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a b s t r a c t

Many categorical axioms assert that a particular canonically definednatural transformation
between certain functors is invertible. We give two examples of such axioms where the
existence of any natural isomorphism between the functors implies the invertibility of the
canonical natural transformation. The first example is distributive categories, the second
(semi-)additive ones. We show that each follows from a general result about monoidal
functors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In any category D with finite products and coproducts there is a natural family of maps

(X × Y )+ (X × Z)
δX,Y ,Z // X × (Y + Z)

induced, via the universal property of the coproduct X × Y + X × Z , by the morphisms X × i and X × j, where i and j denote
the coproduct injections of Y +Z . Such a D is said to be distributive [2,3] if the canonical maps are invertible; in other words,
if the functor X × −: D → D preserves binary coproducts, for all objects X . As observed by Cockett [3], it follows that
X × 0 ∼= 0, so X × − in fact preserves finite coproducts. Examples of distributive categories include the category of sets,
the category of topological spaces, the opposite of the category of commutative rings, any topos, or any distributive lattice,
seen as a preorder.

Claudio Pisani has asked [7] whether the existence of any natural family of isomorphisms

(X × Y )+ (X × Z)
ψX,Y ,Z // X × (Y + Z)

implies that D is distributive. Such ψ are the non-canonical isomorphisms of the title. Rather to my surprise, this turns out
to be true, and is the first result of the paper.

The second result is an analogue for semi-additive categories. Recall that a category is pointedwhen it has an initial object
which is also terminal (1 = 0), and that for any two objects Y and Z in a pointed category there is a unique morphism from
Y to Z which factorizes through the zero object; this morphism is called 0Y ,Z or just 0. If the category has finite products and
coproducts, then there is a natural family of morphisms

Y + Z
αY ,Z // Y × Z

induced by the identities on Y and Z and the zero morphisms 0 : Y → Z and 0 : Z → Y . The category is semi-additive when
these αY ,Z are invertible [6, VII.2]. A semi-additive category admits a canonical enrichment over commutative monoids;
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conversely, any category enriched over commutative monoids which has either finite products or finite coproducts is semi-
additive. Examples of semi-additive categories include the category of abelian groups, the category of commutativemonoids,
the category of R-modules for a ring R, or any abelian category. Our result for semi-additive categories asserts once again
that the existence of any natural isomorphism Y + Z ∼= Y × Z implies that the category is semi-additive.

We prove the result about distributive categories in Section 2, and the result about semi-additive categories in Section 3.
Finally in Section 4,we showhow the commonpart of the two arguments follows from amore general result aboutmonoidal
functors.

2. Non-canonical distributivity isomorphisms

This section involves, as in the introduction, a category D with finite products and coproducts and a natural family of
isomorphisms (X × Y )+ (X × Z) ∼= X × (Y + Z). First we show, in the following lemma, that such a D will be distributive if
X × 0 ∼= 0. Later on, we shall see that this lemma follows from a more general result about coproduct-preserving functors
due to Caccamo and Winskel; and that this in turn is a special case of a still more general result about monoidal functors:
this is our Theorem 6 below.

Lemma 1. Suppose that we have, in a category D with finite products and coproducts, natural isomorphisms

(X × Y )+ (X × Z)
ψ // X × (Y + Z)

and that X × 0 ∼= 0. Then the category D is distributive.

Proof. Since an isomorphism X × 0 ∼= 0 is inverse to the unique map 0 → X × 0 it is unique, and so we may identify X × 0
with 0. We also identify X + 0 with X for all objects X . Thus the isomorphism ϕX,Y ,0 : (X × Y ) + (X × 0) ∼= X × (Y + 0)
takes the form X × Y ∼= X × Y . By naturality with respect to the unique map 0 → Z , the diagram

X × Y
ψX,Y ,0 //

i
��

X × Y

X×i
��

(X × Y )+ (X × Z)
ψX,Y ,Z

// X × (Y + Z)

commutes, and similarly we have a commutative diagram

X × Z
ψX,0,Z //

j

��

X × Z

X×j

��
(X × Y )+ (X × Z)

ψX,Y ,Z

// X × (Y + Z)

and now combining these we get a commutative diagram

(X × Y )+ (X × Z)
ψX,Y ,0+ψX,0,Z // (X × Y )+ (X × Z)

δX,Y ,Z

��
(X × Y )+ (X × Z)

ψX,Y ,Z

// X × (Y + Z).

In this last diagram, the ψ ’s are all invertible, and hence so is δ. �

Thus to prove our result about non-canonical distributivity isomorphisms, it will suffice to show that X×0 ∼= 0whenever
we have the natural isomorphismsψ; a little surprisingly, perhaps, it is this part which requires more work. First we prove
a different result involving non-canonical isomorphisms.

