A CHARACTERIZATION OF ROBERTS' INEQUALITY FOR BOXICITY

William T. TROTTER, Jr.
Department of Mathematics, Computer Science and Statistics, University of South Carolina, Columbia, SC 29208, USA

Received 22 July 1977
Revised 11 July 1978 and 9 April 1979

Abstract

F.S. Roberts defined the boxicity of a graph G as the smallest positive integer n ior which there exists a function F assigning to each vertex $x \in G$ a sequence $F(x)(1), F(x)(2), \ldots$, $F(x)(n)$ of closed intervals of \mathbf{R} so that distinct vertices x and y are adjacent in G if and only if $F(x)(i) \cap F(y)(i) \neq \emptyset$ for $i=1,2,3, \ldots, n$. Roberts then proved that if G is a graph having $2 n+1$ vertices, then the boxicity of G is at most n. In this paper, we provide an explicit characterization of this inequality by determining for each $n \geqslant 1$ the minimum collection \mathscr{C}_{n} of graphs so that a graph G having $2 n+1$ vertices has boxicity n if and only if it contains a graph from \mathscr{C}_{n} as an induced subgraph. We also discuss combinatorial connections with analogous characterization problems for rectatigle graphs, circular arc graphs, and partially ordered sets.

1. Introduction

In this paper all graphs are finite and have no loops or multiple edges. For a graph G, we write $x \perp y$ in G when x and y are adjacent vertices in G and $x \pm y$ in G when x and y are nonadjacent. We denote the number of vertices in G by $|G|$. A graph H is called an induced subgraph of a graph \boldsymbol{G} when the vertex set of \boldsymbol{H} is a subset of the vertex set of G and distinct vertices of H are adjacent in H if and only if chey are adjacent in G. When H is an induced subgraph of G, we will also say G contains H. We do not distinguish between isomorphic graphs.

A graph G is an interval graph when there is a function f which assigns to each vertex $x \in G$ a closed interval $f(x)$ of the real line \mathbf{R} so that $x \perp y$ in G if and only if $f(x) \cap f(y) \neq \emptyset$ and $x \neq y$. Alternatively, an interval graph is the intersection graph of a family of closed intervals of the real line \mathbf{R}.

The concept of an interval graph extends very naturally to higher dimensions by considering the intersection graph of a family of "boxes" in n-dimensional Euclidean space \mathbf{R}^{n}. Ruierts [3] defined the boxicity of a graph G, denoted Box (G), as the smallest positive integer n for which G is the intersection graph of a family of boxes in \mathbf{R}^{n}. Formally, $\operatorname{Box}(G)$ is the smallest positive integer n for which there exists a function F which assigns to each vertex $x \in G$, a sequence $F(x)(1), F(x)(2), \ldots, F(x)(n)$ of closed intervals of \mathbf{R} so that $x \perp y$ in G if and only if $x \neq y$ and $F(x)(i) \cap F(y)(i) \neq \emptyset$ for $i=1,2, \ldots, n$. The function F is called an interval coordinatization of length n for G. By convention, we define
$\operatorname{Box}(G)=0$ when \boldsymbol{G} is a complete graph. Therefore, a graph \boldsymbol{G} is an interval graph if and only if $\operatorname{Box}(G) \leqslant 1$.

Roberts proved that if G is a graph having $2 n+1$ vertices (where $n \geqslant 1$), then Box $(G) \leqslant n$. The principal result of this paper will be an explicit characterization of this inequality. For each $n \geqslant 1$, we will determise the minimum collection \mathscr{C}_{n} of graphs so that if G is a graph and $|G|=2 n+1$, then $\operatorname{Box}(G)=n$ if and only if G contains a graph from $\mathscr{C}_{\boldsymbol{n}}$ as an induced subgraph.

2. Some inequalities for boxicity

If A is a subset of the vertex set $V(G)$ of a graph G, we denote by $\boldsymbol{G}-\boldsymbol{A}$ the subgraph of G with vertex set $V(G)-A$. It is obvious that if H is an induced subgraph of G, then $\operatorname{Box}(H) \leqslant \operatorname{Box}(G)$.

We now state without proof two elementary lemmas due to Roberts [3].
Lemma 1. If x is a vertex of G, then $\operatorname{Box}(G) \leqslant 1+\operatorname{Box}(G-\{x\})$.
Lemma 2. If $x \pm y$ in G, then $\operatorname{Box}(G) \leqslant 1+\operatorname{Box}(G-\{x, y\})$.
It is easy to verify that every graph on three vertices is an interval graph and thus has boxicity at most one. The following inequality then follows from Lemma 2 by induction on \boldsymbol{n}.

Theorem 1 (Roberts). If $|G|=2 n+1$ whese $n \geqslant 1$, then $\operatorname{Box}(G) \leqslant n$.
The join of two graphs G and H, denoted $G \Theta H$, is the graph formed by adding to disjoint copies of G and H all edges with one endpoint in G and the cther in H. We illustrate this definition with the graphs shown in Fig. 1.

G

H

G $\oplus+$

Fig. 1.
The following lemma shows that boxicity is additive with respect to the join operation on graphs.

Lemma 3. $\operatorname{Box}(G \oplus H)=\operatorname{Box}(G)+\operatorname{Box}(H)$ for every pair of graphs G and H.
Prooi. Let $t_{1}=\operatorname{Box}(G), t_{2}=\operatorname{Box}(H)$, and $t_{3}=\operatorname{Bcx}(G \oplus H)$. We further assume
that $t_{1} \geqslant 1$ and that $t_{2} \geqslant 1$, i.e., neither G nor H is complete. The argument when $t_{1}=0$ or $t_{2}=0$ will follow with minor modifications.
We first show that $t_{3} \leqslant t_{1}+t_{2}$. Let F_{1} be an interval coordinatization of length t_{1} for G and let F_{2} be an interval coordinatization of length t_{2} for H. Then choose an interval $[a, b]$ of \mathbf{R} so that $F_{1}(x)(i) \cup F_{2}(y)(j) \subseteq[a, \dot{o}]$ for every $x \in G, y \in H$, $i \leqslant t_{1}$ anc $j \leqslant t_{2}$. For each vertex $z \in G \oplus H$ and each positive integer $k \leqslant t_{1}+t_{2}$ we then define a closed interval $F_{3}(z)(k)$ of \mathbf{R} by the following rule.

$$
F_{3}(z)(k)=\left\{\begin{array}{lll}
F_{1}(z)(k) & \text { if } & z \in G \text { and } 1 \leqslant k \leqslant t_{1}, \\
{[a, b]} & \text { if } & z \in G \text { and } t_{1}+1 \leqslant k \leqslant t_{1}+t_{2}, \\
{[a, b]} & \text { if } & z \in H \text { and } 1 \leqslant k \leqslant t_{1}, \\
F_{2}(z)\left(k-t_{1}\right) & \text { if } & z \in H \text { and } t_{1}+1 \leqslant k \leqslant t_{1}+t_{2} .
\end{array}\right.
$$

It follows immediately that F_{3} is an interval coordinatization of length $t_{1}+t_{2}$ for $G \oplus H$, and thus $t_{3} \leqslant t_{1}+t_{2}$.
We now show that $t_{3} \geqslant t_{1}+t_{2}$. Let F be an interval coordinatization of length t_{3} of $G \oplus H$. Then let S_{1} and S_{2} be the subsets of $\left\{1,2,3, \ldots, t_{3}\right\}$ defined by

$$
\begin{aligned}
& S_{1}=\left\{i: \text { There exist nonadjacent vertices } x_{1}, x_{2} \in G\right. \\
& \text { so that } \left.F(x)(i) \cap F\left(x_{2}\right)(i)=\emptyset\right\}
\end{aligned}
$$

and
$S_{2}=\left\{i:\right.$ There exist nonadjacent vertices $y_{1}, y_{2} \in H$
so that $\left.F\left(y_{1}\right)(i) \cap F\left(y_{2}\right)(i)=\emptyset\right\}$

We show that $S_{1} \cap S_{2}=\emptyset,\left|S_{1}\right| \geqslant t_{1}$ and $\left|S_{2}\right| \geqslant t_{2}$. This will allow is to conclude that $t_{3}=|S| \geqslant\left|S_{1}\right|+\left|S_{2}\right| \geqslant t_{1}+t_{2}$.

To see that $S_{1} \cap S_{2}=\emptyset$, we observe that if $i \in S_{1}, x_{1}, x_{2} \in G$, and $F\left(x_{1}\right)(i) \cap F\left(x_{2}\right)(i)=\emptyset$, then

$$
F\left(x_{1}\right)(i) \cap F(y)(i) \neq \emptyset \neq F(x)(i) \cap F(y)(i)
$$

for every $y \in H$, i.e., the interval $F(y)(i)$ contains the open interval of \mathbf{R} lying between the disjoint closed intervals $F\left(x_{1}\right)(i)$ and $F\left(x_{2}\right)(i)$. Hence $F\left(y_{1}\right)(i) \cap$ $F\left(y_{2}\right)(i) \neq \emptyset$ for every $y_{1}, y_{2} \in H$ and thus $i \notin S_{2}$.

To see that $\left|S_{1}\right| \geqslant t_{1}$, let $\left|S_{1}\right|=m$ and $S_{1}=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$. Then the funcion F^{\prime} defined by $F^{\prime}(x)(j)=F(x)\left(i_{j}\right)$ for every $x \in G$ and every $j \leqslant m$ is an interval coordinatization of length m for G; hence, $m \geqslant t_{1}$. The same argument shows that $\left|S_{2}\right| \geqslant t_{2}$, so that our argument is complete in the case when $t_{1} \geqslant 1$ and $t_{2} \geqslant 1$.

We now consider the case when $t_{1}=0$ or $t_{2}=0$. First, if both t_{1} and t_{2} are zero, then G, H, and $G \oplus H$ are complete graphs so that $\operatorname{Box}(G \oplus H)=0=$ Box (G) $+\operatorname{Box}(H)$. By symmetry, it remains only to consider the case where $t_{1}=0$ and $t_{2}>0$. Then Box $(G \oplus H) \geqslant \operatorname{Box}(H)$ since H is a subgraph of $G \oplus H$. To show that $\operatorname{Box}(G \oplus H) \leqslant \operatorname{Box}(H)$, we choose an arbitrary interval representation F of length t_{2} for H. We then select an interval $[a, b]$ of R so that $F(y)(i) \subseteq[a, b]$ for every $y \in H$ and $i \leqslant t_{2}$. Finally, we extend F to $G \oplus H$ by defining $F(x)(i)=[a, \dot{b}]$
for every $x \in G$ and $i \leqslant t_{2}$. It is clear that we have obtained an interval representation of $G \oplus H$ of length t_{2} so that $\operatorname{Box}(G \oplus H) \leqslant \operatorname{Box}(H)$, and with this observation, the proof of the lemma is complete.

Let G_{1} be the graph consisting of two nonadjacent vertices. For $n \geqslant 1$, we then define $\boldsymbol{G}_{\boldsymbol{n}}$ inductively by $\boldsymbol{G}_{\boldsymbol{k}+1}=\boldsymbol{G}_{\boldsymbol{k}} \oplus \boldsymbol{G}_{\boldsymbol{1}}$. It follows immediately that $\left|\boldsymbol{G}_{\boldsymbol{n}}\right|=2 \boldsymbol{n}$ and $\operatorname{Box}\left(G_{n}\right)=n$. Therefore, Roberis' inequality (Theorem 1) is best possible. We now use the graph G_{n} for $n \geqslant 1$ to examine the sharpness of the following inequalities which follow easily from Lemmas 1 and 2 .

Lemma 4. If K is a complete subgraph of G with $|K|=k$, then $\operatorname{Box}(G) \leqslant$ $k+\operatorname{Box}(G-K)$.

Lemmas 5. If I is an independent induced subgraph of G with $|I|=i$, then Box $(G) \leqslant\{i / 2\}+\operatorname{Box}(G-1)$.

Label the vertices of G_{n} with the symbols $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ so that the subgraphs $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are complete and a_{i} and b_{j} are adjacent if and only if $i \neq j$. Now suppose $1 \leqslant k \leqslant n$ and let K be the k-element complete subgraph $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. It follows immediately from Lemma 3 that $\operatorname{Box}(G)=k+\operatorname{Box}(G-K)$ so that Lemma 4 is also best possible.

To test the accuracy of Lemma 5 , it is first necessary to modify the graph G_{n}. For each $n \geqslant 1$, let G_{n}^{*} be the graph obtained from G_{n} by removing all edges between distinct vertices of A.

Theorem 2. $\operatorname{Box}\left(G_{n}^{*}\right)=\{n / 2\}$ for cill $n \geqslant 1$.
Proof. Suppose first that $n=2 m$. For each $i \leqslant m$, let $F\left(a_{2 i-1}\right)(i)=[0,1]$, $F\left[a_{2 i}\right)(i)=[4,5], F\left(b_{2 i-1}\right)(i)=[2,4], F\left(b_{2 i}\right)(i)=[1,3]$, and if $j \neq 2 i-1, j \neq 2 i$, then $F\left(b_{i}\right)(i)=[0,5]$, and $F\left(a_{i}\right)(i)=[2,3]$. Clearly the function F is an interval coordinatization of length m for $G_{2 m}^{*}$. Therefore, Box $\left(G_{2 m}^{*}\right) \leqslant m$ for all $m \geqslant 1$. The onneral result Box $\left(G_{n}^{*}\right) \leqslant\{n / 2\}$ now follows from Lemma 2.

On the other hand, suppose $\operatorname{Box}\left(G_{n}^{*}\right)=s$, and let F be an interval coordinatization of length s for G_{n}^{*}. For each $i \leqslant 2$, let

$$
M(i)=\left\{j: F\left(a_{i}\right)(i) \cap F\left(b_{i}\right)(i)=\emptyset\right\} .
$$

We first observe that $|M(i)| \leqslant 2$ for each $i \leqslant s$, for if j_{1}, j_{2}, and j_{3} are distinct elements of $M(i)$, we may assume by symmetry that $F\left(b_{i}\right)(i)$ lies entirely to the left of $F\left(a_{i,}\right)(i), F\left(b_{i 2}\right)(i)$ lies entirely to the left of $F\left(a_{i 2}\right)(i)$, and that the right endpoint of $F\left(b_{i}\right)(i)$ is at least as large as the right endpoint $F\left(b_{i}\right)(i)$. But this would imply that $F\left(a_{i_{2}}\right)(i) \cap F\left(b_{j_{1}}\right)(i)=\emptyset$. Therefore, $|M(i)| \leqslant 2$.

Since we must clearly have $\sum_{i=1}^{s}|M(i)| \geqslant n$ it follows that $s \geqslant\{n / 2\}$ and the argume t is complete.

Now suppose $1 \leqslant k \leqslant n$ and I is the independent induced subgraph $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ in G_{n}^{*}. It follows from Theorem 2 and Lemma 3 that Box $\left(G_{n}^{*}-\right.$ $1)=\{(n-i) / 2\}$. Therefore,

$$
\operatorname{Box}\left(G_{n}^{*}\right)=\{i / 2\}+\operatorname{Box}\left(G_{n}^{*}-1\right),
$$

and the inequality in Lemma 5 is also best possible.

3. A characterization of Roberts' inequality

Let H_{2} be the 5 element cycle $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}$ with $c_{i} \perp c_{i}+1$ for $i=1,2,3,4$ and $c_{5} \perp c_{1}$. For $n \geqslant 2$, we then define H_{n} inductively by $H_{k+1}=H_{k} \oplus G_{1}$. Since an interval graph does not contain a cycle of 4 or more vertices as an induced subgraph, we note that $\operatorname{Box}\left(H_{2}\right)=\therefore$. By Lemma 3, we then conclude that $\operatorname{Box}\left(H_{n}\right)=n$ for every $n \geqslant 2$.

Consider the graph W_{3} shown in Fig. 2.

Fig. 2.
We will now show that this graph has boxicity 3. First, note that Box $\left(W_{3}\right) \leqslant 3$ since $\left|W_{3}\right|=7$. Now suppose that $\operatorname{Box}\left(W_{3}\right)<3$ and let F be an interval coordinatization of length two for W_{3}. For $i=1,2$, let

$$
E_{i}=\left\{\left\{v_{j}, v_{k}\right\}: 1 \leqslant j<k \leqslant 7, F\left(v_{j}\right)(i) \cap F\left(v_{k}\right)(i)=\emptyset\right\} .
$$

It is easy to see that $\left|E_{1} \cup E_{2}\right| \geqslant 7$ but that $\left|E_{1}\right| \leqslant 3$ and $\left|E_{2}\right| \leqslant 3$. The contradiction completes the argument.

We then define W_{n} for $n \geqslant 3$ by $W_{k+1}=W_{k} \oplus G_{1}$; by Lemma 3, we conclude that $\operatorname{Box}\left(W_{n}\right)=n$ for every $n \geqslant 3$.

The remainder of this section will be devoted to proving that the graphs G_{n}, H_{n}, and W_{n} provide an explicit characterization of Roberts' inequality for boxicity. In order to simplify the argument, we develop several preliminary lemmas. These lemmas will require the following result which follows from Lekkerkerker and Boland's characterization of interval graphs [2].

Lemma 6. If $|G| \leqslant 5$, then $\operatorname{Box}(G)=2$ if and only if G contains G_{2} or H_{2}.
Lemma 7. If $n \geqslant 1$ and $|G|=2 n$, then $\operatorname{Box}(G)=n$ if and only if $G=G_{n}$.

Proof. For $n=1$, we note that the complete graph on two vertices has boxicity zero while the independent graph on two vertices G_{1} has boxicity one. The result follows from Lemma 6 when $n=2$.
Now assume validity for all values of $n \leqslant m$ where $m \geqslant 2$ and let G be a graph with $|G|=2 m+2$ and $\operatorname{Box}(G)=m+1$. If G is complete, then $\operatorname{Box}(G)=0$, so G has vertices x, y with $x \pm y$. Then $G-\{x, y\}$ has $2 m$ vertices and boxicity m and is therefore G_{m}. Label $G-\{x, y\}=\boldsymbol{G}_{m}$ with the symbols $a_{1}, a_{2}, \ldots, a_{m}$, $b_{1}, b_{2}, \ldots, b_{m}$ so that $a_{i} \perp a_{i}, b_{i} \perp b_{i}$, and $a_{i} \perp b_{j}$ if and only if $i \neq j$ for $i, j=$ $1,2, \ldots, m$. Now the graphs $G-\left\{a_{1}, b_{1}\right\}$ and $G-\left\{a_{2}, b_{2}\right\}$ each have $2 m$ points and boxicity m and must also be copies of $\boldsymbol{G}_{\boldsymbol{m}}$. It follows that \boldsymbol{x} and \boldsymbol{y} are adjacent to every vertex of $G-\{x, y\}$ and therefore $G=\{x, y\} \oplus G_{m}=G_{m+1}$ and our proof is complete.
Suppose for some $n \geqslant 1, G$ is a graph with $2 n+1$ vertices. If G has a vertex x of deqrec $2 n$, then $G=\{x\} \oplus(G-\{x\})$ so that $\operatorname{Box}(G)=\operatorname{Box}(G-\{x\})$ and thus $\operatorname{Box}(G)=\boldsymbol{n}$ if and only if \boldsymbol{G} contains $\boldsymbol{G}_{\boldsymbol{n}}$.

Lemma 8. Let G be a graph with $|G|=7$. If G has a vertex of degree 5, then Box $(G)=3$ if and only if G contains G_{3} or H_{3}.

Proof. Choose a vertex x of degree 5 and then choose y with $x \pm y$. Now $\boldsymbol{G}-\{x, y\}$ has 5 vertices and boxicity 2 and therefore contains \boldsymbol{G}_{2} or $\boldsymbol{H}_{\mathbf{2}}$. If \boldsymbol{y} is adjacent to each vertex of $G-\{x, y\}$, then $G=\{x, y\} \oplus(G \cdots\{x, y\})$ so that G contains G_{2} or H_{3}.

Therefore, we may assume that there exists a vertex $z \in G-\{x, y\}$ with $z \pm y$. Therefore, $G-\{z, y\}$ has boxicity 2 and

$$
G-\{z, y\}=\{x\} \oplus(G-\{x, y, z\}):
$$

thus, $G-\{x, y, z\}=G_{2}$. Label $G-\{x, y, z\}=G_{2}$ with the symbols $a_{1}, a_{2}, b_{1}, b_{2}$ so that $a_{1} \perp a_{2}, a_{1} \perp b_{2}, b_{1} \perp a_{2}$, and $b_{1} \perp b_{2}$. If y is adjacent to each vertex in $\boldsymbol{G}-\{r, y, z\}$, then \boldsymbol{G} contains \boldsymbol{G}_{3} so we may assume without loss of generality that $y \pm a_{1}$. Then $G-\left\{a_{2}, b_{2}\right\}$ has boxicity 2 and thus contains G_{2} or H_{2}, but this is not possible since y has degree at most one and x has degree 3 in $G-\left\{a_{2}, b_{2}\right\}$. The .ontradiction completes the proof.

Lemma 9. Let G be a graph with $|G|=7$. Then $\operatorname{Box}(G)=3$ if and only if G contains G_{3}, H_{3}, or W_{3}.

Proof. Let G be a graph with $|G|=7$ and $\operatorname{Box}(G)=3$. If G contains a vertex of degree 5 or 6 , then G must contain G_{3} or H_{3}, so we may assume without loss of generality that each vertex of G has dugree at most 4.

* Suppose that there exist a nonadjacent pair of vertices x, y so that $G-\{x, y\}=$ H_{2}. Label the vertices of $G-\{x, y\}$ with the symbols $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ so that $c_{i} \perp c_{i}$, for $i=1,2,3,4$ and $c_{5} \perp c_{1}$. Since x has degree at most 4 , we may assume
that $x \pm c_{2}$. Then $G-\left\{c_{1}, c_{3}\right\}$ has boxicity 2 but does not contain G_{2} or H_{2}. The contradiction allows us to conclude that for every nonadjacent pair of vertices x, y in $G, G-\{x, y\}$ contains G_{2} but not H_{2}.

Now choose nonadjacent vertices x, y in G and a vertex z of $G-\{x, y\}$ so that $\boldsymbol{G}-\{x, y, z\}=\boldsymbol{G}_{2}$. Label the vertices of $\boldsymbol{G}-\{x, y, z\}$ with the symbols $a_{1}, a_{2}, b_{1}, b_{2}$ as in the proof of Lemma 8. Suppose that $x \pm z$. If

$$
G-y=\{x, y\} \oplus(G-\{x, y, z\})
$$

or

$$
G-z=\{x, y\} \oplus(G-\{x, y, z\})
$$

then G contains G_{3} so we may assume without loss of generality that $y \pm a_{1}$. Then $G-\left\{a_{2}, b_{2}, y\right\}=G_{2}$ so that $x \perp a_{1}, x \perp b_{1}, z \perp a_{1}$, and $z \perp b_{1}$. And since b_{1} has degree at most 4 , we see that $y \pm b_{1}$. Therefore, $G-\left\{y, b_{1}, a_{1}\right\}=G_{2}, x \perp a_{2}, x \perp b_{2}$, $z \perp a_{2}, z \perp b_{2}$, and we conclude that

$$
G-y=\{x, z\} \oplus(G-\{x, y, z\})=G_{3} .
$$

The contradiction allows us to conclude that $x \perp z$ and $y \perp z$.
Since y has degree at most 4 , we may assume that $y \pm a_{1}$. Then $G-\left\{a_{2}, b_{2}, a_{1}\right\}=G_{2}$ and thus $x \perp b_{1}, y \perp b_{1}$, and $z \pm b_{1}$. If $y \pm a_{2}$, then $G-\left\{b_{1}, z, y\right\}=G_{2}$ and thus $x \perp a_{2}, x \perp b_{2}$, and $x \pm a_{1}$. Therefore, $G-\left\{a_{1}, b_{1}, a_{2}\right\}=$ G_{2} and thus $y \perp b_{2}$ and $z \pm b_{2}$. But $G-\left\{z, b_{2}\right\}$ does not contain G_{2}. Therefore, we may assume that $y \perp a_{9}$. By symmetry, we nay also assume $y \perp b_{2}$.

If $x \pm a_{1}$, then $G-\left\{x, a_{1}, y\right\}=G_{2}$ so $z \perp a_{2}$ and $z \perp b_{2}$. Therefore, $x \pm a_{2}$ and $x \pm b_{2}$. But $G-\left\{x, b_{2}\right\}$ does not contain G_{2}. The contradiction allows us to conclude that $x \perp a_{1}$. Since x has degree at most 4 , we may then assume that $x \pm a_{2}$.
It follows that $G-\left\{x, a_{2}, b_{1}\right\}=G_{2}$ and thus $z \perp a_{1}, z \pm b_{2}$. Also we see that $G-\left\{y, a_{1}, b_{2}\right\}=G_{2}$ and thus $z \perp a_{2}$. Finally we note that if $x \pm b_{2}$, then $G-\left\{x, b_{2}\right\}$ does not contain G_{2} so that we must have $x \perp b_{2}$. it follows that all adjacencies of G have been determined and that $G=W_{3}$.

We are now ready to establish our characterization of Roberts' inequality for boxicity. Theorem 3 will provide for cach $n \geqslant 1$ the minimum collection \mathscr{C}_{n} of graphs so that if $|G|=2 n+1$, then $\operatorname{Box}(G)=n$ if and only if G contains a graph from \mathscr{C}_{n} as an induced subgraph.

