
Advances in Applied Mathematics 27, 548–561 (2001)
doi:10.1006/aama.2001.0749, available online at http://www.idealibrary.com on

Permutations Restricted by Two Distinct Patterns of
Length Three

Aaron Robertson

Department of Mathematics, Colgate University, Hamilton, New York 13346
E-mail: aaron@math.colgate.edu

Received December 20, 2000; accepted January 16, 2001

Define Sn�R�T � to be the set of permutations on n letters which avoid all patterns
in the set R and contain each pattern in the multiset T exactly once. In this paper
we enumerate Sn�α�β� and Sn��� �α�β�� for all α �= β ∈ S3.  2001 Elsevier Science

1. INTRODUCTION

Let π ∈ Sn be a permutation of 
n� = �1� 2� 	 	 	 � n� written as a word.
Let α ∈ Sk, k ≤ n. We say that π contains the pattern α if there exist indices
i1� i2� 	 	 	 � ik such that πi1

πi2
· · ·πik

is equivalent to α, where we define
equivalence as follows. Define π̄ij

= ��m � πim
≤ πij

�m = 1� 2� 	 	 	 � k��.
If α = π̄i1

π̄i2
· · · π̄ik

then we say that α and πi1
πi2

· · ·πik
are equivalent.

For example, if τ = 124635 then τ contains the pattern 213 by noting that
τ3τ5τ6 = 435 is equivalent to 213. We say that π avoids the pattern α if
π does not contain the pattern α. In our above example, τ avoids the
pattern 321.

Let α �= β be patterns of length three. In this article we enumerate all
permutations which contain α exactly once and avoid β as well as those
permutations which contain each of α and β exactly once.

2. SOME HISTORY

The investigation of permutations which avoid a pattern of length
three started well over a hundred years ago as exhibited in [C] and ref-
erences therein. Knuth [Kn] investigated permutations which avoid any
single pattern of length 3 and showed that, regardless of the pattern, such
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permutations are enumerated by the Catalan numbers. Bijective results are
given in [Ri], [Krt], [SS], and [W1]. To describe the enumeration results
more succinctly we introduce the following notation. Let Sn�R� be the set
of permutations on 
n� which avoid all patterns in the set R, where we
omit the set notation if �R� = 1 and let sn�R� = �Sn�R��. Knuth’s result can
then be stated as sn�α� = 1

n+1

(2n
n

)
for all α ∈ S3.

Following Knuth’s result, two natural progressions were made: the inves-
tigation of Sn�R� for R ⊆ S3 and the investigation of Sn�β� for β ∈ S4. With
respect to the former investigation, Simion and Schmidt [SS] gave a com-
plete study of sn�R� for all R ⊆ S3. With respect to the latter investigation,
in two beautiful papers, Gessel [Ge] found sn�1234� and Bóna [B1] found
sn�1342�. Further results on Sn�α� for α ∈ S4 are given by West in [W1]
and [W2] and by Stankova in [S]. The exact enumeration of 1324-avoiding
permutations is still an open question, with the only result being a lower
bound given by Bóna in [B2].

Several logical extensions followed: the investigation of Sn�R� for R ⊆ S4,
the investigation of Sn�S ∪ T � for S ⊆ S3 and T ⊆ S4, and the investigation
of Sn�R� for R ⊆ Sj , j > 4. Guibert, in [Gu], showed that for certain R ⊆ S4
with two elements, the corresponding sn�R� are given by Schröder numbers.
In [B3] and [Kr], Bóna and Kremer, respectively, gave further extensions
for R ⊆ S4 with two elements. Mansour [M] completely enumerated Sn�R∪
�α�� for R ⊆ S3 and α ∈ S4. Results for permutations avoiding patterns of
length greater than four can be found in [BLPP1], [BLPP2], [CW], and [Kr].

A natural generalization of pattern-avoiding permutations is pattern-
containing permutations. To aid in the discussion of pattern-containing per-
mutations we introduce the following notation. Let Sn�R�T � be the set of
permutations on 
n� which avoid all patterns in the set R and contain each
pattern in the multiset T exactly once, where we again omit the set notation
for singleton sets and let sn�R�T � = �Sn�R�T ��.

Recently, there has been much research focused on Sn�R�T � for vari-
ous sets R and multisets T . Below, we give some results in this direction.
First, in [N], Noonan proved that sn��� 123� = 3

n

( 2n
n+3

)
, a remarkably ele-

gant formula. Bóna, in [B4], then showed that sn��� 132� = (2n−3
n−3

)
, an even

simpler formula, proving a conjecture presented in [NZ]. These two results
give sn���α� for all α ∈ S3 by applying the following two bijections (given
in [SS]).