Proposition 2. Let C be a category with binary coproducts and isomorphisms θC : C + C ∼= C natural in C. Then the codiagonal
∇C : C + C → C is also invertible for each C, and so C is a preorder.

Proof. For each C we have the injections iC , jC : C → C + C and these are natural in C . By naturality of θ with respect to the
morphism θC , the diagram

C + C + C + C
θC+θC //

θC+C

��

C + C

θC

��
C + C

θC

// C
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commutes, and now since θC is invertible, θC + θC = θC+C . In the diagram

C + C

∇C

��

θC //

iC+C ((QQQQQQQQQQQQQ C

iC ((QQQQQQQQQQQQQQQ

C + C + C + C
θC+θC

θC+C

//

∇C+∇C

��

C + C

∇C

��

C

iC ((RRRRRRRRRRRRRRR

C + C
θC

// C

the top right region commutes by definition of θC + θC , the bottom left commutes by definition of ∇C + ∇C , and the bottom
right region commutes by naturality of θ with respect to the codiagonal ∇C . Now ∇C iC = 1 by definition of the codiagonal
∇C , and so θC = ∇C iCθC = θC iC∇C ; but θC is invertible, so iC∇C = 1. This proves that ∇C is invertible with inverse iC .

Finally, since ∇C iC = 1 = ∇C jJ and ∇C is invertible, the coproduct injections iC and jC are equal. It follows that any two
maps f , g : C → D are equal. This proves that C is a preorder. �

Recall that an object T is called subterminal if for any object X there is at most one morphism from X to T . If, as here, a
terminal object exists, this is equivalent to saying that the unique map T → 1 is a monomorphism. It is also equivalent to
saying that the product T × T exists and the diagonal map T → T × T is invertible.

Proposition 3. The product 0 × 0 in D is initial, and so 0 is subterminal.

Proof. For the first part, observe that ψ0,0,1 gives an isomorphism 0 × 0 + 0 × 1 ∼= 0 × (0 + 1), and that 0 + 1 ∼= 1 and
0 × 1 ∼= 0. Thus 0 × 0 + 0 ∼= 0 and so 0 × 0 is initial as claimed. For the second, we have an isomorphism 0 ∼= 0 × 0,
and since 0 is initial, this can only be the diagonal ∆ : 0 → 0 × 0. Thus any morphism X → 0 × 0 factorizes through the
diagonal, and so any two morphisms X → 0 are equal. �

Theorem 4. If D is a category with finite products and coproducts, and with a natural family

ψX,Y ,Z : (X × Y )+ (X × Z) ∼= X × (Y + Z)

of isomorphisms, then D is distributive.

Proof. By Lemma 1, it will suffice to show that X×0 ∼= 0. Let C be the slice categoryD/0 consisting of all objects X equipped
with a map X → 0. Since 0 is subterminal, such a map is unique if it exists, and compatibility with these maps is automatic;
thus the projection D/0 → D is fully faithful and injective on objects. Since D has finite coproducts, so does D/0 and the
projection preserves them. In general, products in slice categories are pullbacks in the base category, but in the case of D/0,
since 0 is subterminal, these pullbacks are just products, so D/0 has products and the projection preserves them. Summing
up, D/0 is a full subcategory of D closed under finite products and coproducts.

The isomorphismsψ for D therefore restrict to C = D/0, but now C has the further property that it is pointed, so 1 ∼= 0.
Thus for each object C ∈ C we have isomorphisms

C + C ∼= C × 1 + C × 1 ∼= C × 0 + C × 0
ψ // C × (0 + 0) ∼= C × 0 ∼= C × 1 ∼= C

which are clearly natural in C . It follows, by Proposition 2, that C is a preorder. For any C ∈ C we have morphisms 0 → C
and C → 1 → 0 and so C ∼= 0. In particular, for each X ∈ D the projection X × 0 → 0 gives an object of D/0, and so
X × 0 ∼= 0. �

3. Non-canonical semi-additivity isomorphisms

We now give an analogous result for semi-additivity. An interesting feature is that this does not require us to assume
that the category is pointed, although that will of course be a consequence.

Theorem 5. If A is a category with finite products and coproducts and with a natural family

ψY ,Z : Y + Z ∼= Y × Z

of isomorphisms, then A is semi-additive.
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Proof. Taking Y = 1 and Z = 0 gives an isomorphism ψ1,0 : 1 ∼= 1 × 0; composing with the projection 1 × 0 → 0 gives
a morphism 1 → 0. By uniqueness of morphisms into 1 and out of 0, this is inverse to the unique map 0 → 1, and so A is
pointed.

Taking one of Y and Z to be 0 gives natural isomorphisms ψY ,0 : