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We call these the intersection numbers and dual intersection
numbers of W. Using these numbers, we compute all inner prod-
ucts involving the standard and dual standard bases. We also use
these numbers to define two normalizations u;, v; (resp., uj, v;°)
for p; (resp., pj). Using the orthogonality of the standard and
dual standard bases, we show that for each of the sequences
{Pi}?:ov {P?}?:ov {ui}?zot {uf ?:ov {Vi}?:o' {V;F}?:o the polynomials
involved are orthogonal and we display the orthogonality relations.
We also show that each of the sequences satisfy a three-term recur-
rence and a relation known as the Askey-Wilson duality. We then
turn our attention to two more bases for W. We find the matrix
representations of A and A* with respect to these bases. From the
entries of these matrices we obtain two sequences of scalars known
as the first split sequence and second split sequence of W. We asso-
ciate with W a sequence of scalars called the parameter array. This
sequence consists of the eigenvalues of the restriction of A to W, the
eigenvalues of the restriction of A* to W, the first split sequence of W
and the second split sequence of W. We express all the scalars and
polynomials associated with W in terms of its parameter array. We
show that the parameter array of W is determined by r, t, d and one
more free parameter. From this we conclude that the isomorphism
class of W is determined by these four parameters. Finally, we apply
our results to the case in which I has g-Racah type or classical
parameters.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Terwilliger algebra T of a distance-regular graph was first introduced in [8]. This algebra has
been used extensively to study the Q-polynomial property [4,5,7]. In this paper, we continue this study
focusing on the structure of thin irreducible T-modules.

Let I" be a Q-polynomial distance-regular graph with vertex set X, diameter D > 3, and adjacency
matrix A (see Section 2 for formal definitions). Fixx € X and let A* = A*(x) be the corresponding dual
adjacency matrix. Recall that the Terwilliger algebra T = T(x) is the subalgebra of Maty (C) generated
by Aand A*. Let W be a thin irreducible T-module. It is known that the action of Aand A* on W induces a
linear algebraic object called a Leonard pair; this was first introduced by Terwilliger in [10]. The theory
of Leonard pairs has been developed over the past decade. We apply these results to obtain a detailed
description of W. In our description, we do not assume that the reader is familiar with Leonard pairs.
The results will be proved from the point of view of I'".

Our results are summarized as follows. Let {E,<}?:0 be a Q-polynomial ordering of the primitive
idempotents of I" and let {Ei*}f):0 be the dual primitive idempotents of I" with respect to x. Let r, t and
d be the endpoint, dual endpoint and diameter of W, respectively. Let u and v be nonzero vectors in E;W
and E W, respectively. We show that {E}* +iA'V}?=0 and {Et+iA*’u}?=0 are bases for W that are orthogonal
with respect to the standard Hermitian dot product. We display the matrix representations of A and A*
with respect to these bases. We associate with W two sequences of polynomials {pi}?:O and {p;k}?zo. We
show that for 0 <i<d, pi(A)v = E;"HAiv and p¥ (A*)u = E4;A*'u. Next, we show that {Ef_H-u}?:O and
{E[_Hv}?:o are orthogonal bases for W: we call these the standard basis and dual standard basis for W,
respectively. We display the matrix representations of A and A* with respect to these bases. The entries
in these matrices will play an important role in our theory. We call these the intersection numbers
and dual intersection numbers of W. Using these numbers, we compute all inner products involving
the standard and dual standard bases. We also use these numbers to define two normalizations u;, v;
(resp., uf, v¥

¥, v{) for p; (resp., pf'). Using the orthogonality of the standard and dual standard bases, we
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show that for each of the sequences {p,-}?zo, {p,*}?zo, {ui}?zo, {u?‘}?zo, i}, {v;k}fzo the polynomials
involved are orthogonal and we display the orthogonality relations. We also show that each of the
sequences satisfy a three-term recurrence and a relation known as the Askey-Wilson duality. We then
turn our attention to two more bases for W. We find the matrix representations of A and A* with
respect to these bases. From the entries of these matrices we obtain two sequences of scalars known
as the first split sequence and second split sequence of W. We associate with W a sequence of scalars
called the parameter array. This sequence consists of the eigenvalues of the restriction of A to W, the
eigenvalues of the restriction of A* to W, the first split sequence of W and the second split sequence
of W. We express all the scalars and polynomials associated with W in terms of its parameter array.
We show that the parameter array of W is determined by r, t, d and one more free parameter. From
this we conclude that the isomorphism class of W is determined by these four parameters. Finally, we
apply our results to the case in which I" has g-Racah type or classical parameters.

2. Preliminaries

In this section, we recall some basic concepts concerning Q-polynomial distance-regular graphs.
For more background information see [2,3].

Let X be a non-empty finite set. Let Maty(C) denote the C-algebra of matrices whose rows and
columns are indexed by X and whose entries are in C. We let I (resp., J) denote the identity matrix
(resp., all 1's matrix) in Matx (C). Let V = CX be the vector space over C consisting of column vectors
whose coordinates are indexed by X and whose entries are in C. Observe that Maty (C) acts on V by left
multiplication. For u,v € V, define (u, v) := u'v, where u' is the transpose of u and v is the complex
conjugate of v. Observe that (, ) is a positive definite Hermitian form on V. Note that (Bu, v) = (1, Etv)
for all B € Maty(C) and u,v € V.Fory € X, let y denote the element in V with a 1 in the y coordinate
and 0 in all other coordinates. Observe that {y|y € X} is an orthonormal basis for V.

Let I' = (X, R) be a finite undirected connected graph without loops or multiple edges, with vertex
set X and edge set R. Let d denote the path-length distance function for I". Set D = max{d(x, y)|x,y €
X}. Werefer to D as the diameter of I'.For x € X and anintegeri >0, let I;(x) = {y|ly € X, d(x,y) = i}.
Abbreviate I" (x) := I'1 (x). For an integer k > 0, we say that I' is regular with valency k whenever k =
|I"(x)| for all x € X. We say that I is distance-regular whenever there exists scalars pg (0<h,i,j<D)

such that pg = |I;(x) N I;(y)| for all x,y € X with 9(x,y) = h. We refer to the pg as the intersection
numbers of I' . For the rest of this paper, assume that I" is distance-regular with diameter D > 3. Note that
by the triangle inequality, we have (i) p{»} = Oifone of h, i, j is greater than the sum of the other two; (ii)

pg =+ 0ifone of h, i, is equal to the sum of the other two. We abbreviate ¢; := p"l,-_1 (1<i<D), aq; :=

p"]i (0<i<D), b; := p"]i_H (0<i< D — 1).Fornotational convenience, define bp = 0, ¢y = 0.0Observe
that I" is regular with valency k = bg. To avoid trivialities, we always assume that k > 3. Note that
ci+ai+bi=kforO<i<D.For0<i<D,letk; = pg. Observe that k; = |I7(x)| for all x € X. By [2,
p. 195],

ki = ———— (0<i<D). (1)
Cl Cz ... Cl
We refer to k; as the ithvalency of I'.

We now recall the Bose-Mesner algebra of I". For 0 <i< D, define A; € Matx(C) to have (x,y)-
entry equal to 1if d(x, y) = i, and 0 otherwise. We refer to A; as the ithdistance matrix of I". Note that
(i) Ao = I; (i) 2Py A = J; (iii) AL = A; (0<i<D); (iv) Aidj = P_, pgA,, (0<i,j < D). Observe that
{A,-},D=0 are linearly independent. Thus, they form a basis for a subalgebra M of Matx(C); M is called
the Bose-Mesner algebra of I'. Abbreviate A := A; and call this the adjacency matrix of I". By [2, p.
190], M is generated by A. By [2, p. 59], M has a second basis {E,-}P=O which satisfies the following: (i)
Eo = |X|7Y; (i) X2 o Ei = I; (iii) Ef = E; = E; (0 <i <D); (iv) EiEj = 8;E; (0<1,j < D). For notational
convenience, define E_; = 0, Ep41 = 0. For 0<i<D, let m; denote the rank of E;; we call m; the
multiplicity of I" associated with E;. Since {E;}_ is a basis for M, there exist complex scalars {6;}_,
such thatA = ,-DZO 6;E;. Note that for 0 <i< D, AE; = E;A = 6;E;. Thus, E;V is an eigenspace for A, and
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6; is the corresponding eigenvalue. Since A is symmetric, ; € R. Since A generates M, the {9,-}?=0 are
mutually distinct. Note that

D
V=) EV (orthogonal direct sum), (2)
i=0
and that
A—6i
E= [] = (0<i<D). 3)
0<j<D 0 — 91
#i

We call 6; the eigenvalue of I" associated with E;.

We now recall the Krein parameters of I". Observe that A; o Aj = §;;A; for 0 <i,j <D, where o is
the entry-wise multiplication. Thus, M is closed under o. Consequently, there exist complex scalars
qg» (0 < h,1i,j <D) such that

D
EoE=|X""Y qiEn (0<ij<D).
h=0

The qg- are known as the Krein parameters or dual intersection numbers of I". By [2, p. 69], the qg are
real and nonnegative.

We now consider the Q-polynomial property. The graph I is said to be Q-polynomial (with respect
to the given ordering {E,-}P=O of primitive idempotents) whenever both: (i) qg =0 if one of h,i,j is
greater than the sum of the other two; (ii) qg #+ 0 if one of h, i,j is equal to the sum of the other two.
For the rest of this paper, we assume that I" is Q-polynomial with respect to {E; ?:0. We abbreviate
¢ ==qy_, (1<i<D), af := q}; (0<i<D), bf := qy;,; (0<i<D — 1).For notational convenience,
define b}, = 0, ¢ = 0.By [2, p. 67], m; = q° (0<i<D).By|[2, p. 196],

bXp* ... p*
mi= 1 (0<i<D). (4)
GGG

We now recall the dual Bose-Mesner algebra of I". For the rest of this paper, fixx € X.For0<i<D,

define Ej = E*(x) to be the diagonal matrix in Matx (C) with (y, y)-entry

Em={o amerwise 0N, ®)

We refer to E}" as the ith dual primitive idempotent of I" with respect to x. For notational convenience,
define E*; =0, Ej,, = 0. Note that (i) P JEF =1; (ii) Eff = Ef = Ef (0<i<D); (iii) Ei*Ej?" =

1
8;E; (0<i,j <D).Observe that {Ei*}?:0 are linearly independent. Thus, they form a basis for a commu-
tative subalgebra M* = M*(x) of Maty (C); M* is called the dual Bose-Mesner algebra of I" with respect

tox. For 0 <i< D, define A} = A} (x) to be the diagonal matrix in Matx (C) such that (A?‘)yy = |X|(Ei)xy
for y € X. By [8, p. 379], {A;"}lp=0 is a basis for M* and satisfies the following properties: (i) A§ = I;

(i) X2 o AF = |X|ES; (iiii) AF = AF = AF (0<i<D); (iv) AFAY =0, qiAr (0<i,j<D). We refer

to Af as the ith dual distance matrix of I" with respect to x. Abbreviate A* := A} and call this the dual

adjacency matrix of I" with respect ot x. By [8, Lemma 3.11], M* is generated by A*. Since {E}* ?:o isa

basis for M*, there exist complex scalars {6;"}2_, such that A* = Y-?_/ 6E}". Note that for 0<i<D,
A*E} = EfA* = 0}E;.SinceA* isreal, 6" € R.Since A* generates M* the {6;"}7_, are mutually distinct.
Observe that

E'V =Span {Jly € X, 3(x,y) =i} (0<i<D).
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Moreover,

D

V= Z EV (orthogonal direct sum) (6)

i=0

and
A* —6F1
ngD i J
J#i

We call 6; the dual eigenvalue of I" associated with E".

We now recall the Terwilliger algebra of I". Let T = T(x) denote the subalgebra of Matx(C) gen-
erated by M and M*. We refer to T as the Terwilliger algebra of I" with respect to x. Observe that T is
generated by A, A*. Moreover, T is semi-simple. By [8, Lemma 3.2],

EfAnEf = Oif andonlyif p} =0  (0<hij<D), (8)
EARE; = Oif andonly if ¢ =0  (0<h,ij<D). 9)
It follows from (8) and (9) that

AEV CE'V+E'V+ELV (0<i<D),
A*EV CE_1V+EV+EV (0<i<D).

Moreover,
*ahp* 0, h<|i—j| ..
E7A Ej _{7&0' h=i—j| (0<h,i,j<D), (10)
axhp |0, h<|i—]j .
EA EJ—{;EO, h=|i—]| (0<h,i,j<D). (11)

Lemma 2.1. For 0<i,j,k,I<Dwithi+j= |k — 1|,
EFAHES — EfAEAE, itj=k=1
! KT\ EAELAE, i i=1—k

Proof. In EfA™IE}:, write A™ as AIA with I = Y2 _ E¥ . Evaluate the result using (10). [

Lemma 2.2. For0<i,j, k I<dwithi+j= |k — ],

i EAYE LAYE,  i+j=k—1
E (A* 1+]E — 1A El+ifd "Bk, s : )
ATk EA"E jAYE, i+j=1—k
Proof. Similar to the proof of Lemma 2.1. [J

3. T-Modules

In this section, we recall some basic facts concerning the T-modules of I".