Reversal: Define r � Sn → Sn by r�π1π2 · · ·πn� = πnπn−1 · · ·π1.

Complementation: Define c � Sn → Sn by c�π1π2 · · ·πn� = �n−
π1 + 1��n− π2 + 1� · · · �n− πn + 1�.

We will also have need of a third bijection (given in [SS]) which is defined
as follows.
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Inverse: Define i � Sn → Sn as the group theoretic inverse.

It is easy to see that if π contains exactly s ≥ 0 occurrences of the pattern
α, then r�π� (resp. c�π�, i�π�) contains exactly s occurrences of the pattern
r�α� (resp. c�π�, i�π�). By applying r, c, and r ◦ c we see that sn��� 123� =
sn��� 321� and sn��� 132� = sn��� 231� = sn��� 312� = sn��� 213�.

In [B4], Bóna also gave the generating function for �sn��� �132� 132���n.
In [R], the formulas for sn�132� 123�� sn�123� 132�, and sn��� �123� 132��
are given. These results were extended in [RWZ] to give the generating
function for �sn�132� �123r���r� n≥0 in the form of a continued frac-
tion. Mansour and Vainshtein [MV1] generalized this result to give the
generating function for �sn�132� ��123 · · ·k�r���r� n for a given k and
showed the relation of such permutations to Chebyshev polynomials of
the second kind. In [CW] other similar permutations were first shown to
be related to the Chebyshev polynomials of the second kind. Indepen-
dently, Jani and Rieper [JR] also extended the result in [RWZ] to find
the generating function given in [MV1] using the theory of ordered trees.
Shortly thereafter, Krattenthaler, in [Krt], used Dyck path bijections to
reprove elegantly the results in [MV1] and [JR], extend results given in
[CW], give a precise asymptotic formula for sn�132� ��123 · · ·k�r��, and
show that sn�132� ��123 · · ·k�r�� � sn�123� ���k− 1��k− 2� · · · 1k�r��.

3. PRELIMINARIES

In this section we give some definitions and state a known result (without
proof) upon which we will need to draw.

In order to discuss our analysis we have need of the following two def-
initions. The first definition has become a standard definition, while the
second definition is new.

Definition (Wilf class). Let S1 and S2 be two sets. If sn�S1� = sn�S2�
then we say that S1 and S2 are in the same Wilf class or are Wilf equivalent.

Example. There is only one Wilf class for permutations avoiding a sin-
gle pattern of length 3 since sn�α� = 1

n+1

(2n
n

)
for any α ∈ S3.

Definition (almost-Wilf class1). Let S1 and S2 be two sets and let T1
and T2 be two multisets. If sn�S1�T1� = sn�S2�T2� then we say that �S1�T1�
and �S2�T2� are in the same almost-Wilf class or are almost-Wilf equivalent.

1As an aside, Herb Wilf has told the author that he is not fond of the monicker Wilf class;
however, in honor of Herb (and due to the lack of a better name), we extend what has become
the standardized definition of pattern-avoiding permutation classes.
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Theorem 3.1 (Simion and Schmidt, [SS]).

1. For �α�β� ∈ ��123� 132�, �123� 213�, �132� 213�, �132� 231�,
�132� 312�, �213� 231�, �213� 312�, �231� 312�,�231� 321�, �312� 321�� we
have sn��α�β�� = 2n−1 for n ≥ 2 and s1��α�β�� = 1.

2. For �α�β� ∈ ��123� 231�� �123� 312�� �132� 312�� �213� 321�� we
have sn��α�β�� =

(
n
2

)+ 1.
3. sn��123� 321�� = 0 for n ≥ 5.

4. ON SN�α�β�

As seen in Section 2 we know sn�α�β� for �α�β� ∈ ��123� 132�,
�132� 123��. Using the reversal and complementation bijections presented
in Section 2 we see that the following is true.

Theorem 4.1. For �α�β� ∈ ��123� 132�� �123� 213�� �132� 123�� �213,
123�� �231� 321�� �312� 321�� �321� 231�� �321� 312�� we have sn�α�β� =
�n− 2�2n−3 for n ≥ 3.

To complete the enumeration sn�α�β� for all α �= β ∈ S3 we must con-
sider the following classes, which can be obtained through application of
the reversal, complementation, and inverse bijections.

