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Combining Magnetic Tweezers and Fluorescence to Study DNAMismatch
Repair by MutS, MutL and MutH
Evan T. Graves, Strick Térence.
Institut Jacques Monod, Paris, France.
Magnetic Tweezers are a powerful, highly parallelizable, single-molecule tech-
nique that allows the conformational manipulation of individual, double-strand
DNA molecules. It allows the user to measure mechanical or enzymatic work
done on DNA by proteins present in the solution. Total-Internal Reflection
Fluorescence (TIRF) Microscopy is another prolific single-molecule technique
which allows the user to detect and localize individual proteins in real-time. We
have constructed an apparatus which combines the two techniques, allowing
the user to simultaneously detect both the localization of proteins on DNA
and the subsequent action of these proteins on the DNA. We apply this novel
technique to study properties of the mismatch repair system embodied by
the MutS, MutL, and MutH proteins. During genome replication, single-
nucleotide errors are inadvertently created in the daughter-strand sequence.
The detection and elimination of these errors is essential in maintaining an or-
ganism’s genomic stability. In E. coli, MutS, MutL and MutH are the three pro-
teins responsible for detecting error-induced mismatches in the double-strand
DNA and then initiating the excision process that will remove the mismatch.
MutS recognizes the mismatch, MutL links MutS to MutH and MutH cuts
the error-containing daughter strand, initiating the mismatch’s removal by
downstream agents. Although the roles of these proteins are crucial to quench-
ing replication mutations, the process by which they assemble onto the DNA
remains unknown. Using the combined Magnetic Tweezers and TIRF tech-
niques we are able to probe the recruitment of these proteins and measure
the kinetics of their assembly onto DNA, their movement along it, and their
eventual nicking of one of the strands.
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In Vivo Investigation of DNA Replication in Escherichia Coli using Single-
Molecule Fluorescence Microscopy
Charl Moolman1, Sriram Tiruvadi Krishnan1, Serge Donkers1,
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Our research involves investigating the process of DNA replication in living
cells. More specifically the dynamics of the replisome components in living Es-
cherichia coli cells during the replication termination process. Our current
knowledge of the replisome dynamics, and the termination process, has been
obtained mainly from in vitro experiments that were not done on the single
molecule level. However, the natural environment of the cell is considerably
different from that of in vitro solutions. These differences can have a significant
influence on how certain proteins function in a cell. Interestingly, it is now pos-
sible to monitor single-molecule processes using fluorescence microscopy in-
side genetically modified living cells, by tagging their native proteins with
fluorescent probes. In our research we employ single-molecule fluorescence

microscopy to track individual repli-
somes with other replication-related
proteins, and investigate their dynamics
during the process of DNA replication
in living bacterial cells. The single-
molecule sensitivity can add to our
understanding by providing further in-
sights into processes that are hidden by
ensemble-averaging techniques. Here
we describe the microscopy techniques,
the micro-fluidic devices and the various
gene manipulation techniques utilized
in researching the above mentioned
molecules.
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Computational Analysis of Electron Tunneling Pathways of Blue-Light
Photoreceptors
Ryuma Sato1, Takahisa Yamato1, Hirotaka Nishioka2.
1Nagoya University, Nagoya, Japan, 2Kyoto University, Kyoto, Japan.
DNA phtolyases and cryptochrome DASH (cry-DASH) enzymes in the blue-
light photoreceptor family repair UV-damaged DNA by photo-induced electron
transfer reaction. Recently (Miyazawa et al., 2008) we analyzed the electron
tunneling pathways in a class I CPD photolyase derived from A. nidulans
and identified a key residue, Met-353, which is perfectly conserved in the class
I CPD photolyases. Interestingly, this site is switched to histidine in 6-4 photo-
lyases, and to glutamine in cry-DASH enzymes. For instance, Met-353 is re-
placed to Gln-395 in cry-DASH. It is likely that the amino acid residue at
the site controls the enzymatic functions of the blue-light photoreceptor family.
