j) = ci(W)ui−1(θt+j) + ai(W)ui(θt+j) + bi(W)ui+1(θt+j),

θ∗
r+ju

∗
i

(
θ∗
r+j

)
= c∗i (W)u∗

i−1

(
θ∗
r+j

)
+ a∗

i (W)u∗
i

(
θ∗
r+j

)
+ b∗

i (W)u∗
i+1

(
θ∗
r+j

)
,

where ud+1 = 0, u∗
d+1 = 0.

Proof. Immediate from (48) and (49) with λ = θt+j and λ = θ∗
r+j . �

12. Some inner products and the Askey–Wilson duality

Let W be as in Assumption 3.4. In this section, we will look at all inner products involving the

elements of a standard basis and a dual standard basis forW . Using these inner products, wewill show

that all the polynomials associated with W satisfy relations known as the Askey–Wilson duality.

Throughout the entire section, u and v are nonzero vectors in EtW and E∗
r W , respectively. Recall

that by Definition 8.2, {E∗
r+iu}di=0 (resp., {Et+iv}di=0) is a standard basis (resp., dual standard basis) for

W . By (2) and (6), each of these bases is orthogonal. We now compute some square norms.

Theorem 12.1. For 0� i � d,

‖E∗
r+iu‖2=‖u‖2ki(W)/ν(W), (50)

‖Et+iv‖2=‖v‖2k∗
i (W)/ν(W), (51)

where ν(W) is from Definition 7.4 and ki(W), k∗
i (W) are from Definition 10.1.

Proof. Note that

‖E∗
r+iu‖2=

〈
E∗
r+iu, E

∗
r+iu

〉
,

=
〈
u, E∗2

r+iu
〉
,

=
〈
u, E∗

r+iu
〉
,

= 〈
u, vi(A)E

∗
r u
〉

by Lemma 11.4,

= 〈
vi(A)u, E

∗
r u
〉
,

= 〈
vi(θt)u, E

∗
r u
〉
,

=ki(W)
〈
u, E∗

r u
〉

by Lemma 11.2.

Since u ∈ EtW, u = Etu. Using this we find that 〈u, E∗
r u〉 = 〈Etu, E∗

r Etu〉 = 〈u, EtE∗
r Etu〉. Evaluating

EtE
∗
r Et using Lemma 7.5(i) we find that 〈u, E∗

r u〉 = ‖u‖2/ν(W). Thus, we obtain (50). Eq. (51) is proved

similarly. �

Our next goal is to compute the inner product between the elements of {E∗
r+iu}di=0 and {Et+iv}di=0.

We need the following lemma.

Lemma 12.2. The following hold:

(i)
〈
E∗
r u, Etv

〉 = 〈u, v〉/ν(W).

(ii) E∗
r u = 〈u,v〉

‖v‖2 v.

(iii) Etv = 〈v,u〉
‖u‖2 u.

(iv) 〈u, v〉 /= 0.
(v) ν(W)|〈u, v〉|2 = ‖u‖2‖v‖2.

In the above lines, ν(W) is from Definition 7.4.
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Proof. (i) Since v ∈ E∗
r W, v = E∗

r v. Using this we find that 〈E∗
r u, Etv〉 = 〈E∗

r u, EtE
∗
r v〉 = 〈u, E∗

r EtE
∗
r v〉.

Evaluate E∗
r EtE

∗
r using Lemma 7.5(ii) to obtain the desired result.

(ii) Since v spans E∗
r W , E∗

r u = αv for some α ∈ C. Thus 〈E∗
r u, v〉 = α‖v‖2. Since 〈E∗

r u, v〉 =
〈u, E∗

r v〉 = 〈u, v〉, we find that α = 〈u,v〉
‖v‖2 .

(iii) Similar to the proof of (ii).

(iv) Observe that E∗
r u /= 0 since it is an element of a standard basis. It follows from this and (ii) that

〈u, v〉 /= 0.

(v) Eliminate E∗
r u and Etv in (i) using (ii) and (iii). �

Theorem 12.3. For 0� i, j � d,〈
E∗
r+iu, Et+jv

〉
= ui(θt+j)ki(W)k∗

j (W)〈u, v〉/ν(W), (52)〈
E∗
r+iu, Et+jv

〉
= u∗

j

(
θ∗
r+i

)
ki(W)k∗

j (W)〈u, v〉/ν(W), (53)

where ν(W), ki(W), k∗
j (W) are from Definitions 7.4 and 10.1 and ui = uWi , u∗

j = u∗W
j are from

Definition 11.5.

Proof. Note that

〈E∗
r+iu, Et+jv〉 = 〈vi(A)E∗

r u, Et+jv〉 by Theorem 11.4,

= 〈
E∗
r u, vi(A)Et+jv

〉
,

= vi(θt+j)
〈
E∗
r u, Et+jv

〉
,

= vi(θt+j)
〈
E∗
r u, v

∗
j (A

∗)Etv
〉

by Theorem 11.4,

= vi(θt+j)
〈
v∗
j (A

∗)E∗
r u, Etv

〉
,

= vi(θt+j)v
∗
j

(
θ∗
r

) 〈
E∗
r u, Etv

〉
,

= vi(θt+j)v
∗
j

(
θ∗
r

) 〈u, v〉/ν(W) by Lemma12.2(i).

The result then follows from Lemmas 11.2 and 11.6. Eq. (53) is proved similarly. �

Theorem 12.4. For 0� i, j � d,

ui(θt+j) = u∗
j

(
θ∗
r+i

)
, (54)

where ui = uWi and u∗
j = u∗W

j are from Definition 11.5.

Proof. Compare (52) with (53). �

Theorem 12.5. For 0� i, j � d,

pi(θt+j)

pi(θt)
= p∗

j

(
θ∗
r+i

)
p∗
j

(
θ∗
r

) , (55)

vi(θt+j)

ki(W)
= v∗

j

(
θ∗
r+i

)
k∗
j (W)

, (56)

where pi = pWi , p
∗
i = p∗W

i , vi = vWi , v
∗
i = v∗W

i are from Definitions 6.1, 6.2 and 11.1.

Proof. Immediate from Definition 11.5 and Theorems 11.6 and 12.4. �
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Eqs. (54)–(56) are known as the Askey–Wilson duality. Combining Theorem 11.8 and 12.4, we obtain

the following result.

Theorem 12.6. For 0� i, j � d,

θt+ju
∗
j

(
θ∗
r+i

)
= bi(W)u∗

j

(
θ∗
r+i+1

)
+ ai(W)u∗

j

(
θ∗
r+i

)
+ ci(W)u∗

j

(
θ∗
r+i−1

)
, (57)

θ∗
r+juj(θt+i) = b∗

i (W)uj(θt+i+1) + a∗
i (W)uj(θt+i) + c∗i (W)uj(θt+i−1), (58)

where uj = uWj and u∗
j = u∗W

j are from Definition 11.5.

13. The orthogonality relations

LetW be as in Assumption 3.4. In this section, we display the transition matrix relating a standard

basis and a dual standard basis. Using this and the results of the previous section, we display the

orthogonality relations satisfied by the polynomials we have seen in this paper.

Theorem 13.1. Let u and v be nonzero vectors in EtW and E∗
r W, respectively. For 0� i � d,

E∗
r+iu = 〈u, v〉

‖v‖2

d∑
j=0

vi(θt+j)Et+jv, (59)

Et+iv = 〈v, u〉
‖u‖2

d∑
j=0

v∗
i

(
θ∗
r+j

)
E∗
r+ju, (60)

where vi = vWi , v
∗
i = v∗W

i are from Definition 11.1.

Proof. Combining Lemma 3.2(ii) and the fact that
∑D

j=0 Ej = I, we find that v = ∑d
j=0 Et+jv. By The-

orem 11.4 and Lemma 12.2(ii), E∗
r+iu = 〈u,v〉

‖v‖2 vi(A)v. Therefore,

E∗
r+iu = 〈u, v〉

‖v‖2
vi(A)v,

= 〈u, v〉
‖v‖2

vi(A)
d∑

j=0

Et+jv,

= 〈u, v〉
‖v‖2

d∑
j=0

vi(θt+j)Et+jv.