(1) ��123� 321�� �321� 123��
(2) ��123� 231�� �123� 312�� �321� 132�� �321� 213��
(3) ��132� 213�� �213� 132�� �231� 312�� �312� 231��
(4) ��132� 231�� �132� 312�� �213� 231�� �213� 312�� �231� 132�,

�231� 213�� �312� 132�� �312� 213��
(5) ��132� 321�� �213� 321�� �231� 123�� �312� 123��

Trivially, we have sn�123� 321� = 0 for n ≥ 6. The enumeration concern-
ing the remaining classes follows from results, which will be noted below,
given by Mansour and Vanshtein in [MV2] and [MV3].

Theorem 4.2. For �α�β� ∈ ��123� 231�� �123� 312�� �321� 132�� �321,
213�� we have sn�α�β� = 2n− 5 for n ≥ 3.

Proof. This is a particular case of Theorem 3.3 in [MV3] (with m = 2
and k = 3).

Theorem 4.3. For �α�β� ∈ ��132� 213�� �213� 132�� �231� 312�� �312,
231�� we have sn�α�β� = n2n−5 for n ≥ 4 and s3�α�β� = 1.

Proof. This follows from Example 3.2 in [MV2] with p = 1�m = 2, and
k = 3.
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Theorem 4.4. For �α�β� ∈ ��132� 231�� �132� 312�� �213� 231�� �213,
312�� �231� 132�� �231� 213�� �312� 132�� �312� 213�� we have sn�α�β� = 2n−3

for n ≥ 3.

Proof. This is a particular case of Theorem 3.4 in [MV2] (with m = 1
and k = 3).

Theorem 4.5. For �α�β� ∈ ��132� 321�� �213� 321�� �231� 123�� �312,
123�� we have sn�α�β� = 2n− 5 for n ≥ 3.

Proof. This follows immediately from Theorem 3.2 in [MV2].

Remark. Notice that a priori there were six classes we had to consider
(by Theorems 4.1 through 4.5 and the trivial case). (This is one less than the
seven classes to consider before [R] showed that (123;132) and (132;123)
are almost-Wilf equivalent.) However, the results above show that there are
in fact only five almost-Wilf classes associated with Sn�α�β�, α �= β ∈ S3.
Some explanation of this is given in the following section.

4.1. Generating Sn�123� 312� and Sn�312� 123�
In this section we investigate why sn�123� 312� = sn�312� 123� (which are

both equal to 2n − 5). We will show that the two sets considered here
are generated by almost exactly the same rule and let the reader infer a
bijection from this result. Define φ � Sm−1 → Sm by φ�π1π2 · · ·πm−1� =
�π1 + 1��π2 + 1� · · · �πm−1 + 1�1.

It is clear for any σ ∈ Sn−1�123� 312� and any τ ∈ Sn−1�312� 123� that
φ�σ� ∈ Sn�123� 312� and φ�τ� ∈ Sn�312� 123�. Since S3�123� 312� = �312�
and S3�312� 123�= �123� we can use the rules below to generate
Sn�123� 312� and Sn�312� 123�.
Generating Rule for Sn�123� 312�� By Theorem 4.2, it is trivial to

check that Sn�123� 312� = �φ�π� � π ∈ Sn−1�123� 312�� ∪ �31n�n − 1�
�n− 2� · · · 542� �n− 2��n− 3� · · · 32n1�n− 1��.

Generating Rule for Sn�312� 123�� By Theorem 4.5, it is trivial to check
that Sn�312� 123� = �φ�π� � π ∈ Sn−1�312� 123�� ∪ �1�n − 1�n�n − 2�
�n− 3� · · · 32� �n− 2��n− 1��n− 3��n− 4� · · · 21n�.

5. ON SN��� �α�β��

We first note that trivially sn��� �123� 321�� = 0 for n ≥ 6. Next, using
the bijections r and c, we have four classes to consider:

(1) �123� 231� = ��123� 231�� �123� 312�� �132� 321�� �213� 321��
(2) �123� 132� = ��123� 132�� �123� 213�� �231� 321�� �312� 321��
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(3) �132� 213� = ��132� 213�� �231� 312��
(4) �132� 231� = ��132� 231�� �132� 312�� �213� 231�� �213� 312��.

Class (2) was enumerated in [R] giving the following theorem.

Theorem 5.1. For �α�β� ∈ ��123� 132�� �123� 213�� �231� 321�� �312,
321�� we have sn��� �α�β�� = �n− 3��n− 4�2n−5 for n ≥ 5.