Let W be a subspace of V. We say that W is a T-module whenever TW C W. Note that V is a
T-module. We refer to V as the standard module. Let W and W’ be T-modules. By a T-module isomorphism
from W to W/, we mean a vector space isomorphism o : W — W’ such that (6B — Bo)W = 0 for
all B € T. If such a map exists, we say that W and W’ are isomorphic as T-modules. A T-module W is
said to be irreducible whenever W =+ 0 and W contains no T-modules besides 0 and W. W is said to
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be thin whenever dim Ef W <1 for 0 <i <D. Similarly, W is said to be dual thin whenever dim E;W < 1
for0<i<D.

We now recall the notion of endpoint, dual endpoint, diameter and dual diameter. Observe that
W = Y EW (orthogonal direct sum) where the sum is taken over all indices i(0 <i< D) such that
EfW = 0. Similarly, W = Y E;W (orthogonal direct sum) where the sum is taken over all indices
i(0 <i< D) suchthat W # 0.Letr = min{i|0 <i< D, EfW # 0} and t = min{i|0 <i <D, EW # 0}.
We call r and t the endpoint and dual endpoint of W, respectively. Let d = |{i|0 <i <D, EfW # 0}| — 1
and d* = |{i|0 <i<D, E;W # 0}| — 1. We refer to d and d* as the diameter and dual diameter of W,
respectively.

Lemma 3.1 [8, Lemma 3.9]. Let W be an irreducible T-module with endpoint r, dual endpoint t, diameter
d and dual diameter d*.Then (i) and (v) below hold:

(i) AEfW C Ef (W + Ef'W + Ef ;W (0<i<D).
(ii) EfW # Oifand only ifr <i<r 4+ d (0<i<D).
(iii) EfAEfW # 0if |i —j| = 1(0<ij<D).
(iv) W = Z?:o ;W (orthogonal direct sum).
(v) Suppose W is thin. Then E;W = EEFW for 0 <i<D. Moreover, W is dual thin and d = d*.

Lemma 3.2 [8, Lemma 3.12]. Let W be as in Lemma 3.1. Then (i)-(v) below hold:

(i) A*EW C E; W + EW + E. W (0<i<D).
(i) EW £ Oifandonly ift <i<t+d (0<i<D).
(iii) EA*EW # 0if|i —j| = 1 (0<i,j<D).
(iv) W = Z?:o E;iW (orthogonal direct sum).
(v) Suppose W is dual thin. Then EfW = E]'E;W for 0 <i < D. Moreover, W is thin and d* = d.

Lemma 3.3 [8, Lemma 3.6]. There exists a unique irreducible T-module of endpoint 0, dual endpoint 0 and
diameter D. Moreover, it is thin and dual thin. We refer to this module as the trivial T-module.

For the rest of this paper, we will have the following assumption on W.

Assumption 3.4. From now on, W will denote a thin irreducible -module with endpoint r, dual
endpoint t and diameter d. Unless otherwise stated, we assume that d > 0.

4. Generators for End(W)

With reference to Assumption 3.4, let End(W) = End¢ (W) denote the C-algebra of all C-linear
transformations from W to W. In this section, we will look at bases and generators of End(W). We
begin with two lemmas whose proofs are routine and left to the reader.

Lemma 4.1. For 0 <i<d, let w; be a nonzero vector in E} ;W. Note that {wi}L, is a basis for W. With
respect to this basis:

(i) the matrix representation of E;: " has (i, i)-entry 1 and all other entries 0 (0 <i< d);
(ii) the matrix representation of A* is diag (9;" 01 9;"+d> ;

(iii) the matrix representation of A is tridiagonal with each entry nonzero on the superdiagonal and
subdiagonal.

Lemma 4.2. For 0 <i < d, let w} be a nonzero vector in Er.;W. Note that {w;}*_ is a basis for W. With
respect to this basis:
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(i) the matrix representation of E;; has (i, i)-entry 1 and all other entries 0 (0 <i<d);

(ii) the matrix representation of A is diag (0, O¢+1, . . ., O¢+q);
(iii) the matrix representation of A* is tridiagonal with each entry nonzero on the superdiagonal and
subdiagonal.

Definition 4.3. We refer to the sequence {GH_,-}?:O (resp., {9;*+i}f:0) as the eigenvalue sequence (resp.,
dual eigenvalue sequence) of W.

Lemma4.4. On W,
d d
[T4A =6 =0, T (A" —67.0) =0.
i=0 i=0

Proof. Immediate from Lemmas 4.1(ii) and 4.2(ii). O

Lemma 4.5. Let B (resp., B*) denote the matrix representation of A (resp., A*) with respect to the basis
given in Lemma 4.1 (resp., Lemma 4.2). Then

(B)ij_{#o, ho i) ©<hij<d,

a0, h<li—ji -
@y =1{%, NZIZ) ©<nij<a.

Proof. Routine using Lemmas 4.1(iii) and 4.2(iii). O
Using Lemma 4.5 we obtain the following strengthening of (10) and (11).

Lemma 4.6. For 0 < h, i,j <d, the following hold on W:

hpx  _ [0, h<li—jl
E:+iA ;k+j - { :IA 0, h= |i _]l ’ (]2)
0, h<li—j
Et+iA*hEt+j = { #0, h= Ii _jI . (13)

Proof. Let B denote matrix representation of A with respect to the basis given in Lemma 4.1. By
construction, the matrix representation of E;' +iA“E;" 4 with respect to this basis has (i, j)-entry (Bh)ij
and all other entries are 0. Line (12) follows from this and Lemma 4.5. The proof of (13) is similar. [J

Theorem 4.7. Each of the following forms a basis for the C-vector space End(W):

(i) the actions of {ATEFA"|0<m,n<d}onW,
(ii) the actions of {A*"E.A*|0<m,n<d}on W.

Proof. Let S denote {A™E¥A"|0 < m,n < d}. Observe that |S| = (d + 1) and this is equal to the dimen-

sion of End(W). It suffices to show that the actions of the elements of S on W are linearly independent.

Let {wi}?zo be the basis for W in Lemma 4.1. With respect to this basis, let B and F; be the matrix
representations of A and E*. We claim that for 0 < m, n <d, B"F;B" has entries

mekpny |0 i>morj>n ..

O =% (D menn @<ii<d), (14)

By Lemma 4.1(i), F;* has (0, 0)-entry 1 and all other entries are 0. Thus,
(B™F}B"); = (BM)io(Bg (0<ij<d).
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Combining this with Lemma 4.5, we obtain (14). It follows from (14) that actions of the elements of S
on W are linearly independent and hence form a basis for End(W). Similarly, (ii) can be shown to be
a basis for End(W). O

Theorem 4.8. Each of the following is a generating set for the C-algebra End(W):

(i) the actions of A, E} on W,
(ii) the actions of A* E; on W,
(iii) the actions of A, A* on W.

Proof. By Theorem 4.7, (i) and (ii) are generating sets for End(W). The set (iii) is a generating set for
End(W) by (i) and since E; is a polynomial in A*. [J

Definition 4.9. Define D (resp., D*) to be the subalgebra of End(W) generated by the action of A (resp.,
A*)on W.

Lemma 4.10. Each of the following forms a basis for the C-vector space D:

(i) the actions of {Ai}?:o onW,
(ii) the actions of{EHi}f’:O onW.
Proof. (i) By Lemma 4.5, {A"}f’:0 are linearly independent on W. Combining this with Lemma 4.4, we
obtain the result.
(ii) Immediate from (3) and (i). [

Lemma 4.11. Each of the following forms a basis for the C-vector space D* :

(i) the actions of {A*1}d_; on W,
(ii) the actions of{E;"Jri}fi:O on W.

Proof. Similar to the proof of Lemma 4.10. [

Corollary 4.12. Each of the following forms a basis for the C-vector space End(W) :

(i) the actions of {Er4E} Ecj|0 <i,j<d}on W,

(ii) the actions of{Ef+iEtE:‘+j|0 <i,j<d}onW.

Proof. Immediate from Theorem 4.7 and Lemmas 4.10 and 4.11. [
5. The scalars a;(W) and x; (W)

Let W be as in Assumption 3.4. In this section, we associate with W two sequences of scalars called
the a;(W) and x;(W). We will then describe the algebraic properties of these scalars.

Notation 5.1. For any Y € T, tryy Y denotes the trace of the action of Y on W.

Definition 5.2. Define
(W) = tryy (EfA) (W) = try (EiA*)  (0<i<d), (15)
X(W) = try (E;* LAER1A) X (W) = try (EpiAEriAT) (1<i<d). (16)

For notational convenience, define xo(W) = 0 and x§(W) = 0.
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Lemma 5.3. For 0 <i<d, let w; be a nonzero vector in E;;W. Let B denote the matrix representation of
A with respect to {wi}l‘-’zo. Then (i)-(iii) below hold:

() Bi = ;(W) (0<i<d).
(i) Bji—1Bi—1; = x(W) (1<i<d).
(>iii) x;(W) £0 (1<i<d).

Proof. (i) By Lemma 4.1(i), (iii), the (j, j)-entry of the matrix representation of E;"_;A with respect to
{Wi}fzo is B; if j = i and 0 otherwise (0 <j < d). Taking the trace of this matrix and using (15), we
obtain the desired result.

(ii) By Lemma 4.1(i), (iii), the (j, j)-entry of the matrix representation of Ef+iAEf+i_1A with respect
to {W,-}f’=0 is Bjj—1Bij—1,; if j = i and 0 otherwise (0 <j < d). Taking the trace of this matrix and using
(16), we obtain the desired result.

(iii) Immediate from (ii) and Lemma 4.1(iii). [

Lemma 5.4. For 0 <i<d, let w* be a nonzero vector in E;jW. Let B* denote the matrix representation of
A* with respect to {wl?"}?zo. Then (i)-(iii) below hold:

(i) Bf = af(W) (0<i<d).
(i) Bf;_1Bi_1; =% (W) (1<i<d).
(iii) X*(W) #£0 (1<i<d).

Proof. Similar to the proof of Lemma 5.3. [

Theorem 5.5. Let v be a nonzero vector in EfW. Then for 0 <i<d, E}" +iA"v is nonzero and hence is a basis
for EX, ;W. Moreover, {E}, AWV} is a basis for W.

Proof. Since v spans EfW, Ef, ;A'v spans Ef* ,A'EfW. By Lemma 4.6, Ef", /AEEfW + 0.Hence, E} ,A'v #
0. The rest of the assertion follows. [

Theorem 5.6. Let u be a nonzero vectorin E;W. Then for 0 <i<d, E[+iA*iu is nonzero and hence is a basis
for E¢;W. Moreover, {E[+,-A*'u}?=0 is a basis for W.

Proof. Similar to the proof of Theorem 5.5. [

Theorem 5.7. With respect to the basis given in Theorem 5.5, the matrix representation of A is

a(W) x(W) 0
1 a (W) x(W)
1 )

(17)

ag1 (W)  xq(W)
0 1 aqg(W)

Proof. Let {w,-}f=0 be the basis for W in Theorem 5.5. Let B denote the matrix representation of A with
respect to this basis. Note that for 0 <i<d — 1, E;"_HHAWI- = Bit1,iWit1. By Lemma 2.1,

* _ % * ip*,, _ p* i1k,
ErpipiAwi = Ep i AE GAE Vv = By AT BV = Wi

Thus, Bi+1; = 1 for 0<i<d — 1. The rest of the assertion follows from Lemma 5.3(i), (ii). [
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Theorem 5.8. With respect to the basis given in Theorem 5.6, the matrix representation of A* is

ai(W) xf(W) 0
1 ag(W) x5 (W)
1 .

aj_ (W)  xj(wW)
0 1 a; (W)

Proof. Similar to the proof of Theorem 5.7. [

Lemma 5.9. The following hold on W:

(i) B, AEY,; = Gi(W)ES,; (0<i<d).
(i) B, AE",; JAES, = x5(W)E,; (1<i<d).
(iif) EY,, AE' AE ;| =xi(W)E', , (1<i<d).
(IV) Et+iA*Ef+i = a;-k (W)EH_,' (O <i< d)
(V) EiA"Eryi 1 A"Erq = XF (W)Ey; (1<i<d).
(Vi) Eyi 1A"E A Eryir = xf (W)Eyi—1 (1<i<d).

Proof. (i) Let {w; }J‘LO be the basis for W in Theorem 5.5. By (17), E /AE, ,wj = &;a;(W)E[", ;wj. The
result follows.

(ii) Let G; denote the action ofE;k_H on W.Since W is thin, G; End(W)G; has dimension 1. Observe that
Gi is a nonzero element of G; End(W)G;. Thus there exists o € C such that E, ;AE}"; AE,; = aE;;
on W. Take the trace of both sides of this equation. Evaluating this using Definition 5.2 and the fact
that try (ES,;) = 1, we find that o = x;(W).