Hence, (59) holds. Eq. (60) is proved similarly. �

Theorem 13.2. For 0� i, j � d,

d∑
h=0

vi(θt+h)vj(θt+h)k
∗
h(W) = δijν(W)ki(W), (61)

d∑
h=0

vh(θt+i)vh(θt+j)(kh(W))−1 = δijν(W)
(
k∗
i (W)

)−1
, (62)

and

d∑
h=0

v∗
i

(
θ∗
r+h

)
v∗
j

(
θ∗
r+h

)
kh(W) = δijν(W)k∗

i (W), (63)
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d∑
h=0

v∗
h

(
θ∗
r+i

)
v∗
h

(
θ∗
r+j

) (
k∗
h(W)

)−1 = δijν(W)(ki(W))−1, (64)

where ν(W), kh(W), k∗
h(W) are from Definitions 7.4 and 10.1 and vh = vWh , v∗

h = v∗W
h are from

Definition 11.1.

Proof. Concerning (61), let u be a nonzero vector in EtW. We compute 〈E∗
r+iu, E

∗
r+ju〉 in two ways.

First, by (6) and (50), 〈E∗
r+iu, E

∗
r+ju〉 = δij‖u‖2ki(W)/ν(W). Secondly, we compute 〈E∗

r+iu, E
∗
r+ju〉 by

evaluating each of E∗
r+iu and E∗

r+ju using (59). Simplify the result using (51) and Lemma 12.2(v). We

find that 〈E∗
r+iu, E

∗
r+ju〉 is equal to ‖u‖2/(ν(W))2 times the left side of (61). Eq. (61) follows from these

comments. Similarly, we obtain (63). To obtain (62), evaluate (63) using (56). To obtain (64), evaluate

(61) using (56). �

Theorem 13.3. For 0� i, j � d,

d∑
h=0

ui(θt+h)uj(θt+h)k
∗
h(W)=δijν(W)(ki(W))−1, (65)

d∑
h=0

uh(θt+i)uh(θt+j)kh(W)=δijν(W)
(
k∗
i (W)

)−1
, (66)

and

d∑
h=0

u∗
i

(
θ∗
r+h

)
u∗
j

(
θ∗
r+h

)
kh(W)=δijν(W)

(
k∗
i (W)

)−1
, (67)

d∑
h=0

u∗
h

(
θ∗
r+i

)
u∗
h

(
θ∗
r+j

)
k∗
h(W)=δijν(W)(ki(W))−1, (68)

whereν(W), kh(W), k∗
h(W) are fromDefinitions 7.4 and10.1 anduh = uWh , u

∗
h = u∗W

h are fromDefinition

11.5.

Proof. Evaluate each of (61)–(64) using Lemma 11.6. �

Theorem 13.4. For 0� i, j � d,

d∑
h=0

pi(θt+h)pj(θt+h)k
∗
h(W)=δijν(W)x1(W)x2(W) · · · xi(W), (69)

d∑
h=0

ph(θt+i)ph(θt+j)

x1(W)x2(W) · · · xh(W)
=δijν(W)

(
k∗
i (W)

)−1
, (70)

and

d∑
h=0

p∗
i

(
θ∗
r+h

)
p∗
j

(
θ∗
r+h

)
kh(W) = δijν(W)x∗

1(W)x∗
2(W) · · · x∗

i (W), (71)

d∑
h=0

p∗
h

(
θ∗
r+i

)
p∗
h

(
θ∗
r+j

)
x∗
1(W)x∗

2(W) · · · x∗
h(W)

= δijν(W)(ki(W))−1, (72)
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where xh(W), ν(W), kh(W), k∗
h(W) are from Definitions 5.2, 7.4 and 10.1 and ph = pWh , p

∗
h = p∗W

h are

from Definitions 6.1 and 6.2.

Proof. Evaluate each of (61)–(64) using Definition 11.1. Simplify the result using Lemma 9.3(i) and (iii).

�

We now present Theorem 13.2 in matrix form.

Definition 13.5. Definematrices P = P(W) and P∗ = P∗(W) in Matd+1(C) as follows. For 0� i, j � d,

their (i, j)-entries are

Pij = vj(θt+i), P∗
ij = v∗

j

(
θ∗
r+i

)
,

where vj = vWj , v∗
j = v∗W

j are from Definition 11.1.

Theorem 13.6. With reference to Definition 13.5, P∗P = ν(W)I, where ν(W) is from Definition 7.4.

Proof. We compute the (i, j)-entry of P∗P using Definition 13.5 and (56). We find that this is equal to

(ki(W))−1 times the left hand side of (61). Using (61), we obtain P∗P = ν(W)I. �

Theorem 13.7. Let � and � be the maps in Definition 8.9. With reference to Definition 13.5, Y�P = PY� for

Y ∈ End(W).

Proof. By Lemma 13.1, the transition matrix from a standard basis to a dual standard basis for W is a

scalar multiple of P. Therefore, Y�P = PY�. �

14. Two more bases for W

LetW be as in Assumption 3.4. In Sections 8 and 9, we found two bases forW with respect to which

A and A∗ are represented by tridiagonal and diagonalmatrices. In this section, wewill look at twomore

bases forW with respect to which A and A∗ are represented by lower bidiagonal and upper bidiagonal

matrices.

Definition 14.1. For 0� i � d, define τi = τW
i , τ ∗

i = τ ∗W
i , ηi = ηW

i , η∗
i = ηW

i in C[λ] as follows:

τi =
i−1∏
h=0

(λ − θt+h), τ ∗
i =

i−1∏
h=0

(
λ − θ∗

r+h

)
,

ηi =
i−1∏
h=0

(λ − θt+d−h), η∗
i =

i−1∏
h=0

(
λ − θ∗

r+d−h

)
.

Observe that each of τi, τ ∗
i , ηi, η∗

i is monic of degree i.

Lemma 14.2. For 0� i, j � d,

(i) each of τi(θt+j), τ
∗
i

(
θ∗
r+j

)
is 0 if j < i and nonzero if j = i;

(ii) each of ηi(θt+j), η
∗
i

(
θ∗
r+j

)
is 0 if j > d − i and nonzero if j = d − i.

Proof. Immediate from Definition 14.1. �

Lemma 14.3. Let v be a nonzero vector in E∗
r W . Then {τi(A)v}di=0 is a basis for W .
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Proof. By Theorem 5.5 and Lemma 6.3, {pi(A)v}di=0 is a basis forW . For 0� i � d, each of τi and pi is a

polynomial of degree i. The result follows. �

Definition 14.4. For 0� i � d, define

Ui = τi(A)E
∗
r W .

For notational convenience, define U−1 = 0 and Ud+1 = 0.

Lemma 14.5. With reference to Definition 14.4, Ui has dimension 1 for 0� i � d. Moreover,

W =
d∑

i=0

Ui (direct sum). (73)

Proof. Immediate from Lemma 14.3 and Definition 14.4. �

Lemma 14.6. For 0� i � d,

(i)
∑i

h=0 Uh = ∑i
h=0 E

∗
r+hW,

(ii)
∑d

h=i Uh = ∑d
h=i Et+hW .

Proof. Let v be a nonzero vector in E∗
r W .

(i)ByLemma3.1(i),τj(A)v is contained in
∑i

h=0 E
∗
r+hW for0� j � i.Hence,

∑i
h=0 Uh ⊆ ∑i

h=0 E
∗
r+hW .

In this inclusion, equality holds since each side has dimension i + 1.

(ii) For i � j � d,

τj(A)v =
D∑

l=0

Elτj(A)v,

=
d∑

h=0

Et+hτj(A)v,

=
d∑

h=0

τj(θt+h)Et+hv,

=
d∑

h=j

τj(θt+h)Et+hv by Lemma 14.2.

Hence τj(A)v ∈ ∑d
h=i Et+hW for i � j � d. Thus,

∑d
h=i Uh ⊆ ∑d

h=i Et+hW . In this inclusion, equality

holds since each side has dimension i + 1. �

Lemma 14.7. For 0� i � d,

Ui =
⎛
⎝ i∑

h=0

E∗
r+hW

⎞
⎠ ∩

⎛
⎝ d∑

h=i

Et+hW

⎞
⎠ .

Proof. By Lemma 14.5, Ui = (U0 + U1 + · · · + Ui) ∩ (Ui + Ui+1 + · · · + Ud). Combining this with

Lemma 14.6, we obtain the desired result. �

Lemma 14.8. For 0� i � d,

(i) (A − θt+iI)Ui = Ui+1,

(ii)
(
A∗ − θ∗

r+iI
)
Ui = Ui−1.
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Proof. (i) Immediate from Definition 14.4.