Except for the proof of Theorem 5.4, in the proofs below we will isolate
either the element 1 or the element n in each permutation, π. Denote by
π�1� the elements (in order) to the left of the isolated element and by π�2�
the elements (in order) to the right of the isolated element. Hence, we have
π = π�1�1π�2� or π = π�1�nπ�2�. We start with class (1).

Theorem 5.2. For �α�β� ∈ ��123� 231�� �123� 312�� �132� 321�� �213,
321�� we have sn��� �α�β�� = 2n− 5 for n ≥ 5 and s4��� �α�β�� = 2.

Proof. We will use �123� 312� for our proof. Let fn = sn��� �123� 312��,
let π ∈ Sn��� �123� 312��, and let πi = n.

We have three cases to consider: (i) the (312) pattern occurs with n as
the ‘3’ and the �12� ∈ π�2�, (ii) the pattern �312� ∈ π�1�, and (iii) the ‘2’
in the (312) pattern is in π�2� while �31� ∈ π�1�.

We start with case (i): the (312) pattern occurs with n as the ‘3’ and the
�12� ∈ π�2�. Let x be the ‘1’ and y be the ‘2’ in the (312) pattern.

Write π = π�1�nAxB y C, where A, B, and C represent the portions of
π between two distinguished elements (either n and x, x and y, or y and
the end of π).

We will first show that A is empty. Assume otherwise and let a ∈ A.
Then either nay is another (312) occurrence (if a < y) or axy is another
(312) occurrence (if a > y). Hence, A is empty. Next, we will show that B
must be empty. Assume otherwise and let b ∈ B. Then either nby is another
(312) occurrence (if b < y) or nxb is another (312) occurrence (if b > y).
Hence, B must also be empty. Thus we may write π = π�1�nx y C.

Next, we notice that for any c ∈ C we must have c < x and for any p ∈
π�1� we must have p < y to avoid another (312) occurrence. Furthermore,
if C were to contain a (12) pattern then we would have another occurrence
of (312) with n acting as the ‘3’. Hence, the elements of C must be in
decreasing order and thus our (123) pattern must start in π�1�. Similarly,
the elements of π�1� must be in decreasing order or we would have at least
two occurrences of (123) with both n and y serving as the ‘3’ in the (123)
pattern. Hence, there exists r ∈ π�1� with r < x which produces rxy as
our (123) pattern. Furthermore, all other elements in π�1� must be larger
than x or else we would have another occurrence of (123). Hence, we must
have r = πi−1 since the elements in π�1� are decreasing. However, if i �= 2
then π1rx would be another (312) pattern. Thus, i = 2. The last piece of
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information we need is that since all elements in C are less than x, we must
have x = n− 2. Thus we see that our permutations in this case are of the
form π = r n �n− 2� �n− 1�C with the elements of C in decreasing order.
Since we have n− 3 choices for r, we have n− 3 permutations in this case.

Next, we look at case (ii): the pattern �312� ∈ π�1�.
Let zxy be the (312) pattern and write π = AzBxC y Dnπ�2�. Notice

that in this case we already have our (123) pattern, namely, xyn.
We first show that A, B, and C are empty. Assume otherwise and let

a ∈ A, b ∈ B, and c ∈ C. For any a ∈ A we see that either ayn would give
another (123) occurrence (if a < y) or that axy would give another (312)
occurrence (if a > y). For b ∈ B we see that either byn would give another
(123) occurrence (if b < y) or that bxy would give another (312) occurrence
(if b > y). For c ∈ C, either xcn would be another (123) occurrence (if
c > y) or zcy would be another (312) occurrence (if c < y). Hence, A�B,
and C must all be empty so we may write π = z x y Dnπ�2�.

Next, we notice that for any element in D or π�2�, that element must be
less than x, for otherwise we would have either another occurrence of (312)
with z and x or another (123) occurrence with x and y. This restriction gives
us z = n − 1, x = n − 3, and y = n − 2. Furthermore, the elements in D
must be decreasing (to avoid another (123) with n), and the elements in
π�2� must be decreasing (to avoid another (312) with n). Even further, for
all d ∈ D and all p ∈ π�2� we must have d > p or else we would have
another (312) occurrence with zdp. Hence, the elements in both D and
π�2� are determined by the position of n. Since we have n− 3 choices for
the position of n, we have n− 3 permutations in this case.

Last, we look at case (iii): the ‘2’ in the (312) pattern is in π�2� while
�31� ∈ π�1�.

Let zxy be the (312) pattern and write π = AzBxC nDy E.
We first show that B and C are empty. Assume otherwise and let b ∈ B

and c ∈ C. For b ∈ B, either bxy is another occurrence of (312) (if b > y)
or zby is another occurrence of (312) (if b < y). For c ∈ C, either we get
two occurrences of (123) with zcn and xcn (if c > z), we get another (312)
occurrence with zxc (if x < c < z), or we get another (312) occurrence
with zcy (if c < x). Hence, we may write π = Az xnDy E.

Next, notice that the elements in D must be decreasing and the elements
in E must be decreasing for if d1 < d2 ∈ D and e1 < e2 ∈ E then nd1d2 and
ne1e2 are (312) patterns which would give too many (312) occurrences. Fur-
thermore, for d ∈ D and e ∈ E we must have d > z and e < x. Otherwise,
if d < z then we would have another (312) occurrence with zxd (if d > x)
or zdy (if d < x), and if e > x we would have another (312) occurrence
with zxe (if e < z) or nye (if e > z). Next, we see that for all a ∈ A we must
have x < a < y, otherwise if a > y we would obtain another (312) occur-
rence with x and y, and if a < x we would have two occurrences of (123)
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with axn and axy. We also note that A must contain exactly one element
since for any a ∈ A, azn produces a (123) pattern and if A is empty we
cannot obtain a (123) occurrence. Since A is not empty we now see that
D must be empty to avoid another (123) occurrence with a and z. We may
now write π = a z x n y E, where x < a < y.

Since all elements in E must be smaller than x we see that x = n − 4,
y = n− 2, z = n− 1, and a = n− 3. Finally, since the elements in E must
be decreasing we see that we only have a single permutation in this case
(provided n ≥ 5).

Summing over all cases we have sn��� �123� 312�� = 2n− 5 for n ≥ 5.

Remark. Notice that we have the interesting result that sn�123� 312� =
sn��� �123� 312�� and hence (123;312) and ��� �123� 312�� are almost-Wilf
equivalent (for n ≥ 5). This is the first nontrivial case of a “mixed restric-
tion” equivalence.

We now move on to class (3) and prove the following theorem.

Theorem 5.3. For �α�β� ∈ ��132� 213�� �231� 312�� we have sn��,
�α�β�� = �n2 + 21n − 28�2n−9 for n ≥ 7, s6��� �α�β�� = 17, s5��,
�α�β�� = 6, and s4��� �α�β�� = 3.

Proof. We will use �231� 312� for our proof. Let fn = sn��� �231� 312��,
let π ∈ Sn��� �231� 312��, and let πi = 1.

We have three cases to consider: (i) the pattern �312� ∈ π�1�, (ii) the
pattern �312� ∈ π�2�, and (iii) the (312) pattern straddles 1; i.e., the ‘3’ is
in π�1�, the ‘2’ is in π�2�, and 1 serves as the ‘1’ in the pattern.

We start with case (i): the pattern �312� ∈ π�1�.
Let zxy be our (312) pattern and write π = AzBxC y D 1π�2�. Note

that we already have our (231) pattern with xy1.
We first argue that A�B�C� and D must all be empty. Assume otherwise

and let a ∈ A, b ∈ B, c ∈ C, and d ∈ D. We start with c ∈ C. Clearly we
must have c > z to avoid another (312) occurrence. However, this produces
zc1 which is another (231) occurrence. Hence, C must be empty. Next, we
move to b ∈ B. We see here that either zby is another occurrence of (312)
(if b < y) or bxy is another occurrence of (312) (if b > y). Hence, B must
also be empty. Now, we look at a ∈ A. Here, either axy is another (312)
occurrence (if a > y) or ay1 is another (231) occurrence (if a < y). Last, for
d ∈ D, either xd1 would be another occurrence of (231) (if d > x) or xyd
would be another occurrence of (231) (if d < x). Hence, we may now write
π = z x y 1π�2�. Since we already have both of the required patterns we see
that π�2� ∈ Sn−4��312� 231��. For p ∈ π�2�, to avoid another occurrence
of (312) we must have p > z, thus determining the values of x� y� and z.
Hence, by Theorem 3.1 we have 2n−5 permutations in this case for n ≥ 5,
and 1 permutation for n = 4.
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Next we look at case (ii): the pattern �312� ∈ π�2�.
Let zxy be our (312) pattern and write π = π�1� 1AzBxC y D.
We first show that B must be empty. Assume otherwise and let b ∈ B.

Then either zby is another (312) (if b < y) or bxy is another (312) (if
b > y). We next note that for any c ∈ C we must have c > z to avoid
another (312) occurrence. Hence, zcy is a (231) pattern for any c ∈ C.
Thus, �C� ≤ 1.

We first consider the subcase �C� = 1. Let c ∈ C so that we have both
of the required patterns in our permutation. Write π = π�1� 1Az x c y D.
Notice that for any p ∈ π�1� and a ∈ A we must have p < a to avoid
another (312) occurrence with p1a. We then see that for any a ∈ A we
must have a < x to avoid another (231) occurrence with azx (if a < z) or
another (312) occurrence with axy (if a > z). Last, we note that for any
d ∈ D we require d > c to avoid (231) with zcd (if d < z) or another (312)
with cyd (if z < d < c). Now since our elements in A and D are either less
than x or greater than c, we see that y = x+ 1, z = x+ 2, and c = x+ 3.

We now notice that π�1� 1A read as a permutation must avoid both (231)
and (312). Likewise, D must avoid both (231) and (312). Since the value
of x determines its position, by Theorem 3.1 we have

∑n−4
x=2 2x−22n−x−4 +

2n−5 = �n− 3�2n−6 permutations for n ≥ 6, one permutation for n = 5, and
none for n ≤ 4 in this subcase.

Next, consider the subcase �C� = 0. Write π = π�1� 1Az x y D. We have
four subsubcases to consider:

(a) There exists a unique d ∈ D with d < x. This gives xyd as our
�231� pattern.

(b) There exists a unique a ∈ A with x < a < y. This gives azx as
our �231� pattern.

(c) All elements in π�1� and A are smaller than x and our (231)
pattern is within π�1� 1A while D avoids both patterns.

(d) Our (231) pattern is contained within D while π�1� 1A avoids
both patterns.

In all subsubcases below let z = πj for some j > i.
We start with subsubcase (a). We must have d = πj+3 in order to avoid

another occurrence of (231). Write π = π�1� 1Az x y d D̂. We note that
for all d̂ ∈ D̂ and all p ∈ π�1� 1A we must have d̂ > z and p < x to
avoid another (312) or (231) occurrence. Thus, we have y = x + 1 and
z = x + 2. Hence, the value of d determines the value of j (the position
of z). Last, we obviously need π�1� 1A and D̂ to be �231� 312�-avoiding. By
Theorem 3.1, we now see that we have

∑n−4
j=2 2j−22n−j−4 + 2n−5 permutations

in this subsubcase. Hence, we have �n− 3�2n−6 permutations for n ≥ 6, one
permutation for n = 5, and none for n ≤ 4 in this subsubcase.
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On to subsubcase (b). We must have a = πj−1 to avoid another occur-
rence of (312). Write π = π�1� 1 Â a z x y D. For all â ∈ Â and for all
d ∈ D we must have â < x and d > z in order to avoid another occur-
rence of either pattern. Thus, we have a = x+ 1� y = x+ 2, and z = x+ 3.
As in subsubcase (a), we have �n − 3�2n−6 permutations for n ≥ 6, one
permutation for n = 5, and none for n ≤ 4 in this subsubcase.

Next, consider subsubcase (c). We must have π�1� 1A ∈ Sj−1�312� 231�
and D ∈ Sn−j−2��231� 312��. From Theorems 3.1 and 4.3, for each j ≥ 5
we have �j − 1�2j−62n−j−3 = �j − 1�2n−9 permutations, for j = 4 we have
2n−7 permutations, and for j ≤ 3 we have none. Summing over all valid j
we have �n − 4��n + 1�2n−10 permutations for n ≥ 7, one permutation for
n = 6, and none for n ≤ 5 in this subsubcase.

Last, we have subsubcase (d). A result similar to that of subsubcase (c)
holds. Noting that π�1� 1A ∈ Sj−1��231� 312�� and D ∈ Sn−j−2�312� 231�,
from Theorems 3.1 and 4.3, for each j ≤ n− 6 we have 2j−2�n− j − 2�×
2n−j−7 = �n − j − 2�2n−9 permutations. For j = n − 5 we have 2n−7 per-
mutations, and for j ≥ n − 4 we have none. Summing over all valid j we
have �n2 − 7n+ 8�2n−10 permutations for n ≥ 7 and none for n ≤ 6 in this
subsubcase.

Summing over all subsubcases, we see that we have �n2 + 11n− 46�2n−9

permutations for n ≥ 6, two permutations for n = 5, and none for n ≤ 4 in
the subcase �C� = 0.

Our last case to consider is (iii): the (312) pattern straddles 1; i.e., the
‘3’ is in π�1�, the ‘2’ is in π�2�, and 1 serves as the ‘1’ in the pattern.

Let z1y be our (312) pattern and write π = AzB 1C y D.
We first show that B must be empty. Assume otherwise and let b ∈ B.

Then we either have another occurrence of (312) with b1y (if b > y) or
another occurrence of (312) with zby (if b < y).

Next, we show that �A� + �C� ≤ 1. Let a ∈ A and c ∈ C. We first note
that we must have c > z in order to avoid another (312) occurrence with
z1c. We then note that we must have a < y in order to avoid another (312)
occurrence with a1y. Hence, for every a ∈ A, az1 gives a (231) occurrence,
and for every c ∈ C, zcy gives a (231) occurrence. Thus, �A� + �C� ≤ 1.

If �A� = 1, let a ∈ A and write π = a z 1 y D, with D ∈ Sn−4��231� 312��.
Furthermore, all elements in D must be larger than z so that we avoid
another occurrence of (312) with z and 1. By Theorem 3.1, we have 2n−5

permutations here for n ≥ 5 and one permutation for n = 4.
If �C� = 1 we also have 2n−5 permutations for n ≥ 5 and one permutation

for n = 4 via an argument very similar to that found in the preceding
paragraph.

If �A� + �C� = 0 we write π = z 1 y D, where D ∈ Sn−4�312� 231� and
again all elements in D are larger than z. By Theorem 4.3 we have
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�n− 3�2n−8 permutations for n ≥ 7, one permutation for n = 6, and none
for n ≤ 5 here.

Hence, case (iii) yields �n+ 13�2n−8 permutations for n ≥ 7, five permu-
tations for n = 4	5, two permutations for n = 4	5, and none for n ≥ 3.

Summing the number of permutations from all three cases proves the
theorem.

For our final class (class (4)) we have the following theorem, whose proof
is more interesting than those above.

Theorem 5.4. For �α�β� ∈ ��132� 231�� �132� 312�� �213� 231�� �213,
312�� we have sn��� �α�β�� = 2n−3 for n ≥ 4.

Proof. We will use �132� 312� for our proof. Let fn = sn��� �132� 312��.
Let xzy be our (132) pattern and write π = AxB z C y D. First, we show

that B must be empty. Assume otherwise and let b ∈ B. Then either bzy or
xby is another occurrence of (132) (depending on whether b < y or b > y).

Now let a ∈ A. We must have y < a < z for otherwise we would have
another (132) occurrence with azy or more than one (312) occurrence with
axz and axy. Also, for c ∈ C we must have c < y or else we would have
another occurrence of (132) with xcy.

We now turn our attention to D. For any d ∈ D we must have d < x or
d > z in order to avoid another (132) occurrence with x and z. Further-
more, those elements in D which are larger than z must be in increasing
order so that we avoid another (132) occurrence with x, and those elements
in D which are smaller than x must be in decreasing order so that we avoid
more than one occurrence of (312) with x, y, and z.

Turning back to A and C we now argue that �A� + �C� = 1. To see this,
note that for any a ∈ A and any c ∈ C both axy and zcy are (312) pat-
terns. Since we may only have one such pattern we see that �A� + �C� ≤ 1.
Now assume that both A and C are empty. With the restrictions on D in
the previous paragraph we see that the pattern (312) is avoided with this
assumption. Hence, �A� + �C� ≥ 1.

Before putting this all together we note that the above restrictions show
that we have π = ax z y D or π = x z c y D with all elements in D either
smaller than x or larger than z. Hence, the elements preceding D must be
four consecutive integers which contain both the patterns �132� and (312)
exactly once.

Thus, we have fn = f4
∑n−3

i=1

(
n−4
i−1

) = 2n−3 permutations in this case (for
n ≥ 4). This holds since there are f4 ways to arrange the first four con-
secutive elements; we may choose i = 1� 2� 	 	 	 � n − 3 for the value of the
minimal element preceding D and since we are choosing i− 1 spaces from
the n− 4 spaces after y in which to place the decreasing elements of D.
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Remark. We again see another interesting “mixed restriction” result
with sn�132� 231� = sn��� �132� 231��; i.e., �132� 231� and ��� �132� 231��
are almost-Wilf equivalent.

5.1. Generating Sn�312� 123� and Sn��� �123� 312��:
On the Almost-Wilf Equivalence of �312� 123� and ��� �123� 312��

In this short section we show that the two sets considered are generated
by almost the same rule and let the reader infer a bijection from these
rules. In the following, let n ≥ 5.

Recall (from Section 4.1) that we have defined φ � Sm−1 → Sm by
φ�π1π2 · · ·πm−1� = �π1 + 1��π2 + 1� · · · �πm−1 + 1�1. We have also seen
the following rule for generating Sn�312� 123�.
Generating Rule for Sn�312� 123�� By Theorem 4.5, it is trivial to check

that Sn�312� 123� = �φ�π� � π ∈ Sn−1�312� 123�� ∪ �1�n − 1�n�n − 2�
�n− 3� · · · 32� �n− 2��n− 1��n− 3��n− 4� · · · 21n�.

Finally, we can generate Sn��� �123� 312�� by the following similar rule.

Generating Rule for Sn��� �123� 312��� By Theorem 5.2, it is trivial
to check that Sn��� �123� 312�� = �φ�π� � π ∈ Sn−1��� �123� 312��� ∪
�1n�n− 2��n− 1��n− 3��n− 4� · · · 32� �n− 1��n− 3��n− 2� · · · 21n�.

5.2. Generating Sn�132� 312� and Sn��� �132� 312��:
On the Almost-Wilf Equivalence of �132� 312� and ��� �132� 312��

In this short section we show that the two sets considered are generated
by exactly the same rule and let the reader infer a bijection from these
rules. In the following, let n ≥ 4.

From above we have φ � Sm−1 → Sm by φ�π1π2 · · ·πm−1� = �π1 + 1�
�π2 + 1� · · · �πm−1 + 1�1. We also define % � Sm−1 → Sm by %�π1π2 · · ·
πm−1� = π1π2 · · ·πm−1m.

It is easy to check that the following generation rule generates both
Sn�132� 312� and Sn��� �132� 312��. The difference in the sets comes
from the initial sets: S4�132� 312� = �3124� 4231� and S4��� �132� 312�� =
�2413� 3142�.

Generating Rule for both Sn�132� 312� and Sn��� �132� 312��� To obtain
Sn�•� •� from Sn−1�•� •� take Sn�•� •� = �φ�π��%�π� � π ∈ Sn−1�•� •��.

6. SUMMARY

Table I summarizes this paper’s results and presents some remaining
questions.
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TABLE I

Almost-Wilf Class, � sn�T �, T ∈ �

A = �123� 321� 0 for n ≥ 6
B = �123� 132� �n− 2�2n−3 for n ≥ 3
C = �123� 231� 2n− 5 for n ≥ 3
D = �132� 213� n2n−5 for n ≥ 4
E = �132� 231� 2n−3 for n ≥ 3

F = ��� �123� 321�� 0 for n ≥ 6
G = ��� �123� 231�� 2n− 5 for n ≥ 5
H = ��� �123� 132�� (

n−3
2

)
2n−4 for n ≥ 5

I = ��� �132� 213�� �n2 + 21n− 28�2n−9 for n ≥ 7
J = ��� �132� 231�� 2n−3 for n ≥ 4

Note. A = ��123� 321�� �321� 123��. B = ��123� 132�� �123� 213��
�132� 123�� �213� 123�� �231� 321�� �312� 321�� �321� 231�� �321� 312��.
C = ��123� 231�� �123� 312�� �132� 321�� �213� 321�� �231� 123�� �312� 123��
�321� 132�� �321� 213��. D = ��132� 213�� �213� 132�� �231� 312��
�312� 231��. E = ��132� 231�� �132� 312�� �213� 231�� �213� 312��
�231� 132�� �231� 213�� �312� 132�� �312� 213��. F = ���� �123� 321���
��� �321� 123���. G = ���� �123� 231��� ��� �123� 312��� ��� �132� 321���
��� �213� 321���. H = ���� �123� 132��� ��� �123� 213��� ��� �231� 321���
��� �312� 321���. I = ���� �132� 213��� ��� �231� 312���.
J = ���� �132� 231��� ��� �132� 312��� ��� �213� 231��� ��� �213� 312���.

Remark: Alek Vainshtein has informed me, via email, that he and
Toufik Mansour have recently shown that sn��� ��132�2�� =
��n− 2�2�n+ 21� − 4�/�2n�n− 1��(2n−6

n−4

)
. To finish the study of sn���

�α�β�� for all α�β ∈ S3, all that remains is to determine a formula for
sn��� ��123�2��. I thank Alek for calling my attention to some relevant
references.
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