Until now, the electron transfer pathways in cry-DASH enzymes remain un-
clear, while those of CPD photolyases are studied well.
To characterize the roles of the amino acid residue at the site, we performed
molecular dynamics simulation and electronic state calculations of the CPD
photolyase of A. nidulans and the cry-DASH. We analyzed the electron tunnel-
ing pathways in the forward and backward electron transfer reactions between
FADH- and CPD of these two enzymes. As a result, we observed busy traffick-
ing of electron-tunneling current at both Met-353 of the CPD photolyase and
Gln-395 of the cry-DASH.
Transcription
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Dissecting the Nucleosomal Barrier to Transcription
Toyotaka Ishibashi1, Lacramioara Bintu1, Manchuta Dangkulwanich1,
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The nucleosome, which represents the fundamental unit of chromatin and an
intrinsic regulator of transcription, consists of a histone octamer and ~150
base pairs of DNA. The histone proteins in turn contain two functional regions:
the histone-fold domains, which make strong contacts with the DNA and orga-
nize it into the superhelical structure specific to the nucleosome, and the histone
tails, which are highly positively charged and can stabilize the nucleosome fur-
ther. Both histone regions, but especially the tails, are the target of many post-
translational modifications associated with gene expression. The sequence of
the DNAwrapped around the histones, in addition to facilitating the positioning
of the nucleosome, can promote RNA polymerase II (Pol II) pausing, thus mod-
ulating the nucleosomal barrier.
We will describe how each nucleosomal component - the histone tails, the spe-
cific histone-DNA contacts, and the DNA sequence - contributes to the barrier
that the nucleosome imposes on transcription elongation by Pol II. Removal of
the histone tails favors progression of Pol II into the entry region of the nucle-
osome by locally increasing the wrapping-unwrapping fluctuations of the DNA
from the histones. In contrast, point mutations in the histone-fold domains that
affect histone-DNA contacts at the nucleosome dyad abolish the barrier to
transcription in the central region by decreasing the local rewrapping rate.
Additionally, the nucleosome amplifies sequence-dependent transcriptional
pausing, an effect mediated through the secondary structure of the nascent
RNA. Each of these elements of the nucleosome barrier controls transcriptional
elongation by affecting in a distinct manner the density and duration of pauses,
and thus provides alternative mechanisms for the regulation of gene expression
by chromatin remodeling and other transcription factors.
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Freeing the Promoter Site: Mechanistic Insights into the Interaction of
Mot1 with TBP using spFRET
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Gene transcription is a central process of life and is highly regulated with a mul-
titude of transcription factors. Recently, we could show that dynamics of the
Tata-box Binding Protein (TBP) on the promoter site also plays a role in
gene regulation. Using single-pair Förster Resonance Energy Transfer
(spFRET) experiments, we have monitored the conformation of TBP bound
to the H2B promoter site in the presence and absence of Mot1. Upon the bind-
ing of Mot1 to the TBP-DNA complex, a high FRET state between TBP and
labeled DNA is formed. Contrary to what was expected, Mot1 bound to
TBP-DNA complexes was unable to dissociate TBP from the DNA upon addi-
tion of ATP. Instead, the TBP-DNA complex returned to its original conforma-
tion even thoughMot1 remain bound to the complex. Only whenMot1 was also
present at nM concentrations in solution was dissociation of TBP from the pro-
moter site observed upon addition of ATP. This suggests that a single Mot1 is
either insufficient or inefficient at dissociating TBP alone.
We also used spFRET to monitor the DNA conformation during the interaction
of Mot1 with TBP-DNA. TBP-bound DNA was observed to fluctuate between
three conformations. The FRET values of the conformation varied depending
on the orientation of TBP on the promoter. Fluctuations between the same con-
formations were observed whenMot1 was bound to the TBP-DNA complex but
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