(ii) Assume 1� i � d, otherwise, we are done since U0 = E∗
r W . Let v be a nonzero vector in E∗

r W .

Since A∗E∗
r+i = θ∗

r+iE
∗
r+i, we have (A∗ − θ∗

r+iI)(
∑i

h=0 E
∗
r+hW) ⊆ ∑i−1

h=0 E
∗
r+hW. By Lemma 3.2(i), we

have (A∗ − θ∗
r+iI)(

∑d
h=i Et+h) ⊆ ∑d

h=i−1 Et+hW . Combining these comments with Lemma 14.7, we

find that (A∗ − θ∗
r+iI)Ui ⊆ Ui−1. We now show equality holds. Suppose that (A∗ − θ∗

r+iI)Ui � Ui−1.

Then (A∗ − θ∗
r+iI)Ui = 0 since dimUi−1 = 1. Let W ′ = Ui + Ui+1 + · · · + Ud. Observe that W ′ is

nonzero. By (i), AW ′ ⊆ W ′. Since (A∗ − θ∗
r+iI)Ui = 0 and (A∗ − θ∗

r+jI)Uj ⊆ Uj−1 for i + 1� j � d, we

find that A∗W ′ ⊆ W ′.HenceW ′ is a nonzero T-submodule ofW . Since the T-moduleW is irreducible,

W ′ = W . This contradicts (73) since i > 0. Therefore, (A∗ − θ∗
r+iI)Ui = Ui−1. �

By Lemma14.8, for 1� i � d,Ui is invariant under (A − θt+i−1I)(A
∗ − θ∗

r+iI) and the corresponding

eigenvalue is nonzero.

Definition 14.9. For 1� i � d, let ϕi = ϕi(W) be the eigenvalue of (A − θt+i−1I)(A
∗ − θ∗

r+iI) corre-

sponding to Ui. Observe that ϕi /= 0. We refer to the sequence {ϕi}di=1 as the first split sequence of W .

For notational convenience, define ϕ0 = 0.

Theorem 14.10. With respect to the basis for W in Lemma 14.3, the matrices representing A, A∗ are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θt 0

1 θt+1

1 θt+2

· ·
· θt+d−1

0 1 θt+d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ∗
r ϕ1 0

θ∗
r+1 ϕ2

θ∗
r+2 ·

· ·
θ∗
r+d−1 ϕd

0 θ∗
r+d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. Immediate from Definitions 14.4 and 14.9 and Lemma 14.8. �

In Lemmas 14.3–14.8 and Theorem 14.10, we replace Et+i with Et+d−i for 0� i � d andwe routinely

obtain the following results.

Lemma 14.11. Let v be a nonzero vector in E∗
r W . Then {ηi(A)v}di=0 is a basis for W .

Definition 14.12. For 0� i � d, define

U
⇓
i = ηi(A)E

∗
r W .

For notational convenience, define U
⇓
−1 = 0 and U

⇓
d+1 = 0.

Lemma 14.13. With reference to Definition 14.12,

W =
d∑

i=0

U
⇓
i (direct sum). (74)

Lemma 14.14. For 0� i � d,

(i)
∑i

h=0 U
⇓
h = ∑i

h=0 E
∗
r+hW,

(ii)
∑d

h=i U
⇓
h = ∑d−i

h=0 Et+hW .
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Lemma 14.15. For 0� i � d,

(i) (A − θt+d−iI)U
⇓
i = U

⇓
i+1,

(ii)
(
A∗ − θ∗

r+iI
)
U

⇓
i = U

⇓
i−1.

By Lemma 14.15, for 1� i � d, U
⇓
i is invariant under (A − θt+d−i+1I)(A

∗ − θ∗
r+iI) and the corre-

sponding eigenvalue is nonzero.

Definition 14.16. For 1� i � d, let φi = φi(W) be the eigenvalue of (A − θt+d−i+1I)(A
∗ − θ∗

r+iI) cor-

responding to U
⇓
i . Observe that φi /= 0. We refer to the sequence {φi}di=1 as the second split sequence

of W .

Theorem 14.17. With respect to the basis for W in Lemma 14.11, the matrices representing A, A∗ are⎛
⎜⎜⎜⎜⎜⎜⎝

θt+d 0

1 θt+d−1

1 θt+d−2· ·
· θt+1

0 1 θt

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

θ∗
r φ1 0

θ∗
r+1 φ2

θ∗
r+2 ·

· ·
θ∗
r+d−1 φd

0 θ∗
r+d

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In [10, Lemma 12.7], it was shown that {ϕi}di=1 and {φi}di=1 are related by the following:

ϕi=φ1

i−1∑
h=0

θt+h − θt+d−h

θt − θt+d

+
(
θ∗
r+i − θ∗

r

)
(θt+i−1 − θt+d) (1� i � d), (75)

φi=ϕ1

i−1∑
h=0

θt+h − θt+d−h

θt − θt+d

+
(
θ∗
r+i − θ∗

r

)
(θt+d−i+1 − θt) (1� i � d). (76)

Definition 14.18. By the parameter array of W , we mean the sequence of scalars(
{θt+i}di=0, {θ∗

r+i}di=0, {ϕi}di=1, {φi}di=1

)
,

where r, t, d are from Assumption 3.4, and the ϕi, φi are from Definitions 14.9 and 14.16.

15. DescribingW in terms of its parameter array

LetW be as in Assumption 3.4. Up until now, we have associated withW a number of polynomials

and parameters. In this section, we will express all these polynomials and parameters in terms of the

parameter array ({θt+i}di=0, {θ∗
r+i}di=0, {ϕi}di=1, {φi}di=1) ofW . Recall the polynomials τi, τ

∗
i , ηi, η

∗
i from

Definition 14.1.

Theorem 15.1. For 0� i � d,

ui =
i∑

h=0

τ ∗
h

(
θ∗
r+i

)
ϕ1ϕ2 · · · ϕh

τh, (77)

u∗
i =

i∑
h=0

τh(θt+i)

ϕ1ϕ2 · · · ϕh

τ ∗
h , (78)

where ui = uWi , u
∗
i = u∗W

i are from Definition 11.5.
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Proof. We first verify (77). Since ui has degree i, there exist complex scalars {αh}ih=0 such that ui =∑i
h=0 αhτh. By Lemma 14.2(i), τ0(θt) = 1 and τi(θt) = 0 for 1� i � d. From these comments and since

ui(θt) = 1, we have α0 = 1. Now assume i � 1, otherwise we are done. Let v be a nonzero vector in

E∗
r W . By Theorem 11.4 and Lemma 11.6, ui(A)v ∈ E∗

r+iW . Thus,

0 =
(
A∗ − θ∗

r+iI
)
ui(A)v,

=
i∑

h=0

αhA
∗τh(A)v − θ∗

r+i

i∑
h=0

αhτh(A)v,

=
i∑

h=0

αh

(
θ∗
r+hτh(A)v + ϕhτh−1(A)v

)
− θ∗

r+i

i∑
h=0

αhτh(A)v by Theorem 14.10,

=
i−1∑
h=0

(
ϕh+1αh+1 + αhθ

∗
r+h − θ∗

r+iαh

)
τh(A)v.

By Lemma 14.3, {τh(A)v}i−1
h=0 are linearly independent. Thus, ϕh+1αh+1 + αhθ

∗
r+h − θ∗

r+iαh = 0 for

0� h < i. From this recursive equation and the fact that α0 = 1, we find that αh = τ ∗
h (θ∗

r+i)/
(ϕ1ϕ2 · · · ϕh) for 0� h� i. Therefore, (77) holds. We now prove (78). Let fi be the polynomial on

the right in (78). Using (77), we find that fi(θ
∗
r+j) = uj(θt+i) for 0� j � i. By Theorem 12.4, u∗

i (θ
∗
r+j) =

uj(θt+i). Therefore, fi(θ
∗
r+j) = u∗

i (θ
∗
r+j) for 0� j � i. By this and since u∗

i , fi have degree i, we find that

u∗
i = fi. �

Lemma 15.2. For 0� i � d,

pi(θt) = ϕ1ϕ2 · · · ϕi

τ ∗
i

(
θ∗
r+i

) , p∗
i

(
θ∗
r

) = ϕ1ϕ2 · · · ϕi

τi(θt+i)
, (79)

where pi = pWi , p∗
i = p∗W

i are from Definitions 6.1 and 6.2.