(iii) Similar to (ii).

(iv)—(vi) Similar to the proofs of (i)-(iii). [J

Lemma 5.10. The following hold:

() Lo ai(W) = XL 6rpi.

(ii) Z?:o ai (W) = Z?:o i
(iii) (W) € R, a*(W) € R (0<i<d).
(iv) x;(W) e R, x;(W) >0 (1<i<d).
W) xW) eR xf(W) >0 (1<i<d).

Proof. (i) Immediate from Theorem 5.7 and the fact that {9t+i}?=o are the eigenvalues of the action of
AonW.

(ii) Similar to the proof of (i).

(iii) By Lemma 5.9(i), a;(W) is an eigenvalue of the real symmetric matrix E;" +iAE;" ;- Thus, a;(W) €
R. Similarly, af (W) € R.

(iv) By Lemma 5.9(ii), x;(W) is an eigenvalue of the real symmetric matrix E/, ;AE;"; ;AE;, ;. Thus,
xi(W) € R.Since

t
ErAEry i 1 AES = ( ;k+i—1AE;k+i) <E;k+i—lAE:<+i>
is positive definite, x;(W) > 0.
(v) Similar to the proof of (iv). [

6. The polynomial p;

Let W be as in Assumption 3.4. In the previous section, we defined two bases for W. In this
section, we will use these bases to obtain two sequences of polynomials. We will investigate some
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properties of these polynomials. Let C[A] denote the C-algebra of polynomials in A with coefficients
inC.
Definition 6.1. For 0<i<d + 1, define p; = plW inC[A]bypo =1,

Api = piv1 + aiW)pi + xi(W)pi—1 (0<i<d), (18)
where x;(W) and a;(W) are as in Definition 5.2 and p_; = 0.
Definition 6.2. For 0<i<d + 1, define p} = p;'" in C[A] by p§ = 1,

AP} = piyq +af W)p] + X' (W)p, (0<i<d), (19)
where x{(W) and af (W) are as in Definition 5.2 and p* ; = 0.

Lemma 6.3. For any nonzero u € E;W and nonzerov € EfW,

pi(Av = Ef Alv (0<i<d), (20)
pF(A")u = EiAYu (0<i<d). (21)

Moreover, pg+1(A)v = 0 and pj ;(A*)u = 0.

Proof. For 0<i<d+ 1, letw; = E;‘HAiv and w; = p;(A)v. Recall that by Theorem 5.5, {Wi}flzo is a
basis for W. By (17),

Aw; = wir1 + a(W)w; + x;(W)wi—; (0<i<d). (22)
By (18),
AW = wi; + a(W)w] + x;(W)w_; (0<i<d). (23)

Comparing (22) and (23) and using the fact that wg = wy, we find thatw; = w} for0 <i<d + 1.Hence
(20) holds. Since wyt1 = 0, pg+1(A)v = 0. The rest of the assertion is proved similary. [J

Theorem 6.4. For 0 <i<d,
PIAEW = E (W, (24)
p?‘(A*)EtW = EiW. (25)

Proof. Let v be a nonzero vector in EW. By (20), E;"HAiv spans p;(A)EfW. By Theorem 5.5, EfHA"v
spans E;“HW. From these comments, we obtain (24). The proof for (25) is similar. [J

Theorem 6.5. For 0 <i < d, the following hold on W:
Pi(AE; = Ef AE],

pf(AME; = EiA"E,.
Proof. Abbreviate A := p;(A)E} — Ef, ;AE}. We will show that A = 0 on W.For 0<j <d, letw; be a
nonzero vector in E;' ;W. Note that Aw; = 0 for 1 <j <d. By Lemma 6.3, Awo = 0. Therefore, A = 0
on W. The second assertion is proved similary. [

Theorem 6.6. The following hold:

(i) pd+1 is both the minimal polynomial and the characteristic polynomial of the action of Aon W.
(i) pa+1 = [TLo(r — Oet)-
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(iii) pj} 1 Is both the minimal polynomial and characteristic polynomial of the action of A* on W.
(iv) P = [T ()‘ - 9r*+i) :

Proof. (i) By Lemma 6.3, pg4+1(A)E;W = 0.For 1 <i<d,

Pa+1(AES ;W =pa11(A)pi(AEFW by (24)
=pi(A)pas1(AEFW
=0.

Therefore, pg+1 (A)E;‘HW = 0 for 0 <i<d. Hence by Lemma 3.1(iv), pg4+1(A) = 0 on W. By Theorem
5.5 and (20), p;(A) # 0 on W for 0 <i < d. From these comments, pg+1 is the minimal polynomial of
the action of A on W, Since the characteristic polynomial of the action of A on W has degree d + 1, it
follows that pg41 is also the characteristic polynomial of this action.

(ii) Immediate from (i) and the fact that {9t+,-}f'=0 are the eigenvalues of the action of A on W.

(iii) and (iv) Similar to the proofs of (i) and (ii). [

7. The scalars v, m;

Let W be as in Assumption 3.4. In this section, we will investigate the algebraic properties of two
more scalars associated with W, called the m;(W) and the v(W).

Definition 7.1. For 0 <i<d, define
mi(W) = trw (EciEy), (26)
mE(W) = try (E;“ +,}1:}) . (27)

Lemma 7.2. For 0 <i<d, the following (i)-(iv) hold on W:

(i) ErqiEfErqi = mi(W)Epy;.
(ii) E;kEt+iE;k = mi(W)Ef.
(iii) EZyEED = mi (W)EF ;.
(IV) EtE;k_HEt = ml*(W)Et

Proof. (i) Let H; denote the action of E;4; on W. Since W is thin, H; End(W)H; has dimension 1. Note
that H; is a nonzero element of H; End(W)H;, hence a basis for H; End(W)H;. Thus there exists « € C
such that E;EfEr4; = oEry; on W. Taking the trace of both sides of this equation and using Definition
7.1 and the fact that tryy (E)) = 1, we find that o« = m;(W).

(ii) Let L, denote the action of E;" on W. Since W is thin, L. End(W)L, has dimension 1. Note that
L, is a nonzero element of L, End(W)L,, hence a basis for L, End(W)L;. Thus there exists o € C such
that E}E;;E} = oE} on W. Arguing as in the proof of (i), we find that « = m;(W).

(iii) and (iv) Similar to the proofs of (i) and (ii). [

Lemma 7.3. The following hold:

(i) TLomi(w) =1.

(i) XL, mf (W) = 1.
(i) my(W) € R, my(W) >0 (0<i<d).
(iv) mf(W) e R, m¥y(W) >0 (0<i<d).

Proof. (i) Observe that on W, Z?:o Et+i = I. In this equation, multiply each term on the right by E;,
take the trace and use Definition 7.1 to obtain Z?:o mj(W) = 1.
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(ii) Similar to the proof of (i).

(ili) By Lemma 7.2(i), m;(W) is an eigenvalue of the real symmetric matrix E;1;E E;1;. Hence
mi(W) € R.Since EriE¥Er+i = (E¥Er4i)' (EfEcy) is positive definite, m;(W) > 0.

(iv) Similar to the proof of (iii). [J

Definition 7.4. Note that mo(W) = m§(W). We denote the multiplicative inverse of this common
value to be v(W).

The following is an immediate consequence of Lemma 7.2 and Definition 7.4.
Lemma 7.5. The following hold on W:

(l) V(W)EIE:{EI = Et~
(ii) V(W)E'EE" = E*.

8. Two bases for W

Let W be as in Assumption 3.4. In this section, we will look at two bases for W called the standard
basis and dual standard basis.

Theorem 8.1. Let u and v be nonzero vectors in E;W and E;'W, respectively. Then (i) and (ii) below hold:

(i) {Eﬁﬁriu}f’:O is a basis for W.
(ii) {EH,'v}f:o is a basis for W.

u 7 0 for 0 <i<d. By Lemmas 3.1(ii) and

Proof. (i) By Lemma 3.1(iv), it suffices to show that E:‘_H
3.2(v), E}y ;EeW = E; ;W # 0. Since u spans E;W, E, ju spans E;", ;E;W. Therefore, E;" ;u # 0.
(ii) Similar to (i). [J

Definition 8.2. Let u and v be nonzero vectors in E;W and E; W, respectively. We call {E}* +i”}?:o (resp.,
{Et_H-v}?:O) a standard (resp., dual standard) basis for W.

Theorem 8.3. Let {w,-}f’=0 be a standard basis for W and {w; }fzo be a sequence of vectors in W. Then the
following are equivalent:

(i) {W{}?ZO is a standard basis for W.
(ii) There exists a nonzero « € C such that w; = aw; for 0<i<d.

Proof. By Definition 8.2, there exists a nonzero u € E;W such that w; = EfHu for 0 <i<d. Note that

{w}} is a standard basis for W if and only if there exists a nonzero u” € E,W such that w; = E _u’ for

0 <i<d.Since u spans E;W, u’ = au for some nonzero « € C. The conclusion follows. []

Theorem 8.4. Let {vi}l‘-j:0 be a dual standard basis for W and {v; }?:0 be a sequence of vectors in W. Then
the following are equivalent.

i) {vlf}?zo is a dual standard basis for W.
(ii) There exists a nonzero « € C such that v, = av; for 0<i<d.

Proof. Similar to the proof of Theorem 8.3. [
We now give various characterizations of a standard basis and dual standard basis.

Theorem 8.5. Let {w,-}?:0 be a sequence of vectors in W, not all 0. Then {Wi}?zo is a standard basis for W
if and only if both (i) and (ii) below hold:
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(i) w € Ef,W(0<i<d).
(i) X4, w; € EW.

Proof. Suppose that {W,-}f’=0 is a standard basis for W. By Definition 8.2, there exists a nonzero u €
E:W such that w; = E;Zriu for 0 <i<d. Thus, (i) holds. Combining Lemma 3.1(ii) and the fact that

]D:O =1, we have u = ¢ o Ef,;u. From this comment, we find that >0 w; = Y4 (Ef u =
u € E;W. Hence, (ii) holds. Conversely, suppose that {Wi};-jzo satisfies (i) and (ii). Letu = Z?:o wj. By
(ii) and the fact that not all of{w,-}f:0 are 0, u is a nonzero vector in EW. By (i), EF, .u = wijfor0<i<d.

»ErH
Therefore, {w;}{_, is a standard basis for W. [

Theorem 8.6. Let {v,-}?=0 be a sequence of vectors in W, not all 0. Then {v,-}?zo is a dual standard basis for
W if and only if both (i) and (ii) below hold:

(i) v € B W(0<i<d).
(i) X4, vi € EXW.

Proof. Similar to the proof of Theorem 8.5. [

Lemma 8.7. Let {w,-}f’=0 be a basis for W. With respect to this basis, let B and B* denote the matrix

representations of A and A*, respectively. Then {wi};-izo is a standard basis for W if and only if both (i) and
(ii) below hold:

(i) B has constant row sum 6;.
(if) B* = diag (67,671, .6/4) -

Proof. Let w = Zfi:o w;. Note that Aw = Z?:o Z}j:o Bjjwj. Since E;W is the eigenspace of A corre-
sponding to 6;, by the previous statement, B has constant row sum equal to 6; if and only if w € E;W.
Observe also that w; € E;;W if and only if B* = diag(0,", 0, 1, ...,/ ;). The result follows from
these comments and Theorem 8.5. [

Lemma 8.8. Let {v; }?zo be a basis for W. With respect to this basis, let Band B* be the matrix representations

of A and A*, respectively. Then {v;}?zo is a dual standard basis for W if and only if both (i) and (ii) below
hold:

(i) B* has constant row sum 6.
(ll) B = diag(@t, 9[+], ey 9[+d).

Proof. Similar to the proof of Lemma 8.7. [

Definition 8.9. Define the two maps b : End(W) — Maty41(C) and § : End(W) — Matg41(C) as
follows: For every Y € End(W), Y’ (resp., Y*) is the matrix representation of Y with respect to a
standard basis (resp., dual standard basis) for W. Note that YP (resp., Yj) is independent of the choice
of standard basis (resp., dual standard basis) by Theorem 8.3 (resp., Theorem 8.4).

Theorem 8.10. With reference to Definition 8.9, the following hold:

(i) A® has constant row sum 6.

(i) A*” = diag ( O 0 -
(iii) A** has constant row sum ;.
(iv) A* = diag(6;, Ors1, - - -, Orya)-

Proof. Immediate from Lemmas 8.7 and 8.8. [
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9. The scalars b; (W), c;(W)

Let W be as in Assumption 3.4 and let b, § be the maps in Definition 8.9. In this section, we will take
a close look at the entries of A” and A*%.

By Lemmas 4.1 and 4.2, the matrices A" and A* are tridiagonal. Moreover, by Lemma 5.3, the
(i, i)-entry of these matrices are g;(W) and aj (W), respectively. We now take a close look at the
superdiagonal and subdiagonal entries of these matrices.

Definition 9.1. Define
bi(W) = (A)ij+1, bf(W) = A1 (0<i<d—1),
aW) = A)ii—1, cF(W) = A1 (1<i<d).

Thus,
ag(W)  bo(W) 0
aW) a(W) bi(W)
N (W) : (28)
ag1(W) bg_1(W)
0 ca(W) ag(W)
aﬁ w) bé w) 0
W) ar(W)  bEW)
AFE — C>2'< W) : (29)

ag_ (W) by (W)
0 c; (W) az(w)

For notational convenience, define bqg(W) = 0, co(W) = 0 (resp., bj(W) = 0, ¢j(W) = 0). Ob-
serve that by Lemmas 4.1(iii) and 4.2(iii), b;j(W), bj (W) (0<i<d — 1), c;(W), ¢f (W) (1<i<d) are
all nonzero.

Definition 9.2. By the intersection numbers (resp., dual intersection numbers) of W, we mean the a; (W),
bi(W), ci(W) (resp., ai' (W), bf (W), cf'(W)).

Lemma 9.3. The following hold:

(i) bi_1(W)ci(W) =x; (W) (1<i<d).

(i) ¢i(W) + ai(W) + bi(W) =6, (0<i<d).
(i) b} (W)} (W) =xF(W) (1<i<d).
(iv) ¢F(W) + af (W) + b¥(W) = 0F (0<i<d).
v) (W) € R, ci(W) € R (0<i<d).
(i) b¥(W) e R, ¢f(W) e R (0<i<d).

Proof. (i) Immediate from Lemma 5.3(ii).

(ii) Immediate from Theorem 8.10(i).

(iii) and (iv) Similar to the proofs of (i) and (ii).

(v) Recall that ag(W) € R by Lemma 5.10(iii). Since 6; € R and ag(W) + bg(W) = 6;, we have
bo(W) € R.ByLemma 5.10(iii) and (iv), we obtain a;(W) € Randx;(W) € R for 0 <i < d.Combining
this with (i), (ii) and the fact that b (W) € R and b;(W) # 0for 0<i<d — 1, we find that b;(W) € R
and ¢;(W) € Rfor0<i<d.

(vi) Similar to the proof of (v). [



1588 D.R. Cerzo / Linear Algebra and its Applications 433 (2010) 1573-1613

Lemma 9.4. For0<i<d,

bo(W)by (W) - - - bi_1(W) = pi(60), (30)
b (W)bT (W) - - - bi_y(W) = p; (6)), (31)

r

where p; = p}V, pf = p{'"V are from Definitions 6.1 and 6.2.

Proof. We prove (30) by induction on i. It can be verified that (30) is true fori = 0, 1. Fix 2 <i < d. By
(18),

pi(6r) = (0r — ai_1(W))pi—1(6r) — xi—1(W)pi—2(6;). (32)

Eliminate x;_1(W) and a;_1(W) in (32) using Lemma 9.3(i), (ii). Evaluate the result using the
inductive hypothesis to obtain the desired result. Eq. (31) is proved similarly. []

Theorem 9.5. The following (i)-(iv) hold:

() bi(w) = 200 (0<i<d—1).

(if) ci(W) = SR (1 << g),

TR ) . _
(iii) b} (W) = G (0<i<d—1).
FWpi, (6)

W) W) ==

(1<i<d).

In the above lines, p; = pJW, p;‘ = pj‘W are from Definitions 6.1 and 6.2.

Proof. (i) Immediate from Lemma 9.4.
(ii) Immediate from (i) and Lemma 9.3(i).
(iii) and (iv) Similar to the proofs of (i) and (ii). [J

Lemma 9.6 [9, Theorem 4.1(vi)]. Let W be the trivial T-module. For0 <i< D, leta;, b;, c; (resp., af, b, c)
be the intersection (resp., dual intersection) numbers of I". Then

(i) ai(W) = a;, bj(W) = b, c;(W) = g;,
(ii) @} (W) = df, b¥(W) = b, cF(W) = "

We finish this section with a few comments.
Lemma 9.7. Let W, W’ be thin irreducible T-modules. The following are equivalent.

(i) W and W’ are isomorphic T-modules.
(ii) W and W’ have the same endpoint, dual endpoint, diameter and intersection numbers.
(iii) W and W’ have the same endpoint, dual endpoint, diameter and dual intersection numbers.

Proof. (i) = (ii) Suppose that W and W’ are isomorphic T-modules. Let ¢ : W — W’ be an isomor-
phismof -modules. Thus, ¢ (E;W) = E;W’.Hence E;W # Oifand onlyif E;W’ # 0.Similarly, EfW # 0
if and only if EfW’ % 0. Therefore, W and W' have the same endpoint, dual endpoint and diameter.
Since W and W’ are isomorphic, the matrices representing the action of Aon W and W’ are the same.
Hence they have the same intersection numbers.

(ii) <= (i) Suppose that W and W’ have the same endpoint r, dual endpoint t and diameter d. Suppose

also that they have the same intersection numbers. For 0 <i < d,letw; = E}' uandw; = E},_ju’, where
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uand v’ are nonzero vectors in EW and E;W/, respectively. Since W and W’ both have dimensiond + 1,
there exists a vector space isomorphism ¢ : W — W’ such that ¢ (w;) = W{. Since w; € EfHW, itcan
be easily verified that (¢pA* — A*¢)w; = 0 for 0 <i < D. By (28) and the fact that W and W’ have the
same intersection numbers, (A — A¢)w; = 0 for 0 <i < d. From these comments, (pA — Ap)W = 0
and (@A™ — A*¢p)W = 0. Since T is generated by A, A*, we find that ¢ is a T-module isomorphism.
Therefore, W and W’ are isomorphic T-modules.

(i) < (iii) Similar to the proof of (i) < (ii). [

10. The scalar k; (W)

Let W be as in Assumption 3.4. In this section, we will look at a sequence of scalars closely related
with the m;(W).

Definition 10.1. For 0 <i < d, define

ki(W) = mj(W)v(W),
K (W) = my(W)v(W),

where m;(W), mf (W), v(W) are from Definitions 7.1 and 7.4.
Lemma 10.2. The following (i)-(iii) hold:

(i) ko(W) =1, k(W) = 1.
(i) X8 o ki(W) = v(W).

(i) XL, k¥ (W) = v(W).
(iv) k(W) > 0, k¥(W) >0 (0<i<d).

In the above lines, v(W) is from Definition 7.4.

Proof. (i) Immediate from Definition 10.1.
(ii) Immediate from Lemma 7.3(i) and Definition 10.1.
(iii) Similar to the proof of (ii).
(iv) Immediate from Lemma 7.3(iii), (iv) and Definitions 7.4 and 10.1. [

We now relate k;(W) (resp., ki’ (W)) and the intersection (resp., dual intersection) numbers of W.

Lemma 10.3. For 0 <i<d,

ki(W)ci(W) = ki—1 (W)bi_1(W), (33)
k;k(W)C;k(W) = k?< ](W)b;k_l(W), (34)

where bj(W), b;" W), (W), cj*(W) are from Definition 9.1 and b_1(W) = 0, b* ; (W) = 0.
Proof. We proceed by induction on i. Since co(W) = 0, Eq. (33) holds for i = 0. Assume 1 <i<d. By
Definition 9.1, on W

AEf Er = bi_y(W)E[;_1Et + ai(W)E[Et + cii(W)ES, 1 Ee, (35)

where cg4+1(W) = 0. Take the trace of both sides of (35). Evaluate this using Definition 7.1 and the fact
that E;A = 6:E;. Multiplying v(W) on both sides of the resulting equation and using Definition 10.1
we obtain

Ocki(W) = bi_1 (W)ki—1 (W) + a;(W)ki(W) + cip1 (W)kir1(W). (36)
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Solving for cj11(W)ki+1 (W) in (36) using the inductive hypothesis and Lemma 9.3(ii), we find that
(33) holds for i + 1. The proof of (34) is similar. [

Theorem 10.4. For 0 <i<d,

bo(W)b1 (W) - - - bi—1 (W)
aW)ea(W) -+ (W)

bg(W)b (W) - - - bi_ (W)
GW)SEW) - cF(w) '

ki(W) =

kP (W) =

where b; (W), b;" W), ¢;(w), c]?“ (W) are from Definition 9.1.
Proof. Solve for k;(W) and k; (W) in Lemma 10.3 recursively to obtain the desired result. [
Corollary 10.5. Let W be the trivial T-module. Then for 0 <i<D,
k(W) = ki, k(W) =m;
where k; is the ith valency of I and m; is the multiplicity of I" associated with E;.

Proof. Immediate from (1), (4), Lemma 9.6 and Theorem 10.4. [
11. The polynomials u; and v;

Let W be as in Assumption 3.4. In this section, we will look at two normalizations of the polynomials
p;i and p;" in Definitions 6.1 and 6.2.

Definition 11.1. Define v; = v} and v;' = v/"in C[A] by
pi
ct(W)c(W) - - - ci(W)
. _ P
Vi = % * *
W) (W) --- ¢ (W)

(0<i<d), (39)

Vi =

(0<i<d), (40)

where p; = p!¥, p¥ = p;" are from Definitions 6.1 and 6.2 and ¢;(W), ¢’ (W) are from Definition 9.1.
For notational convenience, definev_; = 0, v*; = 0.

Lemma 11.2. For 0 <i<d,

vi0) = kW), v} (6)) = Kr(W),

1

where v; = v}V, v = v}V are from Definition 11.1.

Proof. Immediate from Lemma 9.4, Theorem 10.4 and Definition 11.1. [

Lemma 11.3. With reference to Definition 11.1, for0<i<d — 1,

Avi = b1 (W)vi1 + ai(W)v; + cip1(W)vig1, (41)
A = b WV +af (W) + ¢ W)V, (42)

where b_1(W) = 0, b* ; (W) = 0. Moreover,

Mg — ag(W)vg — ba—1(W)vg—1 = ¢ 'pas1,
g — agW)vg — by (W)vi_y = c* g,
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where

c=caqW)ea(W) - --ca(W),
= W) W) - (W).

Proof. To obtain (41), divide both sides of (18) by ¢; (W)cy (W) - - - ¢;(W) and eliminate x;(W) using
Lemma 9.3(i). The proof of (42) is similar. []
Theorem 11.4. With reference to Definition 11.1, for 0 <i<d,

Vi(AEfu = Ef u, v (A")Ev = Eyv, (43)

where u and v are nonzero vectors in E;W and E¥W, respectively.

Proof. For 0 <i<d,letw; = E}, ;uand w; = v;(A)ESu. By (28),

Aw; = bi_1(W)wi—1 + ai(W)w; + cipr(W)wip (0<i<d — 1), (44)
where b_1 (W) = 0. Using (41), we obtain

AW} = bi_1(W)W_; + ai(W)W] + cili(W)w); (0<i<d —1). (45)

Using the fact that wg = wy and comparing (44) and (45), we obtain the equation on the left of (43).
The equation on the right of (43) can be similarly obtained. [

Definition 11.5. For 0 <i<d, define u; = u/ and u} = u}" in C[A] as follows:

Di
U = (46)
C 0
p;
uf = , (47)
()
where p; =p}¥, pf =p;¥ are from Definitions 6.1 and 6.2. For notational convenience,
defineu_; =0, u*; =0.

Lemma 11.6. With reference to Definition 11.1, for 0 <i <d,
vi = kW, vi= kW),

where u; = ulW, u¥ = uW are from Definition 11.5 and ki(W), k} (W) are from Definition 10.1.

i
Proof. Immediate from Lemma 9.4, Theorem 10.4 and Definitions 11.1 and 11.5. O

Lemma 11.7. With reference to Definition 11.5, for0<i<d — 1,

Aup = ci(W)ui—1 + a(W)u; + bi(W)ujqq, (48)
A = Wiup + af Wiuj + b (W)uy, ;. (49)
Moreover,

Aug — cg(W)ug—1 — ag(W)ug = pa41/pa(0r),
Mg — cg(W)ug_y — ag(W)ug = pgy1/pg (67) .

Proof. To obtain (48), divide both sides of (18) by p;(f;) and eliminate x;(W) using Lemma 9.3(i).
Evaluate the result using Lemma 9.4. The proof of (49) is similar. [J
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Theorem 11.8. With reference to Definition 11.5, for 0 <i,j <d,

Orjui (Or+j) = ci(W)ui—1 (Or) + ai(W)ui(Br+5) + bi(W)uirq (Or)),

07 ju (er*ﬂ) = (W, <9r*+j> + @ (W)uy (Qr*ﬂ) + b (W), (Qrtrj)v
where ugyq =0, uj,; = 0.

Proof. Immediate from (48) and (49) with A = 6;4; and A = 6} [l

r+j°
12. Some inner products and the Askey-Wilson duality

Let W be as in Assumption 3.4. In this section, we will look at all inner products involving the
elements of a standard basis and a dual standard basis for W. Using these inner products, we will show
that all the polynomials associated with W satisfy relations known as the Askey-Wilson duality.