Theorem 3. Let $n \geqslant 1$ and let G be a graph with $|G|=2 n+1$.
(i) If $n=1$, then $\operatorname{Box}(G)=n$ if and only if G contains G_{1}.
(ii) If $n=2$, then $\operatorname{Box}(G)=n$ if and only if G contains G_{2} or H_{2}.
(iii) If $n \geqslant 3$, then $\operatorname{Box}(G)=n$ if and only if G contains G_{n}, H_{n} or W_{n}.

Froof. Past (i) is trivial since a complete graph has boxicity zero; part (ii) is

Lemma 6. We now proceed to prove part (iii) by induction on n. We first note that part (iii) is valid for $n=3$ in view of Lemma 9. We then assume validity for all $n \leqslant m$ where m is some integer with $m \geqslant 3$. Then let G be a graph with $|G|=2 m+3$ and $\operatorname{Box}(G)=m+1$. We will now show that G contains G_{m+1}, $\boldsymbol{H}_{\boldsymbol{m}+1}$, or $\boldsymbol{W}_{\boldsymbol{m}+1}$.

Let x, y be any pair of nonadjacent vertices in G. Then $G-\{x, y\}$ has $2 m+1$ vertices and boxicity $m+1$ and therefore must contain G_{m}, H_{m}, or W_{m}. Suppose first that there exists a nonadjacent pair of x, y of vertices of G so that $G-\{x, y\}=H_{m}$. Label the vertices of $G-\{x, y\}$ with the symbols a_{1}, a_{2}, \ldots, $a_{m-2}, b_{1}, b_{2}, \ldots, b_{m-2}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ in the obvious fashion.

As in the proof of Lemma 9 , if $x \pm c_{2}$, then $G-\left\{c_{1}, c_{3}\right\}$ has boxicity m but does not contain G_{m}, H_{m}, or W_{m} since c_{2} has degree at most $2 m-3$ and x has degree at most $2 m-2$ in $G-\left\{c_{1}, c_{3}\right\}$. We may therefore conclude that x and y are both adjacent to $c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5}.

Now consider the graph $G-\left\{c_{1}, c_{3}\right\}$ which has boxicity m. Since c_{4} and c_{5} have degree $2 m-1$ in $G-\left\{c_{1}, c_{3}\right\}, c_{4} \pm c_{2}$, and $c_{5} \pm c_{2}$, we see that $G-\left\{c_{1}, c_{3}\right\}$ is not W_{m} or H_{m}. And therefore, $G-\left\{c_{1}, c_{3}\right\}$ must contain G_{m}. It is easy to see that we must have either $G-\left\{c_{1}, c_{3}, c_{4}\right\}=G_{m}$ or $G-\left\{c_{1}, c_{3}, c_{5}\right\}=G_{m}$. In either case, x and y are both adjacent to $a_{1}, a_{2}, \ldots, a_{m-2}, b_{1}, b_{2}, \ldots, b_{m-2}$ so that

$$
G=\{x, y\} \oplus(G-\{x, y\})=\boldsymbol{H}_{m-y}
$$

Now suppose that x and y are nonadjacent vertices of G and that $G-\{x, y\}=$ W_{m}. Suppose first that $m=3$ and label $G-\{x, y\}$ with the symbols $v_{1}, v_{2}, \ldots, v_{7}$ as shown in Fig. 2. Suppose further that $x \pm v_{1}$. Then $G-\left\{v_{3}, v_{4}\right\}$ has boxicity 3 but v_{1} has degree at most 3 so $G-\left\{v_{3}, v_{4}\right\}$ is neither W_{3} or H_{3}. But it is easy to see that $G-\left\{v_{3}, v_{4}\right\}$ does not contain G_{3} either. We may therefore conclude that x and y are adjacent to $v_{1}, v_{2}, \ldots, v_{7}$ and therefore, $G=W_{4}$.

Now suppose that $m \geqslant 4$ and label the vertices of $G-\{x, y\}$ with the symbols $a_{1}, a_{2}, \ldots, a_{m-3}, b_{1}, b_{2}, \ldots, b_{m-3}, v_{1}, v_{2}, \ldots, v_{7}$ in the obvious fashion. As in the preceding paragraph, we may conclude that x and y are adjacent to $v_{1}, v_{2}, \ldots, v_{7}$. Now consider the graph $G-\left\{v_{1}, v_{2}\right\}$ which has boxicity m.

Now v_{3} has deg-ae $2 m-1$ and $v_{3} \pm v_{4}$ and $v_{5} \pm v_{4}$ in $G-\left\{v_{1}, v_{2}\right\}$ so $G-\left\{v_{1}, v_{2}\right\}$ is not W_{m} or \boldsymbol{H}_{m}. Therefore, $G-\left\{v_{1}, v_{2}\right\}$ must contain \boldsymbol{G}_{m}. Clearly this requires $G-\left\{v_{1}, v_{2}, v_{!}\right\}=G_{m}$ and thus, x ard y are adjacent to $a_{1}, a_{2}, \ldots, a_{m-3}$, $\dot{h}_{1}, b_{2}, \ldots, b_{m, 3}$. Therefore,

$$
G=\{x, y\} \oplus(G-\{x, y\})=W_{m+1}
$$

We may now assume that whenever x and y are nonadjacent vertices of G, the graph $G-\{x, y\}$ contains G_{m}, but no: H_{m} or W_{m}. Choose a nonadjacent pair of vertices x, y and a vertex z so that $G-\{x, y, z\}=G_{m}$. Label the vertices of $G-\{x, y, z\}$ with the symbols $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m}$ in the usual fashion. Now suppose that $x \pm z$. If $y \pm a_{1}$, the? $G-\left\{a_{2}, b_{2}\right\}$ does not contain G_{m} so we may asume that y is adjacent to $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m}$. Similarly, if $x \pm a_{1}$,
then $G-\left\{a_{2}, b_{2}\right\}$ does not contain G_{m}, so we may assume that x is also adjacent to $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m}$. But this implies that $G-z=G_{m+1}$. We may therefore assume that $x \perp z$. By symmetry, we may also assume $y \perp z$.

Now suppose that $x \pm a_{1}$. Then we must have $G-\left\{a_{2}, b_{2}, a_{1}\right\}=G-\left\{a_{3}, b_{3}, a_{i}\right\}=$ $\boldsymbol{G}_{\boldsymbol{m}}$ and thus, $\boldsymbol{G}-\boldsymbol{a}_{\mathbf{1}}=\boldsymbol{G}_{\boldsymbol{m}+1}$. We may therefore assume by symmetry that \boldsymbol{x} and \boldsymbol{y} are both adjacent to $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m}$ and, therefore, $G-z=G_{m+1}$. With this case, the argument is complete.

4. The characterization of rectangle graphs

A graph G with $\operatorname{Box}(G) \leqslant 2$ is the intersection graph of a family of rectangles (with sides parallel to the x and y axes) in the plane, so it is natural to refer to a graph with boxicity at most 2 as a rectangle graph. In this section, we discuss the problem of providing a forbidden subgraph characterization of rectangle graphs. While this is a very difficult unsolved combinatorial problem, we will solve the subproblem of determining a forbidden subgraph characterization for rectangle graphs with clique covering number two. We accomplish this by establishing combinatorial connections between this problem and characterization problems for partially ordered sets and circular arc graphs as discussed in [6]. In the interests of brevity, we provid only the key definitions here and refer the reader to [6] for details. If $[a, b]$ and $[c, d]$ are closed intervals of the real line \mathbf{R}, we write $[a, b] \triangleleft[c, d]$ when $b<c$ in \mathbf{R}. The interval dimension of a partially ordered set X, denoted I $\operatorname{Dim}(X)$, is then the smallest positive integer n for which there exists a function F assigning to each point $x \in X$ a sequence $F(x)(1), F(x)(2), \ldots, F(x)(n)$ of closed intervals of \mathbf{R} so that $x<y$ in X if and only if $F(x)(i) \triangleleft F(y)(i)$ for $i=1,2,3, \ldots, n$.
A partially ordered set X is said to be t-interval irreducible when $\operatorname{IDim}(X)=t$ and $\mathrm{I} \operatorname{Dim}(X-x)=t-1$ for every $x \in X$. Let \mathscr{P}_{2} denote the collection of all 3 -interval irreducible partially ordered sets of height 1 .

A graph \boldsymbol{G} is called a circular arc graph when it is the intersection graph of a family of arcs of a circle. Let \mathscr{A}_{2} denote the collection of all graphs with clique covering number two which are not circular arc graphs but have the property that the removal of any vertex leaves a circular arc graph. Also, let \mathscr{B}_{2} denote the collection of all graphs with clique covering number two which have boxicity 3 , but have the property that the removal of any vertex leaves a subgraph with boxicity 2 .
For a graph G, we denote by $\overline{\mathcal{G}}$, the complement of G, ؛e., $x \perp y$ in \bar{G} if and only if $x \pm y$ in G. Now let X be a partially ordered set of height one with maximal elements $a_{1}, a_{2}, \ldots, a_{m}$ and minimal elements $b_{1}, b_{2}, \ldots, b_{n}$. We associate with X, graphs G_{X} and $G_{\mathbf{x}}^{*}$, each having

$$
\left\{a_{1}, a_{2}, \ldots, a_{i n}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}
$$

as vertex sets. In $G_{\mathbf{x}}$ and $G_{\mathbf{X}}^{*}$, the subgraphs induced by $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are complete. In G_{X} we define $a_{i} \perp b_{i}$ if and only if $b_{i}<a_{i}$ while in G_{X}^{*} we define $a_{i} \pm b_{i}$ if and only if $b_{i}<a_{i}$.

Dually, for a graph G with vertex set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ for which the subgraphs induced by $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are complete, we denote by $\boldsymbol{X}_{\boldsymbol{G}}$ the partially ordered set of height one for which $\boldsymbol{G}=\boldsymbol{G}_{\boldsymbol{X}_{\boldsymbol{G}}}$. Among the results established in [6] is the following theorem relating circular arc graphs to partially ordered sets.

Theorem 4. Let X be a particilly ordered set of height one. Then $X \in \mathscr{P}_{2}$ if and only if $\boldsymbol{G}_{\mathbf{x}}^{*} \in \mathscr{A}_{2}$.

Now let G be a graph with vertex set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ for which the subgraphs induced by $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ are complete. Suppose that $\operatorname{Box}(G)=2$ and let F be an interval coordinatization of length two for G. Since $\operatorname{Box}(G)=2$, assume by symmetry, that for $k=1,2$ there exist i_{k}, j_{k} with $1 \leqslant i_{k} \leqslant m$ and $1 \leqslant j_{k} \leqslant n$ so that $F\left(a_{i_{k}}\right)(k) \triangleleft F\left(b_{i_{k}}\right)(k)$. Clearly, we may further assume that $F(x)(k)$ is a subset of the open interval $(0,1)$ for each vertex x of G and $k=1,2$.

Now consider the function F^{\prime} which assigns to each vertex x of G a pair $F^{\prime}(x)(1), F^{\prime}(x)(2)$ of closed intervals of R defined as follows; For $i=1,2, \ldots, m$ and $k=1,2$, let $F^{\prime}\left(a_{i}\right)(k)=[r, 1]$ where r is the right end point of $F\left(a_{i}\right)(k)$; for $j=1,2, \ldots, n$ and $k=1,2$, let $F^{\prime}\left(b_{i}\right)(k)=[0, l]$ where l is the left end point of $F\left(b_{i}\right)(k)$. It follows that for $k=1,2, i=1,2, \ldots, m$, and $j=1,2_{1}, \ldots, t$, , we have $F\left(a_{i}\right)(k) \cap F\left(b_{i}\right)(k) \neq \emptyset$ if and only if $F^{\prime \prime}\left(b_{i}\right)(k) \triangleleft F^{\prime}\left(a_{i}\right)(k)$ and therefore, $F^{\prime \prime}$ is an interval representation of length two for the partially ordered set \boldsymbol{X}_{6}. This process is easily seen to be reversible and we have thus established the following theorem relating rectangle graphis to circular are graphs and partially ordered sets.

Theorem 5. Let X be a par:ially ordered set of height one. Then the following statements are equivalent.
(i) $X \in \mathcal{F P}_{\text {. }}$ 。

(iii) $d_{x} \in A_{2}$.

The reader is referred to $[6]$ where a complete detamination of II $_{2}$ is given,

5. Some relatad toplea

We conclude this paper with nome referencen to related paperm. First, we note that the author arid K., P. Bogert [41 have proved a eharneterlzation theorem for Inte vill dimenston which is unalogous to Theorem 3. For an linteger $n \geqslant$? let $s_{n}^{\prime \prime}$
denote the partially ordered set Y of height one for which $G_{n}=G_{\mathbf{Y}}$. Ther it follows that for each $n \geqslant 2$, if X is a partially ordered set having $2 n+1$ points, then I $\operatorname{Dim}(X)=n$ if and only if X contains S_{n}^{0}.

We also refer the reader to [1] where Feinberg has extended the concept of boxicity to arcs on a circle by defining the circular dimension of a graph, $D(G)$, as the smallest positive integer n for which there exists a function F assigning to each vertex x of G a sequence $F(x)(1), F(x)(2), \ldots, F(x)(n)$ of arcs on a circle so that $x \perp y$ in G if and only if $x \neq y$ and $F(x)(i) \cap F(y)(i) \neq \emptyset$ for $i=1,2, \ldots, n$. Since $D(G) \leqslant \operatorname{Box}(G)$, we have the analogous inequality $D(G) \leqslant[|G| / 2]$. However, Feinberg observed that $D\left(G_{n}\right)=1$ for all $n \geqslant 1$. Feinberg constructed for each $n \geqslant 1$ a graph with $2^{n}+n-1$ vertices and circular dimension n and conjectured that this family characterized graphs with maximum circular dimension. This conjecture is incorrect, since it is straightforward to prove, using Erdos' probabilistic methods, that for large n, there exists a graph with n vertices whose circular dimension exceeds $n /(4 \log n)$. However, the general question of the relative accuracy of $D(G) \leqslant[|G| / 2]$ is unanswered.

Finally, we mention the paper by Trotter and Harary [5], who defined the interval number of a graph G, denoted $i(G)$, as the smallest positive integer n for which there exists a function F assigning to each vertex x of G a sequence $F(x)(1), F(x)(2), \ldots, F(x)(n)$ of closed intervals of \mathbf{R} so that distinct vertices x, y of G are adjacent in G if and only if $F(x)(i) \cap F(y)(j) \neq 1$ for some i, j with $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant n$. Alternately, $i(G)$ is the smallest n for which G is the intersection graph of a familly of sets where each set is the union of n intervais of R. Trotter and Harary showed that the complete bipartite graph $\boldsymbol{K}_{m, n}$ has interval number $\{(m n+1) /(m+n)\}$.

References

[1] S: Feinherga. The elfeular difmension of a graph, Disetete Math: $\mathbf{z 5}$ (1979) z7-31:
[z] Cas: Lekkerkerker and JiC: Boland, Representation of a finite graph by a set of intervals of the real line, Fund: Math: 51 (1962) $45=64$:
 Conibinatories (Aeadente Prests, New York):
 (1976) $3 \mathrm{By}=\mathbf{4 1 0 1 0 :}$
[5] W. T: Trotter and F: Hafary, Con double and multiple interval graphs, J: Oraph Theafy, to appeaf.