Proof. We first prove the equation on the left in (79). We compute the coefficient of λi in ui in two

ways: one way using (77) and another way using Definition 11.5. Comparing the results, we obtain the

equation on the left in (79). Argue similarly to obtain the equation on the right in (79). �

Theorem 15.3. For 0� i � d − 1,

bi(W) = ϕi+1

τ ∗
i

(
θ∗
r+i

)
τ ∗
i+1

(
θ∗
r+i+1

) , b∗
i (W) = ϕi+1

τi(θt+i)

τi+1(θt+i+1)
. (80)

The bi(W), b∗
i (W) are from Definition 9.1.

Proof. Immediate from Theorem 9.5(i), (iii) and Lemma 15.2. �

Theorem 15.4. With reference to Definition 5.2,

a0(W) = θt + ϕ1

θ∗
r − θ∗

r+1

, ad(W) = θt+d + ϕd

θ∗
r+d − θ∗

r+d−1

, (81)

a0(W) = θt+d + φ1

θ∗
r − θ∗

r+1

, ad(W) = θt + φd

θ∗
r+d − θ∗

r+d−1

. (82)
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For 1� i � d − 1,

ai(W) = θt+i + ϕi

θ∗
r+i − θ∗

r+i−1

+ ϕi+1

θ∗
r+i − θ∗

r+i+1

(83)

= θt+d−i + φi

θ∗
r+i − θ∗

r+i−1

+ φi+1

θ∗
r+i − θ∗

r+i+1

. (84)

Proof. To obtain (83), we compute the coefficient of λi in ui+1 in two ways. One way is using Lemma

9.4 and Lemma 11.7. Using this approach, we find that the coefficient is equal to

−
i∑

l=0

al(W)

pi+1(θt)
. (85)

Another way is using (77). Using this approach, the coefficient is equal to

τ ∗
i

(
θ∗
r+i+1

)
ϕ1ϕ2 · · · ϕi

−
i∑

l=0

θt+l

τ ∗
i+1

(
θ∗
r+i+1

)
ϕ1ϕ2 · · · ϕi+1

. (86)

Evaluating (85) using (79) and comparing the result with (86), we obtain (83). Similarly, we obtain the

two equations in (81). We now prove (84). Observe that by Definitions 5.2 and 14.16, replacing Et+i

with Et+d−i for 0� i � d has the effect of switching (ai(W), θt+i,ϕi) to (ai(W), θt+d−i,φi). Applying
this switching to (83), we obtain (84). Similarly, we obtain the two equations in (82). �

Theorem 15.5. With reference to Definition 5.2,

a∗
0(W) = θ∗

r + ϕ1

θt − θt+1

, a∗
d(W) = θ∗

r+d + ϕd

θt+d − θt+d−1

, (87)

a∗
0(W) = θ∗

r+d + φd

θt − θt+1

, a∗
d(W) = θ∗

r + φ1

θt+d − θt+d−1

. (88)

For 1� i � d − 1,

a∗
i (W) = θ∗

r+i +
ϕi

θt+i − θt+i−1

+ ϕi+1

θt+i − θt+i+1

(89)

= θ∗
r+d−i +

φd−i+1

θt+i − θt+i−1

+ φd−i

θt+i − θt+i+1

. (90)

Proof. To obtain (87) and (89) argue similarly as in the proof of (83).We nowprove (90). By Definitions

5.2 and 14.16, replacing Et+i with Et+d−i for 0� i � d has the effect of switching (a∗
i (W), θt+i,ϕi) to

(a∗
d−i(W), θt+d−i,φi). Applying this switching to (89), we obtain

a∗
d−i(W) = θ∗

r+i +
φi

θt+d−i − θt+d−i+1

+ φi+1

θt+d−i − θt+d−i−1

. (91)

Changing i to d − i in (91), we obtain (90). �

Theorem 15.6. For 1� i � d, ϕi is equal to each of the following:
(
θ∗
r+i − θ∗

r+i−1

) i−1∑
j=0

(θt+j − aj(W)),
(
θ∗
r+i−1 − θ∗

r+i

) d∑
j=i

(θt+j − aj(W)), (92)

(θt+i − θt+i−1)
i−1∑
j=0

(
θ∗
r+j − a∗

j (W)
)
, (θt+i−1 − θt+i)

d∑
j=i

(
θ∗
r+j − a∗

j (W)
)
. (93)

The ah(W), a∗
h(W) are from Definition 5.2.
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Proof. To obtain the expression on the left in (92), solve for ϕi recursively using (83). From this and

Lemma 5.10(i), we obtain the expression on the right in (92). The remaining assertions can be similarly

shown. �

Theorem 15.7. For 1� i � d, φi is equal to each of the following:
(
θ∗
r+i − θ∗

r+i−1

) i−1∑
j=0

(θt+d−j − aj(W)),
(
θ∗
r+i−1 − θ∗

r+i

) d∑
j=i

(θt+d−j − aj(W)), (94)

(θt+d−i − θt+d−i+1)
i−1∑
j=0

(
θ∗
r+j − a∗

d−j(W)
)
, (θt+d−i+1 − θt+d−i)

d∑
j=i

(
θ∗
r+j − a∗

d−j(W)
)
.

(95)

The ah(W), a∗
h(W) are from Definition 5.2.

Proof. Similar to the proof of Theorem 15.6. �

Theorem 15.8. For 0� i � d, the polynomial pi = pWi from Definition 6.1 is equal to both

i∑
h=0

ϕ1ϕ2 · · · ϕiτ
∗
h

(
θ∗
r+i

)
ϕ1ϕ2 · · · ϕhτ

∗
i

(
θ∗
r+i

)τh,
i∑

h=0

φ1φ2 · · · φiτ
∗
h

(
θ∗
r+i

)
φ1φ2 · · · φhτ

∗
i

(
θ∗
r+i

)ηh. (96)

Proof. The expression on the left in (96) is equal to pi by Definition 11.5, (77), and the equation on

the left in (79). To show that pi is equal to the expression on the right in (96), write ui as a linear

combination of {ηh}ih=0. Arguing as in the proof of (77), we find that

ui = ui(θt+d)
i∑

h=0

τ ∗
h

(
θ∗
r+i

)
φ1φ2 · · · φh

ηh. (97)

To find ui(θt+d), we compute the coefficient of λi in ui in two ways: one way is using (77) and another

way is using (97). Comparing these results we obtain

ui(θt+d) = φ1φ2 · · · φi

ϕ1ϕ2 · · · ϕi

. (98)

Evaluating pi using Definition 11.5, (97), (98) and the equation on the left in (79), we find that pi is

equal to the expression on the right in (96). �

Theorem 15.9. For 0� i � d, the polynomial p∗
i = p∗W

i from Definition 6.2 is equal to both

i∑
h=0

ϕ1ϕ2 · · · ϕiτh(θt+i)

ϕ1ϕ2 · · · ϕhτi(θt+i)
τ ∗
h ,

i∑
h=0

φdφd−1 · · · φd−i+1τh(θt+i)

φdφd−1 · · · φd−h+1τi(θt+i)
η∗
h . (99)

Proof. The expression on the left in (99) is equal to p∗
i by Definition 11.5, (78), and the equation on

the right in (79). We now prove that p∗
i is equal to the expression on the right in (99). Comparing the

equation on the left in (94) and the equation on the right in (95), we find that interchanging A and A∗
has the effect of switching φi to φd−i+1 for 1� i � d. Applying this switching to the sum on the right

in (96), we obtain the sum on the right in (99). �

Lemma 15.10. For 0� i � d,

pi(θt+d) = φ1φ2 · · · φi

τ ∗
i

(
θ∗
r+i

) , p∗
i

(
θ∗
r+d

)
= φdφd−1 · · · φd−i+1

τi(θt+i)
,

where pi = pWi , p∗
i = p∗W

i are from Definitions 6.1 and 6.2.
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Proof. Immediate from the right side of lines (96) and (99). �

Theorem 15.11. For 1� i � d,

ci(W) = φi

η∗
d−i

(
θ∗
r+i

)
η∗
d−i+1

(
θ∗
r+i−1

) , c∗i (W) = φd−i+1

ηd−i(θt+i)

ηd−i+1(θt+i−1)
. (100)

The ci(W), c∗i (W) are from Definition 9.1.