Throughout the entire section, u and v are nonzero vectors in EtW and EW, respectively. Recall

that by Definition 8.2, {E]", ;u }?zo (resp., {EH,-V}?':O) is a standard basis (resp., dual standard basis) for
W. By (2) and (6), each of these bases is orthogonal. We now compute some square norms.

Theorem 12.1. For 0<i<d,
IE jull = ull*ki(W) /v (W), (50)
|EcivII® = [[VI2KF (W) /v(W), (51)
where v(W) is from Definition 7.4 and k;(W), k{*(W) are from Definition 10.1.
Proof. Note that

u”2 <Er+1u' E;k—&-l >
< vEﬁi”>v
=

u, Er+1 >

r+1

= (u, vi(A)Efu) by Lemma 114,
= (vi(A)u, Eju),
= (vi(0)u, Efu),
=ki(W) (u, Efu) by Lemma 11.2.
Since u € E;W, u = E;u. Using this we find that (u, Efu) = (E;u, E}'Ecu) = (u, E:E}E;u). Evaluating

E:EE; using Lemma 7.5(i) we find that (u, Efu) = lul|?/v(W). Thus, we obtain (50). Eq. (51) is proved
similarly. [

Our next goal is to compute the inner product between the elements of {E;", ;u } —oand {Et+,v}l o
We need the following lemma.

Lemma 12.2. The following hold:

() (Efu, Erv) = (u,v) /v (W).
(i) Efu = I<\L\I/\‘I2v
(iii) Ev = %u.
(iv) (u,v) # 0.
W) vW) [, v)1* = [lul*[Iv]>.

In the above lines, v(W) is from Definition 7.4.
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Proof. (i) Since v € EfW, v = Ev. Using this we find that (E}u, E;v) = (Efu, E;E}'v) = (u, EFE:E]v).
Evaluate EE(E;" using Lemma 7.5(ii) to obtain the desired result.

(i) Since v spans EfW, Efu = av for some « € C. Thus (Efu,v) = a||v|/%. Since (Efu,v) =
(u, E¥v) = (u,v), we find that o = W

(iii) Similar to the proof of (ii).

(iv) Observe that Ej'u # O since it is an element of a standard basis. It follows from this and (ii) that

(u,v) £ 0.

(v) Eliminate E}u and E;v in (i) using (ii) and (iii). O

Theorem 12.3. For 0<i,j<d,
(Bt Eeajv) = tiBra) ki WK (W) (ut, v) (W), (52)
<E:‘+iu, Et+jv> = (er*+i> ki(W)kj (W) {u, v) /v (W), (53)

where v(W), ki(W), k]?"(W) are from Definitions 7.4 and 10.1 and u; = u¥, u* = u]’-*W are from
Definition 11.5.

Proof. Note that
(Ef i, Bty jv) = (vi(A)Efu, Eryjv) by Theorem 11.4,

= (Efu, vi(A)Ee4v),
= Vi(Oe+j) (EFu, Eeqjv),
= Vi(Or4) (E;‘u, vf (A*)Etv> by Theorem 11.4,
= vi(0e4)) (v} (AMEfu, Eyv),
OV (67 (E Ee),
= v,~(6’t+j)v}k 6)) (u,v)/v(W) by Lemmal2.2(i).

The result then follows from Lemmas 11.2 and 11.6. Eq. (53) is proved similarly. [

Theorem 12.4. For 0 <i,j<d,
wi(Be) = v (67). (54)

where u; = ulW and u}k =uW

; are from Definition 11.5.

Proof. Compare (52) with (53). [
Theorem 12.5. For 0 <i,j<d,
piBes) P} (0741)
pi(6) P;'k (Qr* )

Vi(Oryj) vi <9r*+i)
k(W) — krw)

, (55)

(56)

where p; = p¥, pf = pi", vi = vV, v} = v}V are from Definitions 6.1, 6.2 and 11.1.

Proof. Immediate from Definition 11.5 and Theorems 11.6 and 12.4. [
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Eqgs. (54)-(56) are known as the Askey-Wilson duality. Combining Theorem 11.8 and 12.4, we obtain
the following result.

Theorem 12.6. For 0 <i,j<d,
Orjtt? (6741) = biWUF (67141 ) + aiWhur (07) + cwyur (67,4). (57)
6 Ui (Octi) = by W)U (Oryiv1) + af W)y BOeti) + ¢f (W) (Gr1i-1), (58)

where u; = u}" and uf = uf" are from Definition 11.5.

13. The orthogonality relations
Let W be as in Assumption 3.4. In this section, we display the transition matrix relating a standard
basis and a dual standard basis. Using this and the results of the previous section, we display the

orthogonality relations satisfied by the polynomials we have seen in this paper.

Theorem 13.1. Let u and v be nonzero vectors in E:W and E;W, respectively. For 0 <i<d,

E;k'i‘l <|| ”2 Zvl(gf"l‘])Ef'H (59)
Eetiv = ” | Z ( T-H) T-H (60)
=0
Wk

where v; = v;", vi = v?‘W are from Definition 11.1.

Proof. Combining Lemma 3.2(ii) and the fact that ZD o Ej =1, we find that v = Zf:o E¢jv. By The-

orem 11.4 and Lemma 12.2(ii), E* W ”VHZ vl (A)v. Therefore,

Eryit = (|| ||2> v
= ” ”2 vi(A )ZEH-]V
_ sz(9t+j)Er+1

v vlI? =
Hence, (59) holds. Eq. (60) is proved similarly. []

Theorem 13.2. For 0 <i,j<d,

d
D Vi)V Ocpn) ki (W) = 80 (W)ki(W), (61)
h=0
d
> V(O Vi Grty) k(W) ™ = 80 (W) (K} w)y)~, (62)
h=0
and
d
3 v (er +h) (er +,1) kn(W) = 8v(W)k* (W), (63)
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d

> v (670) vi (67) (K w)) ™1 = 8u(w) (k(w)) ™, (64)

h=0

where v(W), ky(W), k(W) are from Definitions 7.4 and 10.1 and v, = v,‘f", Vi = V?;W are from
Definition 11.1.

Proof. Concerning (61), let u be a nonzero vector in E;W. We compute (Er+lu, E;"ﬂ u) in two ways.

First, by (6) and (50), (E;, ;u, E:_H u) = 8u||u||2k,(W)/v(W) Secondly, we compute (E;", ;u, E r+1 u) by

evaluating each of EH_,u and E U using (59). Simplify the result using (51) and Lemma 12.2(v). We

find that (E;k+lu, E;‘ﬂ ) is equal to llull?/ (v(W))? times the left side of (61). Eq. (61) follows from these
comments. Similarly, we obtain (63). To obtain (62), evaluate (63) using (56). To obtain (64), evaluate

(61) using (56). [

Theorem 13.3. For 0 <i,j<d,

d
3 Ui O Orrn) ki (W) =850 (W) (ki (W) ", (65)
h=0

d
> un Bt un Geskn(W) =850 (W) (kKF (w)) ", (66)
h=0

and

d
S (670) uf (67n) k(W) =850(W) (kF (W) ", ©7)
h=0
d
> up (07) g (67) ki (W) =8 W) (ki (W)) ™, (68)
h=0

where v(W), kn(W), kj:(W) are from Definitions 7.4 and 10.1 and u, = u,‘:v, up = uZW are from Definition
11.5.

Proof. Evaluate each of (61)-(64) using Lemma 11.6. [

Theorem 13.4. For 0 <i,j <d,

d
> DiOrn)pj B ki (W) =850 (W)X (W)x2 (W) - - - X (W), (69)
h=0
d
PrOcrdpnOrty) o % =1
gm Wik W) - x(wy 20 W) ) o
and
d
> r*+h) P} (6714) kn(W) = 80 (W)X; (W)X5 (W) - - X (W), (71)
h=0
d *(g* ) p* (@*
b (05) i () _ 8 (W) (ki (W)) ™", (72)

h;, X (WIX5(W) - - - x5 (W)
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where x, (W), v(W), kn(W), kii(W) are from Definitions 5.2, 7.4 and 10.1 and p, = p}f’, pp = p;’,‘W are
from Definitions 6.1 and 6.2.

Proof. Evaluate each of (61)-(64) using Definition 11.1. Simplify the result using Lemma 9.3(i) and (iii).
O

We now present Theorem 13.2 in matrix form.

Definition 13.5. Define matrices P = P(W) and P* = P*(W) in Mat41(C) as follows. For 0 <i,j < d,
their (i, j)-entries are

Pj = vj(0rti), Pj =V} ( ;'Zri),

where v; = VJW, vi = v;“W are from Definition 11.1.

Theorem 13.6. With reference to Definition 13.5, P*P = v(W)I, where v(W) is from Definition 7.4.

Proof. We compute the (i, j)-entry of P*P using Definition 13.5 and (56). We find that this is equal to
(ki(W))~! times the left hand side of (61). Using (61), we obtain P*P = v(W)I. O

Theorem 13.7. Let b and i be the maps in Definition 8.9. With reference to Definition 13.5, Y'P = PY” for
Y € End(W).

Proof. By Lemma 13.1, the transition matrix from a standard basis to a dual standard basis for W is a
scalar multiple of P. Therefore, YP = PY". [

14. Two more bases for W

Let W be as in Assumption 3.4. In Sections 8 and 9, we found two bases for W with respect to which
Aand A* are represented by tridiagonal and diagonal matrices. In this section, we will look at two more
bases for W with respect to which A and A* are represented by lower bidiagonal and upper bidiagonal
matrices.

Definition 14.1. For 0 <i<d, define 7; = t/¥, 7" = ©/W, n; = n/¥, n} = n}V in C[1] as follows:
i—1 i~1

=[O =01n). "= ]:[ (x - 9;*+h),

h=0 h=0
i—1 i-1

=[G = Oran). i =[] ()‘ - 9r*+d—h> '
h=0 h=0

Observe that each of 7;, 7/¥, 1, n; is monic of degree i.

Lemma 14.2. For 0<i,j <d,

(i) each of 7 (6)), T/* (Gr’:_j) is 0ifj < iand nonzero ifj = i;

(i) each of n;i(Br+), 0 (Qr*ﬂ-) is0ifj > d — iand nonzero ifj = d — i.
Proof. Immediate from Definition 14.1. [

Lemma 14.3. Let v be a nonzero vector in EfW. Then {; (A)v}l‘-i:0 is a basis for W.
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Proof. By Theorem 5.5 and Lemma 6.3, {p,‘(A)v}?’=0 is a basis for W. For 0 <i<d, each of 7; and p; is a
polynomial of degree i. The result follows. [

Definition 14.4. For 0 <i < d, define
U; = ‘L’,‘(A)E:(W.
For notational convenience, define U_; = 0 and U1 = 0.

Lemma 14.5. With reference to Definition 14.4, U; has dimension 1 for 0 <i < d. Moreover,

d
W =) U (directsum). (73)
i=0

Proof. Immediate from Lemma 14.3 and Definition 14.4. [

Lemma 14.6. For 0 <i<d,

() YhooUn = Yho EfpWi
(i) X9 Uy = X0 ErynW.

Proof. Let v be a nonzero vector in EfW.

(i)ByLemma3.1(i), 7j(A)vis contained in 3} _o E7\ W for0 <j<i.Hence, 35} _o Up S Yo EXyyW.
In this inclusion, equality holds since each side has dimension i + 1.

(ii) Fori<j <d,

D
5(Av =Y ET(A)v,
=0

d
= Z Ertnti(A)v,
h=0
d

= > 7j(Orn)Ectnv.
h=0
d
= Z Tj(0¢1+n)Erypv by Lemma 14.2.
h=j

Hence 7j(A)v € Zﬂzi ErypW for i <j<d. Thus, Zﬂzi Up C Zﬂ:i ErypW. In this inclusion, equality
holds since each side has dimensioni+ 1. [

Lemma 14.7. For 0 <i<d,
i d
Ui = (Z E;"+hw) N (Z EH_hW) .
h=0 h=i

Proof. By Lemma 14.5, U; = (Up + Uy + - - - + Uj) N (U; 4+ Uiyq + - - - + Uy). Combining this with
Lemma 14.6, we obtain the desired result. [

Lemma 14.8. For 0 <i<d,

() (A= Oe4iDUi = Uiy,
(ii) (A" = 60 Ui = Uiy
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Proof. (i) Immediate from Definition 14.4.
(ii) Assume 1 <i<d, otherwise, we are done since Uy = EW. Let v be a nonzero vector in EXW.