Proof. Wefirst verify the equation on the right in (100). By (29), replacing Et+i with Et+d−i for 0� i � d

switches b∗
i (W) and c∗d−i(W). Applying this switching to the equation on the right in (80), we find that

for 0� i � d − 1,

c∗d−i(W) = φi+1

ηi(θt+d−i)

ηi+1(θt+d−i−1)
. (101)

Changing i to d − i in (101), we obtain the equation on the right in (100). We now verify the equation

on the left in (100). Recall from the proof of Theorem 15.9 that interchanging A and A∗ switches φi and

φd−i+1. Applying this switching to the equation on the right in (100), we obtain the equation on the

left in (100). �

Theorem 15.12. With reference to Definition 7.4,

ν(W) = ηd(θt)η
∗
d

(
θ∗
r

)
φ1φ2 · · · φd

. (102)

Proof. Let 0 /= v ∈ E∗
r W. By Theorem 14.17, (A∗ − θ∗

r+iI)ηi(A)v = φiηi−1(A)v for 1� i � d.

Hence, η∗
d (A

∗)ηd(A)v = φ1φ2 · · · φdv. By (3) and (7), on W we have ηd(A) = ηd(θt)Etand η∗
d (A

∗) =
η∗
d (θ

∗
r )E∗

r . Thus, η
∗
d (A

∗)ηd(A)v = η∗
d (θ

∗
r )ηd(θt)E

∗
r Etv. From these comments and since v ∈ E∗

r W , we

obtain φ1φ2 · · · φdv = η∗
d (θ

∗
r )ηd(θt)E

∗
r EtE

∗
r v. Evaluate E∗

r EtE
∗
r using Theorem 7.5(ii). The result

follows. �

Theorem 15.13. With reference to Definitions 5.2 and 10.1,

ki(W) = ϕ1ϕ2 · · · ϕi

φ1φ2 · · · φi

η∗
d

(
θ∗
r

)
τ ∗
i

(
θ∗
r+i

)
η∗
d−i

(
θ∗
r+i

) (0� i � d), (103)

k∗
i (W) = ϕ1ϕ2 · · · ϕi

φdφd−1 · · · φd−i+1

ηd(θt)

τi(θt+i)ηd−i(θt+i)
(0� i � d), (104)

xi(W) = ϕiφi

τ ∗
i−1

(
θ∗
r+i−1

)
η∗
d−i

(
θ∗
r+i

)
τ ∗
i

(
θ∗
r+i

)
η∗
d−i+1

(
θ∗
r+i−1

) (1� i � d), (105)

x∗
i (W) = ϕiφd−i+1

τi−1(θt+i−1)ηd−i(θt+i)

τi(θt+i)ηd−i+1(θt+i−1)
(1� i � d). (106)

Proof. Evaluate the equations in (37), (38) and in Lemma 9.3(i), (iii), using Theorems 15.3

and 15.11. �

For the rest of this section, we will find alternative formulae for the intersection and dual in-

tersection numbers of W . The reason in doing this is that the formulae given in Theorems 15.3

and 15.11 involve huge products which may not be easy to compute. We will need the following

lemma.
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Lemma 15.14. For 0� i � d,

ci(W)τ ∗
1

(
θ∗
r+i−1

)
+ ai(W)τ ∗

1

(
θ∗
r+i

)
+ bi(W)τ ∗

1 (θ∗
r+i+1) = ϕ1 + θt+1τ

∗
1

(
θ∗
r+i

)
, (107)

c∗i (W)τ1(θt+i−1) + a∗
i (W)τ1(θt+i) + b∗

i (W)τ1(θt+i+1) = ϕ1 + θ∗
r+1τ1(θt+i). (108)

The ai(W), bi(W), ci(W) (resp., a∗
i (W), b∗

i (W), c∗i (W)) are the intersection numbers (resp., dual
intersection numbers) of W .

Proof. By (49), u∗
1 = (λ − a∗

0(W))/b∗
0(W). Use this to evaluate (57) with j = 1. Eliminate a∗

0(W) in

the resulting equation using the expression on the left of (87). Simplify using Lemma 9.3(ii) to obtain

(107). The proof of (108) is similar. �

Theorem 15.15. The intersection numbers of W are as follows:
b0(W) = ϕ1

θ∗
r+1 − θ∗

r

, (109)

bi(W) = (θt − ai(W))
(
θ∗
r+i − θ∗

r+i−1

)
+ (θt − θt+1)

(
θ∗
r − θ∗

r+i

)
+ ϕ1

θ∗
r+i+1 − θ∗

r+i−1

(1� i � d − 1),

(110)

ci(W) = (θt − ai(W))
(
θ∗
r+i − θ∗

r+i+1

)
+ (θt − θt+1)

(
θ∗
r − θ∗

r+i

)
+ ϕ1

θ∗
r+i−1 − θ∗

r+i+1

(1� i � d − 1),

(111)

cd(W) = ϕ1 + (θt+1 − θt)
(
θ∗
r+d − θ∗

r

)
θ∗
r+d−1 − θ∗

r+d

. (112)

To obtain b∗
i (W) and c∗i (W), replace (θt+j , θ∗

r+j , aj(W)) with (θ∗
r+j , θt+j , a

∗
j (W)).

Proof. To obtain (109), eliminate a0(W) in the equation on the left of (81) using Lemma 9.3(ii). To

obtain (110) and (111), solve the system of equations in Lemmas 9.3(ii) and (107). To obtain (112), set

i = d in (107) and eliminate ad(W) using Lemma 9.3(ii). The proof of the assertion regarding the dual

intersection numbers of W is similar. �

By Theorems 15.4 and 15.15, the intersection numbers (resp., dual intersection numbers) ofW can

be expressed in terms of the parameter array of W . By (75) and (76), the parameter array of W is

determined by the eigenvalue sequence of W , dual eigenvalue sequence of W , and ϕ1(W). Hence,
we now solve for the intersection numbers (resp., dual intersection numbers) of W in terms of these

parameters. But first we need the following lemmas.

Lemma 15.16. Assume d � 2. Then the scalar ϕ2 is equal to both

ϕ1

(
1+ θt+1−θt+d−1

θt−θt+d

)
+
(
θ∗
r+1−θ∗

r

)
(θt+d+θt+d−1−θt−θt+1)+

(
θ∗
r+2−θ∗

r

)
(θt+1− θt+d),

(113)

ϕ1

(
1+ θ∗

r+1−θ∗
r+d−1

θ∗
r −θ∗

r+d

)
+(θt+1−θt)

(
θ∗
r+d+θ∗

r+d−1−θ∗
r −θ∗

r+1

)
+(θt+2−θt)

(
θ∗
r+1−θ∗

r+d

)
.

(114)

Proof. To obtain (113), set i = 2 in (75) and evaluate φ1 using (76). Comparing the formula for ϕi on

the left in lines (92) and (93), we find that interchanging A and A∗ has no effect on ϕi for 1� i � d.

Applying this switching to (113), we obtain (114). �
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Lemma 15.17. Assume d � 2. Then for 0� i � d,

ci(W)τ ∗
2

(
θ∗
r+i−1

)
+ ai(W)τ ∗

2

(
θ∗
r+i

)
+ bi(W)τ ∗

2 (θ∗
r+i+1) = ϕ2τ

∗
1

(
θ∗
r+i

)
+ θt+2τ

∗
2

(
θ∗
r+i

)
,

(115)

c∗i (W)τ2(θt+i−1) + a∗
i (W)τ2(θt+i) + b∗

i (W)τ2(θt+i+1) = ϕ2τ1(θt+i) + θ∗
r+2τ2(θt+i).

(116)

The ai(W), bi(W), ci(W) (resp., a∗
i (W), b∗

i (W), c∗i (W)) are the intersection numbers (resp., dual
intersection numbers) of W .

Proof. Eliminating u∗
2 in (57) with j = 2 using (78), we obtain

ci(W) + ai(W) + bi(W) + τ1(θt+2)

ϕ1

(
ci(W)τ ∗

1

(
θ∗
r+i−1

)
+ ai(W)τ ∗

1

(
θ∗
r+i

)

+ bi(W)τ ∗
1

(
θ∗
r+i+1

))
+ τ2(θt+2)

ϕ1ϕ2

(
ci(W)τ ∗

2

(
θ∗
r+i−1

)
+ ai(W)τ ∗

2

(
θ∗
r+i

)

+ bi(W)τ ∗
2

(
θ∗
r+i+1

))

= θt+2

(
1 + τ1(θt+2)

ϕ1

τ ∗
1

(
θ∗
r+i

)
+ τ2(θt+2)

ϕ1ϕ2

τ ∗
2

(
θ∗
r+i

))
. (117)

Simplify the first three terms of (117) using Lemma 9.3(ii). Evaluating the coefficient of τ1(θt+2)/ϕ1

in (117) using (107), we routinely obtain (115). The proof of (116) is similar. �

Theorem 15.18. The intersection numbers of W are as follows:
b0(W) = ϕ1

θ∗
r+1 − θ∗

r

, (118)

bi(W) = ϕ1f
+
i + g

+
i(

θ∗
r+i+1 − θ∗

r+i

) (
θ∗
r+i+1 − θ∗

r+i−1

) (1� i � d − 1), (119)

ci(W) = ϕ1f
−
i + g

−
i(

θ∗
r+i−1 − θ∗

r+i

) (
θ∗
r+i−1 − θ∗

r+i+1

) (1� i � d − 1), (120)

cd(W) = ϕ1 + (θt+1 − θt)
(
θ∗
r+d − θ∗

r

)
θ∗
r+d−1 − θ∗

r+d

, (121)

where

f
±
i = θ∗

r+1 − θ∗
r+i∓1 −

(
θ∗
r+i − θ∗

r

) (
θ∗
r+1 − θ∗

r+d−1

)
(
θ∗
r+d − θ∗

r

) ,

g
±
i =

(
θ∗
r+i − θ∗

r

) (
(θt+2 − θt+1)

(
θ∗
r+i − θ∗

r+d

)
− (θt+1 − θt)

(
θ∗
r+i∓1 − θ∗

r+d−1

))
,

provided d � 2. To obtain b∗
i (W) and c∗i (W), replace (θt+j , θ

∗
r+j) with (θ∗

r+j , θt+j).

Proof. Observe that (118), (121) are (109), (112). To obtain (119) and (120), eliminate ai(W) in (107)

and (115) using Lemma 9.3(ii). Then for 1� i � d − 1,
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ci(W)
(
θ∗
r+i−1 − θ∗

r+i

)
+ bi(W)

(
θ∗
r+i+1 − θ∗

r+i

)
= ϕ1 + (θt+1 − θt)

(
θ∗
r+i − θ∗

r

)
, (122)

ci(W)hi
(
θ∗
r+i−1

)
+ bi(W)hi

(
θ∗
r+i+1

)
= ϕ2

(
θ∗
r+i − θ∗

r

)
+ (θt+2 − θt)

(
θ∗
r+i − θ∗

r

) (
θ∗
r+i − θ∗

r+1

)
, (123)

where

hi(λ) = (λ − θ∗
r+i)(λ + θ∗

r+i − θ∗
r+1 − θ∗

r ).

Eliminate ϕ2 in (123) using (114). Solving the system of equations (122), (123), we obtain (119) and

(120). Argue similarly and evaluate ϕ2 using (113) to obtain the formula for the dual intersection

numbers ofW . �

Lemma 15.19. Given vertices y, z in X, let W (resp., W ′) be the trivial T(y)-module (resp., T(z)-module)
of Γ . Then W and W ′ have the same parameter array.

Proof. By Lemma 9.6,W andW ′ have the same intersection numbers and dual intersection numbers.

Thus,W andW ′ bothhave eigenvalue sequence {θi}Di=0 anddual eigenvalue sequence {θ∗
i }Di=0. By (118),

ϕ1(W) = ϕ1(W
′). Using (75) and (76), we find thatW andW ′ have the same first split sequence and

second split sequence. �

Definition 15.20. By the parameter array ofΓ , wemean theparameter array of the trivial T(x)-module.

Observe that this parameter array is independent of the choice of x by Lemma 15.19.

16. Isomorphism classes of thin irreducible T-modules

In Corollary 9.7, we mentioned some set of scalars needed to determine the isomorphism class of

a thin irreducible T-module. As we have seen in Theorem 15.18, there are many relations among these

scalars.We now consider a much smaller set of scalars needed to determine the isomorphism class.

Let us first consider some equations from (75) and (76).

Lemma 16.1. LetW be as in Assumption 3.4. Let {ϕi}di=1, {φi}di=1 denote the first split sequence and second

split sequence of W, respectively. Then

φ1 = ϕ1 +
(
θ∗
r+1 − θ∗

r

)
(θt+d − θt) ,

φd = ϕ1 +
(
θ∗
r+d − θ∗

r

)
(θt+1 − θt),

ϕd = φ1 +
(
θ∗
r+d − θ∗

r

)
(θt+d−1 − θt+d).

Proof. Immediate from (75) and (76). �

Lemma 16.2. Suppose thatW andW ′ are thin irreducible T-moduleswith the sameendpoint, dual endpoint

and diameter d > 0. Then the following are equivalent:
ϕ1(W) = ϕ1(W

′), ϕd(W) = ϕd(W
′),

φ1(W) = φ1(W
′), φd(W) = φd(W

′),
a0(W) = a0(W

′), ad(W) = ad(W
′),

a∗
0(W) = a∗

0(W
′), a∗

d(W) = a∗
d(W

′).

Proof. Combine Lemma 16.1, (81), (82), (87), (88). �
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Theorem 16.3. Suppose that W and W ′ are thin irreducible T-modules with common diameter d.

(i) Assumed = 0.ThenW andW ′ are isomorphic as T-modules if andonly if theyhave the sameendpoint

and dual endpoint.
(ii) Assume d > 0. Then W and W ′ are isomorphic as T-modules if and only if they have the same

endpoint, dual endpoint and all of the quantities in Lemma 16.2.

Proof. (i) Immediate from Lemma 9.7.

(ii) By Theorem 15.18, W and W ′ have the same intersection numbers (resp., dual intersection

numbers) if and only if they have the same endpoint, dual endpoint, diameter and ϕ1(W) = ϕ1(W
′).

Combining this with Lemmas 9.7 and 16.2, we obtain the desired result. �

17. Two examples of Q -polynomial distance-regular graphs

In this section, we apply the results that we have obtained in Section 15 to several examples of Q-

polynomial distance-regular graphs. We will continue talking about the T-module W in Assumption

3.4 but now we will impose extra conditions on Γ .

Definition 17.1. ThegraphΓ is said tohaveq-Racah typewhenever itsparameterarray ({θi}Di=0, {θ∗
i }Di=0,

{ϕi}Di=1, {φi}Di=1) satisfy the following:

For 0� i �D,

θi = θ0 + hq−i(1 − qi)(1 − sqi+1),

θ∗
i = θ∗

0 + h∗q−i(1 − qi)(1 − s∗qi+1).

For 1� i �D,

ϕi = hh∗q1−2i(1 − qi)(1 − qi−D−1)(1 − r1q
i)(1 − r2q

i),

φi = hh∗q1−2i(1 − qi)(1 − qi−D−1)(r1 − s∗qi)(r2 − s∗qi)/s∗.

In the above, q, h, h∗, r1, r2, s, s∗ are complex scalars such that r1r2 = ss∗qD+1, hh∗ss∗ /= 0,

q /∈ {−1, 0, 1}.
Lemma 17.2. Let Γ be as in Definition 17.1. Then for 0� i, j �D,

θi − θj = h(qi − qj)(sq − q−i−j),

θ∗
i − θ∗

j = h∗(qi − qj)(s∗q − q−i−j).

Proof. Routine calculation using Definition 17.1. �

Lemma 17.3. With reference to Definition 17.1, none of qi, r1q
i, r2q

i, s∗qi/r1, s∗qi/r2 is equal to 1 for

1� i �D. Moreover, neither of sqi, s∗qi is equal to 1 for 2� i � 2D.

Proof. The first assertion follows from Definition 17.1 and the fact that for 1� i �D, θi /= θ0, θ
∗
i /= θ∗

0 ,

ϕi /= 0, φi /= 0. The second assertion is immediate from Lemma 17.2 and the fact that the eigenvalues

(resp., dual eigenvalues) of Γ are mutually distinct. �

Lemma 17.4. LetΓ be as in Definition 17.1. Let {ϕi(W)}di=1 and {φi(W)}di=1 be the first split sequence and

second split sequence of W, respectively. Then there exists τ(W) ∈ C such that for 1� i � d,

ϕi(W) = hh∗(1 − qi)(1 − qd−i+1)
(
τ(W) − ss∗qr+t+i+1 − q−r−t−i−d

)
, (124)

φi(W) = hh∗(1 − qi)(1 − qd−i+1)
(
τ(W) − s∗qr−t−d+i − sqt−r−i+1

)
. (125)
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Proof. Since h, h∗ are both nonzero and q, qd are both not equal to 1, there exists τ(W) such that (124)

holds for i = 1. Plugging ϕ1(W) in (76) and using Lemma 17.2, we routinely obtain that (125) holds

for 1� i � d. Evaluating (75) using (125) with i = 1 and repeating the same argument above, we find

that (124) holds for 1� i � d. �

We make a comment about our notation used in Lemma 17.4. In the proof of [11, Theorem 35.15],

there are scalars τ , h, h∗. Our present h, h∗ are the same as those in [11, Theorem 35.15]. However, our

τ(W) is equal to τ/hh∗.

Theorem 17.5. Let Γ be as in Definition 17.1. Let r1(W), r2(W) be the roots of

λ2 − τ(W)qr+t+dλ + ss∗q2r+2t+d+1 = 0,

where τ(W) is from Lemma 17.4. Then for 1� i � d,

ϕi(W) = hh∗q1−2i−t−r(1 − qi)(1 − qi−d−1)(1 − r1(W)qi)(1 − r2(W)qi), (126)

φi(W) = hh∗q1−2i−t−r(1 − qi)(1 − qi−d−1)(r1(W) − s∗qi+2r)(r2(W) − s∗qi+2r)/s∗q2r.
(127)

Proof. Note that

r1(W)r2(W) = ss∗q2r+2t+d+1, r1(W) + r2(W) = τ(W)qr+t+d. (128)

Eliminating τ(W), ss∗ in (124) using (128), we routinely obtain (126). Arguing similarly, we obtain

(127). �

The next theorem will involve basic hypergeometric series. For the definition, see [6, p. 4].

Theorem 17.6. Let Γ be as in Definition 17.1. Then

ui(θt+j) = 4φ3

⎛
⎝q−i, s∗q2r+i+1, q−j , sq2t+j+1

r1(W)q, r2(W)q, q−d

∣∣∣∣∣∣ q, q
⎞
⎠ (0� i, j � d),

where ui = uWi , r1(W), r2(W) are from Definitions 11.5 and 17.5.

Proof. Routine calculation using (77) and Lemmas 17.2 and 17.5. �

The polynomials ui are q-Racah polynomials. For the definition of q-Racah polynomials, see [1].

Theorem 17.7. Let Γ be as in Definition 17.1. Then the intersection numbers of W are as follows:

b0(W) = hq−t(1 − q−d)(1 − r1(W)q)(1 − r2(W)q)

(1 − s∗q2r+2)
,

bi(W) = hq−t(1 − qi−d)(1 − s∗q2r+i+1)(1 − r1(W)qi+1)(1 − r2(W)qi+1)

(1 − s∗q2r+2i+1)(1 − s∗q2r+2i+2)
(1� i � d − 1),

ci(W) = hq−t(1 − qi)(1 − s∗q2r+i+d+1)(r1(W) − s∗q2r+i)(r2(W) − s∗q2r+i)

s∗q2r+d(1 − s∗q2r+2i)(1 − s∗q2r+2i+1)
(1� i � d − 1),

cd(W) = hq−t(1 − qd)(r1(W) − s∗q2r+d)(r2(W) − s∗q2r+d)

s∗q2r+d(1 − s∗q2r+2d)
,

ai(W) = θt − bi(W) − ci(W) (0� i � d),
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where r1(W), r2(W)are fromTheorem17.5.Toobtain thedual intersectionnumbersofW, replace (h, s∗, r, t)
with (h∗, s, t, r).

Proof. Evaluate the equations on the left in (80) and (100) using Lemma 17.2 and Theorem 17.5. �

Corollary 17.8. Let Γ be as in Definition 17.1. Then the intersection numbers of Γ are as follows:

b0 = h(1 − q−D)(1 − r1q)(1 − r2q)

(1 − s∗q2)
,

bi = h(1 − qi−D)(1 − s∗qi+1)(1 − r1q
i+1)(1 − r2q

i+1)

(1 − s∗q2i+1)(1 − s∗q2i+2)
(1� i �D − 1),

ci = h(1 − qi)(1 − s∗qi+D+1)(r1 − s∗qi)(r2 − s∗qi)
s∗qD(1 − s∗q2i)(1 − s∗q2i+1)

(1� i �D − 1),

cD = h(1 − qD)(r1 − s∗qD)(r2 − s∗qD)
s∗qD(1 − s∗q2D)

,

ai = θ0 − bi − ci (0� i �D),

where r1, r2 are from Definition 17.1. To obtain the dual intersection numbers of Γ , replace (h, s∗) with

(h∗, s).

Proof. Apply Theorem 17.7 with W equal to the trivial T-module and use Lemma 9.6. �

We now turn our attention to graphs with classical parameters.

Definition 17.9. Let b,α, σ ∈ C with b /∈ {−1, 0, 1}. The graph Γ is said to have classical parameters

(D, b,α, σ) whenever

ci = bi − 1

b − 1

(
1 + α

bi−1 − 1

b − 1

)
(1� i �D),

bi = bD − bi

b − 1

(
σ − α

bi − 1

b − 1

)
(0� i �D − 1).

Theorem 17.10 [3, Corollary 8.4.2]. Let Γ be as in Definition 17.9. The following hold:

(i) There exists an ordering {θi}Di=0 of the eigenvalues such that for 0� i �D,

θi = η + μbi + hb−i,

where

η = (σ − 1)(1 − b) − α(bD + 1)

(b − 1)2
,

μ = α − b + 1

(b − 1)2
,

h = bD(σb − σ + α)

(b − 1)2
.

(ii) Γ is Q-polynomial with respect to {θi}Di=0.
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Let E be the primitive idempotent of Γ corresponding to θ1. Let {θ∗
i }Di=0 be its corresponding dual

eigenvalue sequence. Our next goal is to express these values in terms of α, b, σ , D.

Theorem 17.11 [3, Corollary 8.4.2]. Let {θ∗
i }Di=0 be the dual eigenvalues corresponding to E. Then for

0� i �D,

θ∗
i = η∗ + h∗b−i, (129)

where

η∗ = θ∗
0

(
1 + b

b − 1

(σ − α)(bD−1 − 1) − b + 1 − σ(bD − 1)

σ (bD − 1)

)
,

h∗ = θ∗
0 − η∗. (130)

Observe that by (129), h∗ /= 0 since θ∗
i /= θ∗

0 for 1� i �D. Later in this section, we will express θ∗
0

in terms of α, b, σ , D.

Lemma 17.12. Let Γ be as in Definition 17.9. Then for 0� i, j �D,

θi − θj = (bi − bj)(μ − hb−i−j),

θ∗
i − θ∗

j = h∗b−i−j(bj − bi),

where μ, h, h∗ are the from Theorems 17.10 and 17.11.

Proof. Routine calculation using Theorems 17.10 and 17.11. �

Lemma 17.13. LetΓ be as in Definition 17.9. Then there exists τ(W) ∈ C such that the first split sequence

and second split sequence of W are given by

ϕi(W) = (1 − bi)(1 − bd−i+1)(τ (W) − hh∗b−r−t−i−d) (1� i � d), (131)

φi(W) = (1 − bi)(1 − bd−i+1)(τ (W) − h∗μb−r+t−i) (1� i � d), (132)

where μ, h, h∗ are from Theorems 17.10 and 17.11.

Proof. Similar to the proof of Lemma 17.4. �

Applying Lemma 17.13 withW equal to the trivial T-module and using Definition 15.20, we obtain

the following corollary.

Corollary 17.14. Let Γ be as in Definition 17.9. Then the first split sequence and second split sequence of

Γ are as follows:
ϕi = (1 − bi)(1 − bD−i+1)(τ − hh∗b−i−D) (1� i �D),

φi = (1 − bi)(1 − bD−i+1)(τ − h∗μb−i) (1� i �D),

where μ, h, h∗ are from Theorems 17.10 and 17.11 and τ is the τ(W) associated with the trivial T-module.

Observe that the parameter h given in Theorem 17.10 may or may not be zero. Consider a thin

irreducible T-moduleW. Note that if h = 0, then τ(W) /= 0. This follows from (131) and the fact that

ϕi(W) /= 0 for 1� i � d.
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Theorem 17.15. Let Γ be as in Definition 17.9. For 0� i, j � d,

ui(θt+j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3φ2

⎛
⎝ b−i , b−j ,

μb2t+j

h

b−d,
τ(W)br+t+d+1

hh∗

∣∣∣∣∣∣ b, b

⎞
⎠ if h /= 0

2φ1

⎛
⎝ b−i , b−j

b−d

∣∣∣∣∣∣ b, μh∗b−r+t+j−d

τ(W)

⎞
⎠ if h = 0

,

where ui = uWi is from Definition 11.5 and μ, h, h∗, τ(W) are from Theorems 17.10 and 17.11 and

Lemma 17.13.

Proof. Routine calculation using (77) and Lemmas 17.12 and 17.13. �

Theorem 17.16. Let Γ be as in Definition 17.9. Then the intersection numbers of W are as follows:
bi(W) = br+2i+1(1 − bd−i)(τ (W) − hh∗b−r−t−i−d−1)/h∗ (0� i � d − 1), (133)

ci(W) = br+i(bi − 1)(τ (W) − h∗μb−r+t−i)/h∗ (1� i � d), (134)

ai(W) = θt − bi(W) − ci(W) (0� i � d),

where μ, h, h∗, τ(W) are from Theorems 17.10 and 17.11 and Lemma 17.13.

Proof. Evaluate the equations on the left in (80) and (100) using Lemmas 17.12 and 17.13. �

Theorem 17.17. Let Γ be as in Definition 17.9. Then the dual intersection numbers of W are as follows:

b∗
0(W) = (bd − 1)(τ (W) − hh∗b−r−t−d−1)

μbt − hb−t−1
,

b∗
i (W) = b−i(bd−i − 1)(τ (W) − hh∗b−r−t−i−d−1)(μbt − hb−t−i)

(μbt − hb−t−2i−1)(μbt − hb−t−2i)
(1� i � d − 1),

(135)

c∗i (W) = bd−2i+1(1 − bi)(τ (W) − h∗μb−r+t−d+i−1)(μbt − hb−t−i−d)

(μbt − hb−t−2i)(μbt − hb−t−2i+1)
(1� i � d − 1),

(136)

c∗d (W) = b−d+1(1 − bd)(τ (W) − h∗μb−r+t−1)

μbt − hb−t−2d+1
,

a∗
i (W) = θ∗

r − b∗
i (W) − c∗i (W) (0� i � d),

whete μ, h, h∗, τ(W) are from Theorems 17.10 and 17.11 and Lemma 17.13.

Proof. Note that for 1� i � d − 1, μbt − hb−t−2i−1 /= 0 since this is a factor of θt+i − θt+i+1 by

Lemma 17.12 and the eigenvalues of Γ are mutually distinct. Similarly, μbt − hb−t−2i and μbt −
hb−t−2i+1 are nonzero since these are factors of θt+i−1 − θt+i+1 and θt+i − θt+i−1, respectively.

Arguing as in the proof of Theorem 17.16, we obtain the desired result. �

In Definition 17.9, we gave a formula for the intersection numbers of Γ in terms of α, b, σ , D. We

now give an alternate formula in terms of μ, h, h∗.
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Theorem 17.18. Let Γ be as in Definition 17.9. Then the intersection numbers of Γ are as follows:
bi = b2i+1(1 − bD−i)(τ − hh∗b−i−D−1)/h∗ (0� i �D − 1),

ci = bi(bi − 1)(τ − h∗μb−i)/h∗ (1� i �D), (137)

ai = θ0 − bi − ci (0� i �D),

where μ, h, h∗, τ are from Theorems 17.10 and 17.11 and Corollary 17.14.

Proof. Immediate from Lemmas 9.6 and 17.16. �

We now give a formula for the dual intersection numbers of Γ .

Theorem 17.19. Let Γ be as in Definition 17.9. Then the dual intersection numbers of Γ are as follows:

b∗
0 = (bD − 1)(τ − hh∗b−D−1)

μ − hb−1
,

b∗
i = b−i(bD−i − 1)(τ − hh∗b−i−D−1)(μ − hb−i)

(μ − hb−2i−1)(μ − hb−2i)
(1� i �D − 1),

c∗i = bD−2i+1(1 − bi)(τ − h∗μb−D+i−1)(μ − hb−i−D)

(μ − hb−2i)(μ − hb−2i+1)
(1� i �D − 1), (138)

c∗D = b−D+1(1 − bD)(τ − h∗μb−1)

(μ − hb−2D+1)
,

a∗
i = θ∗

0 − b∗
i − c∗i (0� i �D),

where μ, h, h∗, τ are from Theorems 17.10 and 17.11 and Corollary 17.14.

Proof. Immediate from Lemma 9.6 and Theorem 17.17 �

Recall that in Lemma 17.11, we gave a formula for the dual eigenvalues of Γ in terms of α, b, σ , θ∗
0 .

We are now ready to solve for θ∗
0 .

Lemma 17.20. Let Γ be as in Definition 17.9. Let h∗ and τ be as in Theorem 17.11 and Corollary 17.14,

respectively. Then

h∗ = − bD−1(μb2 − h)(μb − h)

(μbD+1 − h)(bD−1 + μ(b − 1)(bD−1 − 1))
, (139)

τ = h∗(1 + μb − μ)

b(b − 1)
, (140)

θ∗
0 = h∗σ(bD − 1)(1 − b)

b((σ − α)(bD−1 − 1) − b + 1 − σ(bD − 1))
. (141)

Proof. To obtain (139) and (140), solve the system of equations in (137) and (138) with i = 1 and use

the fact that c1 = 1 = c∗1 . Line (141) is immediate from (130). �

In Theorem 17.16, we gave a formula for the intersection numbers of W. We now give an alternate

formula which is reminiscent of Definition 17.9
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Theorem 17.21. Let Γ be as in Definition 17.9. Then

ci(W) = bi − 1

b − 1

(
c1(W) + α(W)

bi−1 − 1

b − 1

)
(1� i � d), (142)

bi(W) = bd − bi

b − 1

(
σ(W) − α(W)

bi − 1

b − 1

)
(0� i � d − 1), (143)

where

α(W) = τ(W)br+1(b − 1)2/h∗,

σ(W) = hb−t(b − 1)2 − α(W)bd

bd(b − 1)
.

Proof. Comparing the right side of (142) with that of (134), we find that (142) holds. Comparing the

right side of (143) with that of (133), we obtain (143). �

Acknowledgments

This paper was written while the author was an honorary fellow at the University of Wisconsin-

Madison, January–December 2009, with support from HEDP-FDP Sandwich Program of the Commis-

sion on Higher Education, Philippines. The author is greatly indebted to Professor Terwilliger for his

many valuable ideas and suggestions.

References

[1] R. Askey, J.A.Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or 6 − j symbols, SIAM J. Math.
Anal. 10 (1979) 1008–1016.

[2] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings, London, 1984.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
[4] J.S. Caughman IV, The Terwilliger algebra of bipartite P- and Q-polynomial schemes, Discrete Math. 196 (1999) 65–95.
[5] B. Curtin, The Terwilliger algebra of a 2-homogeneous bipartite distance-regular graph, J. Combin. Theory 81 (B) (2001)

125–141.
[6] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, 1990.
[7] J.T. Go, The Terwilliger algebra of the hypercube, Eur. J. Combin. 23 (2002) 399–429.
[8] P. Terwilliger, The subconstituent algebra of an association scheme (part I), J. Algebraic Combin. 1 (4) (1992) 363–388.
[9] P. Terwilliger, The subconstituent algebra of an association scheme (part II), J. Algebraic Combin. 2 (1) (1993) 73–103.

[10] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl.
330 (2001) 149–203.

[11] P. Terwilliger, Two linear transformations each tridiagonalwith respect to an eigenbasis of the other; an algebraic approach
to the Askey scheme of orthogonal polynomials. Available from: arxiv:math/0408390v3.


	Structure of thin irreducible modules of a Q-polynomialdistance-regular graph
	Introduction
	Preliminaries
	T-Modules
	Generators for End(W)
	The scalars ai(W) and xi(W)
	The polynomial pi
	The scalars , mi
	Two bases for W
	The scalars bi(W),  ci(W)
	The scalar ki(W)
	The polynomials ui and vi
	Some inner products and the Askey--Wilson duality
	The orthogonality relations
	Two more bases for W
	Describing W in terms of its parameter array
	Isomorphism classes of thin irreducible T-modules
	Two examples of Q-polynomial distance-regular graphs
	References