Since A*E;; = 0] ;E[,;, we have (A* — 9r*+i1)(2§1=0 Ef W) C Zi,_:lo E; ,W. By Lemma 3.2(i), we
have (A* — Qr"+i1)(zg:i Ecyn) C© Zg:i_] E;+nW. Combining these comments with Lemma 14.7, we
find that (A* — 6%, ;)U; € Uj—1. We now show equality holds. Suppose that (A* — 6" ;)U; C Uj_1.
Then (A* — 6 ;HU; = 0 since dimU;_; = 1. Let W' = U; + Uj1 + - - - 4 Ug. Observe that W’ is
nonzero. By (i), AW’ € W'. Since (A* — 6;,)U; = 0 and (A* — ;" ,DU; C Uj— fori+1<j<d, we
find that A*W’ € W’. Hence W’ is a nonzero T-submodule of W. Since the T-module W is irreducible,
W' = W. This contradicts (73) since i > 0. Therefore, (A* — 6 ,HU; = U;—y. O

By Lemma 14.8, for 1 <i < d, U; is invariant under (A — 6;4;_1I)(A* — OT*JH-I) and the corresponding
eigenvalue is nonzero.

Definition 14.9. For 1<i<d, let ¢; = ¢;(W) be the eigenvalue of (A — 6¢y;1I)(A* — 6,;I) corre-

sponding to U;. Observe that ¢; # 0. We refer to the sequence {goi}?:l as the first split sequence of W.
For notational convenience, define ¢y = 0.

Theorem 14.10. With respect to the basis for W in Lemma 14.3, the matrices representing A, A* are

Qt 0 9: 01 0
1 O 05 @2
1 O 2
Ot+d—1 Ofpa—1  Pd
0 1 O+d 0 i

Proof. Immediate from Definitions 14.4 and 14.9 and Lemma 14.8. [

In Lemmas 14.3-14.8 and Theorem 14.10, we replace E;; with E;;4—; for 0 <i < d and we routinely
obtain the following results.

Lemma 14.11. Let v be a nonzero vector in EfW. Then {77,-(A)v}?:O is a basis for W.
Definition 14.12. For 0 <i < d, define
4 _ *
U’ = ni(AE'W.
For notational convenience, define Uﬂl = O0and UjiL 11 =0

Lemma 14.13. With reference to Definition 14.12,

d
w=Yy" Uiu (direct sum). (74)
i=0
Lemma 14.14. For 0 <i<d,
- i U _ i *
(® 2h=o Uﬁ = Zh:p EZ W,
(i) X4_; Uy = Thzp EcpnW.
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Lemma 14.15. For 0 <i<d,

(i) (A= OppaiDU¥ = UYL,
(ii) (A" — 67,1 ut=ut,.

By Lemma 14.15, for 1 <i<d, Uiu is invariant under (A — 6¢14—j+11)(A* — 9r*+11) and the corre-
sponding eigenvalue is nonzero.

Definition 14.16. For 1 <i<d, let ¢; = ¢;(W) be the eigenvalue of (A — O 4—i+11)(A* — r—HI) cor-

responding to UI-U. Observe that ¢; #* 0. We refer to the sequence {¢,~}f=] as the second split sequence
of W.

Theorem 14.17. With respect to the basis for W in Lemma 14.11, the matrices representing A, A* are

(o 0 9; b 0
1 Orrd—1 071 ‘22
1 Ot1d—2 02
Or41 0frg—1  Pd
0 1 6 0 0% q

In [10, Lemma 12.7], it was shown that {(p,} —; and {¢l}d ; are related by the following:
=1 Oein — Oerdn " o ,
=¢1) o (07— 07) Bericr — Ora) (1<), (75)
h=0 Qt - 9t+d

i—1
IZ: Ot+n — Ottd—h
h=0 et - €t+d

¢i= + (07 = 07) Brra—ip1 — 0 (1<i<ad). (76)

Definition 14.18. By the parameter array of W, we mean the sequence of scalars

(0o 107} b {BiH ).
where r, t, d are from Assumption 3.4, and the ¢;, ¢; are from Definitions 14.9 and 14.16.
15. Describing W in terms of its parameter array
Let W be as in Assumption 3.4. Up until now, we have associated with W a number of polynomials
and parameters. In this sectlon we will ex dpress all these polynomials and parameters m terms of the
parameter array ({9t+z}, o {9r+1}1 o @izt {¢1 {_1) of W.Recall the polynomials 7;, 7", n;, n;" from
Definition 14.1.

Theorem 15.1. For 0 <i<d,

i ¥ (0F, .
w=3 Mth' (77)
h—o P1¥2 " ¢n
L 1y (B
u? _ Z h( t-H) Tf;k, (78)
h=o P19¥2 " ¢n

where u; = ul, uf = uW are from Definition 11.5.
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Proof. We first verify (77). Since u; has degree i, there exist complex scalars {ah}zzo such that y; =

ZL:O o Ty By Lemma 14.2(i), 7o(6;) = 1and 7;(6;) = 0for 1 <i < d. From these comments and since
u;j(6;) = 1, we have og = 1. Now assume i > 1, otherwise we are done. Let v be a nonzero vector in
EfW.By Theorem 11.4 and Lemma 11.6, u;(A)v € E,;W. Thus,

1

0= (A* — 070 ui(AY,

i i
= Z arA* T (A)v — 9;:_1' Z anth(A)v,
h=0 h=0

i i
= Z ap (9:‘+hth AV + opthq (A)v) — 07 Z apTh(A)v by Theorem 14.10,
h=0 h=0
i-1
= Z <§0h+1ah+1 +onbfy — 0r*+iozh) Th(A)V.
h=0

By Lemma 14.3, {1}, (A)v};;l0 are linearly independent. Thus, @pt1oh+1 + aher’:_h — 9:‘+ioch = 0 for
0<h < i. From this recursive equation and the fact that o = 1, we find that ap = 7;(6,,)/
(@192 - - - ) for 0 < h<i. Therefore, (77) holds. We now prove (78). Let f; be the polynomial on

the right in (78). Using (77), we find thatﬁ(@;“ﬂ) = 1j(0¢4) for 0 <j <i. By Theorem 12.4, uj (Or*_H) =

Uj (Or+i)- Therefore,fi(e;kﬂ) =uf (Qr*ﬂ-) for 0 <j <i. By this and since uf, f; have degree i, we find that
uf =f. O

Lemma 15.2. For 0 <i<d,
192 - Qi 3‘(*):901(/’2"'%'
T (Qr*_,’_l.) ot 7i(O¢44)

where p; = p}’v, pf = p?‘W are from Definitions 6.1 and 6.2.

pi(0) = : (79)

Proof. We first prove the equation on the left in (79). We compute the coefficient of A! in u; in two
ways: one way using (77) and another way using Definition 11.5. Comparing the results, we obtain the
equation on the left in (79). Argue similarly to obtain the equation on the right in (79). [

Theorem 15.3. For0<i<d — 1,

¥ (0%, . X .
+ Ti(O¢+1)
bi(W) = ¢it1 *l(;l> by (W) = @i % (80)
Tit1 ( r+i+1> Tit1Orti+1)
The bj(W), bj(W) are from Definition 9.1.
Proof. Immediate from Theorem 9.5(i), (iii) and Lemma 15.2. [
Theorem 15.4. With reference to Definition 5.2,
91 @d
ap(W) =6 + — — W) =0 g+ (81)
Qr Y+ r+d — Yr4+d-1
¢d
ao(W) = 040 + , ag(W) =6+ — - (82)

6x — 0* —
r r+1 r—+d r+d—1
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For1<i<d-—1,

Qi Pi+1
G(W) = Ocpi + — ’9* + l+9* (83)
r+i T Yr4i—1 i Yr4it1
PR B 21 (84)

* * * :
9r+i T Yr+i—1 9r+i  Yr4it1

Proof. To obtain (83), we compute the coefficient of A’ in uj1 in two ways. One way is using Lemma
9.4 and Lemma 11.7. Using this approach, we find that the coefficient is equal to

_ Loa(W) (85)
1=0 Pi+1 (et)
Another way is using (77). Using this approach, the coefficient is equal to
T (Qr*+i+1) z’: 0 lfi*ﬂ (Qr*+i+1) (86)
AT o ——

C1o2- 0 =5 192 Qip1

Evaluating (85) using (79) and comparing the result with (86), we obtain (83). Similarly, we obtain the
two equations in (81). We now prove (84). Observe that by Definitions 5.2 and 14.16, replacing E;+;
with E;y4_; for 0 <i<d has the effect of switching (a;(W), 6, i) to (a;(W), O¢ya—i, ¢i). Applying
this switching to (83), we obtain (84). Similarly, we obtain the two equations in (82). [

Theorem 15.5. With reference to Definition 5.2,

®1 Pd

aW) = 0F + L AW =6 — (87)
Or — B4 Orrd — Ortd—1
* * bd * * 1
GW) =07, + 1005 U L — (88)
Or — 011 Oryd — Orrd—1
For1<i<d-—1,
% Pi+1
aW)=65,+ (89)
: T Ot — Oerict Orri — Orig
O+ Dd—i+1 n Dd—i (90)

Orpi — Orric1 Orgi — Oryipr

Proof. To obtain (87) and (89) argue similarly as in the proof of (83). We now prove (90). By Definitions
5.2 and 14.16, replacing E;; with E;4—; for 0 <i<d has the effect of switching (af' (W), 6;1, ¢;) to
(a}_;(W), ra—i, ¢i). Applying this switching to (89), we obtain

@i Dit1

a_ (W) =0%. + ) (91)
a- " Orraci — Orpd—iv1  Orrd—i — Orpd—io
Changingitod — iin (91), we obtain (90). [
Theorem 15.6. For 1 <i<d, ¢; is equal to each of the following:
i—1 d
<9r*+i - r*+i—1) Z(9t+j —q(W)), ( i1~ 9r*+i> Z(Qtﬂ‘ — (W), (92)
j=0 j=i
i— d
Ocri = Oeri-) ) (67 = W), Besiet = O Y (67 — aF(W)). (93)
j=0 j=i

The ay (W), aj;(W) are from Definition 5.2.
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Proof. To obtain the expression on the left in (92), solve for ¢; recursively using (83). From this and
Lemma 5.10(i), we obtain the expression on the right in (92). The remaining assertions can be similarly
shown. [J

Theorem 15.7. For 1 <i<d, ¢; is equal to each of the following:

i—1 d
<9r*+i - r*+i—1) (Or+a—j — aj(W)), ( i1 9r*+i) > Orra—j — gi(W)), (94)
j=0 j=i
i—1 d
Ortami = Orra—is) Y (0745 — G W), Orra—ivr — Oera Y (05 — ai_;(W)).

j=0 j=i
(95)
The ap (W), aj;(W) are from Definition 5.2.
Proof. Similar to the proof of Theorem 15.6. [l
Theorem 15.8. For 0 <i<d, the polynomial p; = plW from Definition 6.1 is equal to both
L ooro2 oty (07 Lo ity (07
( ) T Y. ( ) (96)

h=0 Y192 QpT; (9r*+,-) h=0 P12+ Pn 7" (er*-i-i) '

Proof. The expression on the left in (96) is equal to p; by Definition 11.5, (77), and the equation on
the left in (79). To show that p; is equal to the expression on the right in (96), write u; as a linear
combination of {n}},_,. Arguing as in the proof of (77), we find that

Lo (0;:—1‘)
U = i(Oprg) S — TR
o ;;) d1¢p2 - - '¢>hnh

To find u;(6¢+4), we compute the coefficient of Alin u; in two ways: one way is using (77) and another
way is using (97). Comparing these results we obtain

¢1¢2"‘¢i'

P192 - i
Evaluating p; using Definition 11.5, (97), (98) and the equation on the left in (79), we find that p; is
equal to the expression on the right in (96). [

(97)

ui(Ora) = (98)

Theorem 15.9. For 0 < i <d, the polynomial p} = p?‘W from Definition 6.2 is equal to both

L1y @imtnOer) ¢d¢d—l"'¢d—i+lfh(9t+i)n*
o 192+ ¢nTi(Or+i) " o $dPd—1 "+ - Pa—h+1Ti(Or+i) m

(99)

Proof. The expression on the left in (99) is equal to p;* by Definition 11.5, (78), and the equation on
the right in (79). We now prove that p;" is equal to the expression on the right in (99). Comparing the
equation on the left in (94) and the equation on the right in (95), we find that interchanging A and A*
has the effect of switching ¢; to ¢g—i11 for 1 <i<d. Applying this switching to the sum on the right
in (96), we obtain the sum on the right in (99). [

Lemma 15.10. For 0 <i<d,

P12 i *< « )_¢d¢d—1-"¢d—i+1

Piira) = — . D}
o v (o) %i(0r+1)

’

where p; = pV, pf = p;'"V are from Definitions 6.1 and 6.2.
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Proof. Immediate from the right side of lines (96) and (99). [

Theorem 15.11. For 1 <i<d,

VN (o B
(W) = ¢fw, W) = a1 O] (100)
nd_i+1 ( T+i—1) Nd—i+1 (0t+i71)

The c;(W), ¢ (W) are from Definition 9.1.

Proof. We first verify the equation on the right in (100). By (29), replacing E;; with E; 4 for0 <i<d
switches b (W) and cj_;(W). Applying this switching to the equation on the right in (80), we find that
for0O<i<d—1,

i (Oe+d—i)
i1 Opgd—iz1)

Changingitod — iin (101), we obtain the equation on the right in (100). We now verify the equation
on the left in (100). Recall from the proof of Theorem 15.9 that interchanging A and A* switches ¢; and
¢a—i+1- Applying this switching to the equation on the right in (100), we obtain the equation on the
left in (100). [

ci_i(W) = diy1 (101)

Theorem 15.12. With reference to Definition 7.4,

na(@ng (67)

W) = .
P P12+ Py

(102)

Proof. Let 0% v e EfW. By Theorem 1417, (A* — 6. Dni(A)v = ¢ini—1(A)v for 1<i<d.
Hence, 0} (A*)na(A)v = @162 - - - p4v. By (3) and (7), on W we have ng(A) = nq(0;)Erand 0 (A*) =
N (O7)E}. Thus, n (A*)nqa(A)v = 03 (0 )na(6:)E}E;v. From these comments and since v € EfW, we
obtain ¢1¢; - - - pgv = 1 (07)n4(6:)EFEE]v. Evaluate EfEEF using Theorem 7.5(ii). The result
follows. [

Theorem 15.13. With reference to Definitions 5.2 and 10.1,

.. ) * *
k(w)y = 21927 % a (07) 0<i<d), (103)
G2 di T} <9r*+,-) nj;_,»( r*+i)
e 0
KEw) = 1929 1a(0) 0<i<d), (104)

QaPd—1 - Pa—it1 Ti(Orri)Na—i(Or1i)

¥, (9r*+i—1) Md—i <9r*+i)
Xi PiPi T,‘* (0;“+l> 77:?—1‘+1 (9;:,1',])
Ti—1(Ori—1)Na—i(Or1i)

X (W) = ¢idg_i (1<i<d). (106)
' L N Y ()

(1<i<d), (105)

Proof. Evaluate the equations in (37), (38) and in Lemma 9.3(i), (iii), using Theorems 15.3
and 15.11. O

For the rest of this section, we will find alternative formulae for the intersection and dual in-
tersection numbers of W. The reason in doing this is that the formulae given in Theorems 15.3
and 15.11 involve huge products which may not be easy to compute. We will need the following
lemma.
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Lemma 15.14. For 0 <i<d,

W7 (071) + a7 (6741) + BiW)Ty (071 i1) = o1 + 07y (674). (107)
¢ W) T (Or4i—1) + af W) T1 Oppi) + by W) T1 (Ori1) = @1 + 071 T1(0r40)- (108)

The a;(W), bi(W), ci(W) (resp., af (W), b¥(W), c(W)) are the intersection numbers (resp., dual
intersection numbers) of W.

Proof. By (49), u} = (A — aj(W))/bg(W). Use this to evaluate (57) with j = 1. Eliminate a§(W) in
the resulting equation using the expression on the left of (87). Simplify using Lemma 9.3(ii) to obtain
(107). The proof of (108) is similar. [

Theorem 15.15. The intersection numbers of W are as follows:
P1

bo(W) = — 9* (109)
r+1
O —ai(W)) (0] — 0 1) + (O — Ocy1) (0] — 07) + o1
by (W) = t 1 < r+i re-i: 1) Q*t t+ ( r r+1) (<i<d—1),
r+i+1 = Yr+i—1
(110)
(6 — ai(W)) (07 — 074 (0 — 6r+1) + ¢
W) = t i <r+1 r-i:+1) t t+ ( r-H) (<i<d—1),
'9r+i—1 - ‘9r+i+1
(111)
@1+ (Or1 — 00 (07 g — 6
(W) = 1 = 00 (B r). (112)

k _ 9*
r+d—1 ~ Yr4d
To obtain by (W) and c;* (W), replace (0¢+j, Or*_H, a;j(W)) with (GH_], Ortj, a;“ w)).

Proof. To obtain (109), eliminate ag(W) in the equation on the left of (81) using Lemma 9.3(ii). To
obtain (110) and (111), solve the system of equations in Lemmas 9.3(ii) and (107). To obtain (112), set
i = din (107) and eliminate ag (W) using Lemma 9.3(ii). The proof of the assertion regarding the dual
intersection numbers of W is similar. [

By Theorems 15.4 and 15.15, the intersection numbers (resp., dual intersection numbers) of W can
be expressed in terms of the parameter array of W. By (75) and (76), the parameter array of W is
determined by the eigenvalue sequence of W, dual eigenvalue sequence of W, and ¢ (W). Hence,
we now solve for the intersection numbers (resp., dual intersection numbers) of W in terms of these
parameters. But first we need the following lemmas.

Lemma 15.16. Assume d > 2. Then the scalar ¢, is equal to both

Orr1—0rrd—
o <1+f+lf+1) (671 =67) CeratOera =00+ (67— 07) Oer1— Ocra),

Ot —0t+d
(113)
* gk
@1 <1+r+91r+dl>+(9t+l 9t)<9r+d+9r+d 1 =07 — f+1)+(9t+2_9t)<9:+1_ r*+d)'
r+d
(114)

Proof. To obtain (113), set i = 2 in (75) and evaluate ¢; using (76). Comparing the formula for ¢; on
the left in lines (92) and (93), we find that interchanging A and A* has no effect on ¢; for 1 <i<d.
Applying this switching to (113), we obtain (114). [
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Lemma 15.17. Assume d > 2. Then for 0 <i<d,

W)ty (Qr*+x 1) +aW)ty (Qr*ﬂ) + W)y (05119) = @21 <9r*+i) + 6427y <9r*+i)'
(115)
W) T2 (0r4i-1) + af W) T2 (Be1i) + by W) T2 (Oppit1) = @271 Oppi) + 61572 (Ot
(116)

The a;(W), bi(W), ci(W) (resp., ai (W), bj(W), c(W)) are the intersection numbers (resp., dual
intersection numbers) of W.

Proof. Eliminating u3 in (57) with j = 2 using (78), we obtain

G(W) + a(W) + bi(W) + 2 (Or+2)

(Ci(W)Tl* <9r*+i—1) +a(W)ry (Qf*H)
72(6r+2)
V192

+ bi(W)ty ( r+z+l>) + (Ci(W)fz* (Qr*+i—1) +a(W)ty (Qr*-i-i)
+ bi(W) 7y (Qr*+i+1))

71 (9t+2) % 2 (9t+2) * )
=6 1+ 0 0 . (117)
o (14 202 (02 4 20D i1

Simplify the first three terms of (117) using Lemma 9.3(ii). Evaluating the coefficient of 71 (6¢42)/¢1
in (117) using (107), we routinely obtain (115). The proof of (116) is similar. [

Theorem 15.18. The intersection numbers of W are as follows:

®1

bo(W) = m (118)
+ ot
bi(W) = — flf' tg' - (<i<d—1), (119)
<9r+i+1 - 9r+i> (9r+i+1 - 9r+i71)
GW) = — ‘fk”ff tg" - (<i<d—1), (120)
(9r+i—1 - 9r+i> <9r+1—1 - 9r+i+1)
01+ Brp1 — 60) (674 — 6F
(W) = . gf r>, (121)
r+d—1 ~ Yr+d
where
* *
f- _ 0;:_1 o (9r+i - 6*) (er*Jrl - 9r+d—1)

rHiFl T ’
(670 = 07)
g = <0r*+i — 07 ) ((9t+2 — 0Ocy1) (9r+i - r*+d) = (641 = 0p) <9r*+i:;:1 - r*+d—1))'
provided d > 2. To obtain bj (W) and c;' (W), replace (0, 0", ;) with (9r+] Or4)-

Proof. Observe that (118), (121) are (109), (112). To obtain (119) and (120), eliminate a;(W) in (107)
and (115) using Lemma 9.3(ii). Then for 1 <i<d — 1,
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GW) (0711 = 671) +DiW) (601 = 674) = 91 + B — 60 (67— 67), (122)
ci(W)h; ( r*+i—1) + bi(W)h; <9r*+i+l)
= <9r*+i - er*) + (Br+2 — 61) (Qr*+i - Qr*) (Qr*Jri - r*+1>' (123)
where
hi(h) = (0 = 07 )k + 075 — 67y — 67).

Eliminate ¢, in (123) using (114). Solving the system of equations (122), (123), we obtain (119) and
(120). Argue similarly and evaluate ¢; using (113) to obtain the formula for the dual intersection
numbers of W. [

Lemma 15.19. Given vertices y, z in X, let W (resp., W) be the trivial T(y)-module (resp., T(z)-module)
of I'. Then W and W' have the same parameter array.

Proof. By Lemma 9.6, W and W’ have the same intersection numbers and dual intersection numbers.
Thus, W and W’ both have eigenvalue sequence {61'}?:0 and dual eigenvalue sequence {6, }on. By (118),
01 (W) = @1(W"). Using (75) and (76), we find that W and W’ have the same first split sequence and
second split sequence. [

Definition 15.20. By the parameter array of I', we mean the parameter array of the trivial T (x)-module.
Observe that this parameter array is independent of the choice of x by Lemma 15.19.

16. Isomorphism classes of thin irreducible T-modules

In Corollary 9.7, we mentioned some set of scalars needed to determine the isomorphism class of
a thin irreducible -module. As we have seen in Theorem 15.18, there are many relations among these
scalars.We now consider a much smaller set of scalars needed to determine the isomorphism class.
Let us first consider some equations from (75) and (76).

Lemma 16.1. Let W be as in Assumption 3.4. Let {¢i}_,, {¢i1}9_, denote the first split sequence and second
split sequence of W, respectively. Then

$1 =1+ (0701 — 67) Orsa — 00,
¢d = o1+ (er*-i-d - er*) Or 1 — 6p),
Q4= ¢1 + (gr*+d -6 ) (r4+d—1 — Orta)-

Proof. Immediate from (75) and (76). [

Lemma 16.2. Suppose that W and W' are thin irreducible T-modules with the same endpoint, dual endpoint
and diameter d > 0. Then the following are equivalent:

Pp1(W) = o1(W"), @a(W) = pa(W"),
P11 (W) = ¢ (W), pa(W) = pa(W"),
ap(W) = ag(W"), ag(W) = ag(W"),
ag(W) = aqg(W'), aj(W) = a;(W').

Proof. Combine Lemma 16.1, (81), (82), (87),(88). [
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Theorem 16.3. Suppose that W and W' are thin irreducible T-modules with common diameter d.

(i) Assumed = 0. Then W and W’ areisomorphic as T-modules if and only if they have the same endpoint
and dual endpoint.

(ii) Assume d > 0. Then W and W’ are isomorphic as T-modules if and only if they have the same
endpoint, dual endpoint and all of the quantities in Lemma 16.2.

Proof. (i) Immediate from Lemma 9.7.

(ii) By Theorem 15.18, W and W’ have the same intersection numbers (resp., dual intersection
numbers) if and only if they have the same endpoint, dual endpoint, diameter and @1 (W) = @1 (W').
Combining this with Lemmas 9.7 and 16.2, we obtain the desired result. []

17. Two examples of Q-polynomial distance-regular graphs

In this section, we apply the results that we have obtained in Section 15 to several examples of Q-
polynomial distance-regular graphs. We will continue talking about the T-module W in Assumption
3.4 but now we will impose extra conditions on I".

Definition 17.1. The graph I is said to have g-Racah type whenever its parameter array ({6; }?ZO, {6 }?ZO,
{pi }?Zl, {(]5,-}1-[’=1 ) satisfy the following:
For0<i<D,

6i =60 +hg™'(1 — ¢)(1 — sg'™),
6 =65 +hq7'(1 = g)(1 —s"q™).
For1<i<D,
¢i = hi'q' (1 = 0)(1 = ¢ PTH(1 = 1) (1 =~ ra),
¢i = hh'q' (1 = ) (1 = 4P = 5"q) (2 — 5" /5"
* D41

In the above, g, h h* ri,rp,ss* are complex scalars such that ryr; = ss*q""', hh*ss* # 0,
q ¢ {_1v O, 1}'

Lemma 17.2. Let I" be as in Definition 17.1. Then for 0 <1i,j <D,
6 =6 =h(g' —d)sqg—q ),
0 — 6 =h*(d —d)s*q—q ).

Proof. Routine calculation using Definition 17.1. [

Lemma 17.3. With reference to Definition 17.1, none of qi, r qi, rzqi,s*qi/r1,s*qi/r2 is equal to 1 for
1 < i< D. Moreover, neither of sq', s*q" is equal to 1 for 2 <i < 2D.

Proof. The first assertion follows from Definition 17.1 and the fact that for 1 <i <D, 6; # 6o, 6;" + 6,
@i # 0, ¢; # 0.The second assertion is immediate from Lemma 17.2 and the fact that the eigenvalues
(resp., dual eigenvalues) of I" are mutually distinct. [

Lemma 174. Let I" be as in Definition 17.1. Let {(p,-(W)}f’=1 and {(l)i(W)}f’:1 be the first split sequence and
second split sequence of W, respectively. Then there exists T(W) € C such that for 1 <i<d,

(Pl(W) — hh*(l _ ql)(l _ qd7i+]) (T(W) _ Ss*qr+[+i+] _ q,r,t,,‘,d) , (124)
$i(W) = hh*(1 = g)(1 — g*H") (T(W) —s*q 4 —sg ). (125)



1608 D.R. Cerzo / Linear Algebra and its Applications 433 (2010) 1573-1613

Proof. Since h, h* are both nonzero and g, qd are both not equal to 1, there exists T (W) such that (124)
holds for i = 1. Plugging ¢1(W) in (76) and using Lemma 17.2, we routinely obtain that (125) holds
for 1 <i<d. Evaluating (75) using (125) with i = 1 and repeating the same argument above, we find
that (124) holds for 1 <i<d. O

We make a comment about our notation used in Lemma 17.4. In the proof of [11, Theorem 35.15],
there are scalars t, h, h*. Our present h, h* are the same as those in [11, Theorem 35.15]. However, our
(W) is equal to 7 /hh*.

Theorem 17.5. Let I" be as in Definition 17.1. Let r{ (W), 1, (W) be the roots of

A2 — T(W)gHH), 4 ss¥gr T2+l — g
where (W) is from Lemma 17.4. Then for 1 <i<d,

@i(W) = hh*q' T (1 — ¢h(1 = ¢~H A = n(W)g) (1 — R (W)g), (126)

¢,(W) — hh*q172i7t7r(] _ ql)(l _ qifdfl)(rl (W) * 1+2r) (TZ(W) * l+2r)/s>k 2r

(127)

Proof. Note that

r(W)r(W) = ss* g 2HH W) 4 (W) = (w)g+He (128)
Eliminating 7 (W), ss* in (124) using (128), we routinely obtain (126). Arguing similarly, we obtain
(127). O

The next theorem will involve basic hypergeometric series. For the definition, see [6, p. 4].

Theorem 17.6. Let I" be as in Definition 17.1. Then

% 2r+i+1

s i gqRttit
u,-(ef+j)=4¢3( a 43

r1(W)gq,r2(W)q, g4

q, q) 0<ij<ad),

where u; = u , 11 (W), (W) are from Definitions 11.5 and 17.5.
Proof. Routine calculation using (77) and Lemmas 17.2 and 17.5. [
The polynomials u; are g-Racah polynomials. For the definition of g-Racah polynomials, see [1].

Theorem 17.7. Let I" be as in Definition 17.1. Then the intersection numbers of W are as follows:

hg™t(1 — g~ (1 — r(W)gq)(1 — r2(W)q)

bO(W) = (1 — g* 2r+2) ’
h 7[’1 l d 1— 2r+l+1 1— w i+1 1— w i+1
by = )(( i UL T U U7 Y
1—s%q )(1 — s*q2riait2)
hat(1 — 1— 2f+l+d+1 W) — s* 2r4i W) — s* 2r+i
wy =M= L W) = SPNW) =S (g
S (1 —S* r+ l)(‘l _ s*q r+2i+ )
hg~ (1 — g) (r (W) — s*@ ) (W) — s*¢? )
(W) = .

s*q2r+d(1 _ S>|<qu-i-2d)

ai(W) =6 — bij(W) — (W) (0<i<d),
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wherer; (W), r, (W) are from Theorem 17.5. To obtain the dual intersection numbers of W, replace (h, s* r, t)
with (h¥ s, t, 7).

Proof. Evaluate the equations on the left in (80) and (100) using Lemma 17.2 and Theorem 17.5. [

Corollary 17.8. Let I" be as in Definition 17.1. Then the intersection numbers of I" are as follows:

_ h(1 =g (1 =g —rq)
(1 —s*q?)
h-l_ifD 1_S*i+1 1—r i+1 1—r i+1
by — 1—-q7)( ¢ )A—ng " )A—rg") (1<i<D—1),
(1 _ 5*q21+1)(1 _ S*q21+2)
_ h(1 =) = s* g*PHD (n — s* ) (2 — 5*q)
- s*qD(] _S*qzi)(] _s*q2i+1)
h(1 = ¢°)(ry — s*¢°)(r, — s*qP)
Cp = ’
D s*qP(1 — s*q?D)
ai =6y —bi—c (0<i<D),

bo

(1<i<D-—-1),

i

where 11, 1, are from Definition 17.1. To obtain the dual intersection numbers of I', replace (h, s*) with
(h*,s).

Proof. Apply Theorem 17.7 with W equal to the trivial T-module and use Lemma 9.6. []
We now turn our attention to graphs with classical parameters.

Definition 17.9. Let b,,0 € C with b ¢ {—1,0, 1}. The graph I' is said to have classical parameters
(D, b, a, o) whenever

b —1 b1 —1 ,
C,‘:b " 1+a— | (1<i<D),

b—1
bP — b b —1 ,
b = o —a (0<i<D-—1).
b—1 b—1

Theorem 17.10 [3, Corollary 8.4.2]. Let I" be as in Definition 17.9. The following hold:

(i) There exists an ordering {6; ?:o of the eigenvalues such that for 0 <i <D,
0; =n+ pb +hb~,

where

_(e—1)(A—b)—a®®+1)

(b—1)2
_a—b+1
 (b—1)2"
_bD(Ub—O'+()l)
ICE T

.. . . . D
(ii) I" is Q-polynomial with respect to {6;}_,.
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Let E be the primitive idempotent of I" corresponding to 6. Let {Gi*}?zo be its corresponding dual
eigenvalue sequence. Our next goal is to express these values in terms of «, b, o, D.

Theorem 17.11 [3, Corollary 8.4.2]. Let {9,-*},-[’:0 be the dual eigenvalues corresponding to E. Then for

0<i<D,
9,-* = 7]* + h*bii, (129)
where
s — o (14 b (6 —a)P'=1)—b+1—0®”—1)
(O o0 — 1) '
h* =6y —n* (130)

Observe that by (129), h* # 0 since 6;* # 6 for 1 <i<D. Later in this section, we will express 6
interms of o, b, o, D.

Lemma 17.12. Let I" be as in Definition 17.9. Then for 0 <1i,j <D,
0 — 6 = (b — ) (u — o™,
oF — 9]* — ' b= (B — b,

where i, h, h* are the from Theorems 17.10 and 17.11.

Proof. Routine calculation using Theorems 17.10 and 17.11. [

Lemma 17.13. Let I" be as in Definition 17.9. Then there exists T (W) € C such that the first split sequence
and second split sequence of W are given by

ei(W) = (1 — b)(1 — b (W) — hh*p 71779 (1<i<d), (131)
di(W) = (1 —b)(1 = b (r (W) — *ub™ ) (1<i<d), (132)

where u, h, h* are from Theorems 17.10 and 17.11.
Proof. Similar to the proof of Lemma 17.4. [

Applying Lemma 17.13 with W equal to the trivial T-module and using Definition 15.20, we obtain
the following corollary.

Corollary 17.14. Let I be as in Definition 17.9. Then the first split sequence and second split sequence of
I are as follows:

i =1 —=b)Y1 =P (@ —hr*p~P) (1<i<D),

¢i =1 —=b)1 =bP7 Y —h*ub™" (1<i<D),
where u, h, h* are from Theorems 17.10 and 17.11 and 7 is the T (W) associated with the trivial T-module.
Observe that the parameter h given in Theorem 17.10 may or may not be zero. Consider a thin

irreducible T-module W. Note that if h = 0, then T(W) % 0. This follows from (131) and the fact that
@i(W) #0for1<i<d.
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Theorem 17.15. Let I” be as in Definition 17.9. For 0 <i,j <d,
b, b M”zl[“
3¢2 pd ,(W)br+r]+d+1
’ hh*
Ui (Op4j) =
b=, b
24’1( pod

where u; = u is from Definition 11.5 and w, h, hi*, T (W) are from Theorems 17.10 and 17.11 and
Lemma 17.13.

b, b) ifh+0

b, W) ifh=0

Proof. Routine calculation using (77) and Lemmas 17.12 and 17.13. [
Theorem 17.16. Let I” be as in Definition 17.9. Then the intersection numbers of W are as follows:

bi(W) = b1 — p4y(r (W) — hn*b T4 pE (0<i<d — 1), (133)
(W) = b (b — 1) (z (W) — i*ub™ ™ /n* (1<i<d), (134)
ai(W) = 0 — bi(W) — (W) (0<i<d),

where i, h, h*, T (W) are from Theorems 17.10 and 17.11 and Lemma 17.13.
Proof. Evaluate the equations on the left in (80) and (100) using Lemmas 17.12 and 17.13. [
Theorem 17.17. Let I” be as in Definition 17.9. Then the dual intersection numbers of W are as follows:

(b = )(x (W) — hh*p~" 7 ])

bg(W) =
oW) bt — hb—t=1
b—i(bd—l —DEWw) — hh*b—r—t—i—d—l)(ubt _ hb—t—i)
by (W) = A . 1<i<d—1),
! W) (,lth _ hb*f*Z’*l)(ubf _ hbftfz’) ( ! )
(135)
d—2i+1q _ ni ok, p—THt—d+i—1 t _ pp—t—i—d
cHW) = b (1 = B)(EW) — h"ub )(ub” = hb ) (1<i<d—1)
1 t__ —t=2i t_ —t—2i+1 !
(1bt — hb=t=21) (uubt — hb )
(136)
—d+1 l—bd W) — h* b—r+t 1
W) = ( )(T(W) W )

,ub — hp—t—2d+1
ai(W) = 6 — bF(W) — cf(W) (0<i<d),

whete w, h, i*, T (W) are from Theorems 17.10 and 17.11 and Lemma 17.13.

Proof. Note that for 1<i<d — 1, ub® — hb~t=2=1 =£ 0 since this is a factor of 6;;; — 6;4i11 by
Lemma 17.12 and the eigenvalues of I" are mutually distinct. Similarly, ub® — hb~"=% and ub® —
hb~t=2%1 are nonzero since these are factors of Or+i—1 — Or4iy1 and Oy 4 — Oryi—1, respectively.
Arguing as in the proof of Theorem 17.16, we obtain the desired result. [

In Definition 17.9, we gave a formula for the intersection numbers of I" in terms of «, b, o, D. We
now give an alternate formula in terms of 1, h, h*.
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Theorem 17.18. Let I” be as in Definition 17.9. Then the intersection numbers of I" are as follows:
b = b*H1 (1 — BP7H(x — hh*b~ P /n* (0<i<D —1),
G =b —1)(t —h*ub ) /n* (1<i<D), (137)
a, =0y —bi—c¢; (0<i<D),

where u, h, h*, T are from Theorems 17.10 and 17.11 and Corollary 17.14.

Proof. Immediate from Lemmas 9.6 and 17.16. [

We now give a formula for the dual intersection numbers of I".

Theorem 17.19. Let I” be as in Definition 17.9. Then the dual intersection numbers of I" are as follows:
(b — 1)(z — hh*p~ P~ 1)
u — hb1

b=i(bP~ — 1)(r — hh*p~=P=T)(u — kb~
pr = D¢ )@ — ) ) (1<i<p—1),

(1 — hb=21) (. — hb~2)

bD—2i+1 1— bi T — h* b—D-H—l _ hb—i—D

¢ = (1= D) —h"u ) ) (1<i<p—1), (138)
(i —hb=2))(p — hb=2+1)
b=P+1(1 — bP)(r — h*ub™T)
(n— hb—ZD—H) ’

af =65 —bf —cf (0<i<D),

by =

where , h, h*, T are from Theorems 17.10 and 17.11 and Corollary 17.14.
Proof. Immediate from Lemma 9.6 and Theorem 17.17 [

Recall that in Lemma 17.11, we gave a formula for the dual eigenvalues of I" in terms of , b, 7, 6.
We are now ready to solve for 6.

Lemma 17.20. Let I” be as in Definition 17.9. Let h* and t be as in Theorem 17.11 and Corollary 17.14,
respectively. Then

. _ bP=1(ub? — h) (b — h) 9
= (MbD-{-] _ h)(bD—] + M(b _ -l)(bD_1 — ]));
_rtub— g0 o
~ bb-—1)
. h*o (b® — 1)(1 — b)
%= b((c —a)(B" ' —=1) —b+1—0 (B’ —1))° (141)

Proof. To obtain (139) and (140), solve the system of equations in (137) and (138) withi = 1 and use
the fact that c; = 1 = cf. Line (141) is immediate from (130). [

In Theorem 17.16, we gave a formula for the intersection numbers of W. We now give an alternate
formula which is reminiscent of Definition 17.9
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Theorem 17.21. Let I" be as in Definition 17.9. Then

(W) — : 1 W) + (W) o 1 (] < '<d) (142)
Ci = 1 cc(W) +« ﬁ slsd),
b(w) B d i (W) _ (W)! (O <i<d— ]) (143)
; 71 o o 1 SIS )
where

a(W) = t(W)b (b — 1)2/h*,
hb~t(b — 1)2 — a(W)b
bi(b — 1) '

o(W) =

Proof. Comparing the right side of (142) with that of (134), we find that (142) holds. Comparing the
right side of (143) with that of (133), we obtain (143). [
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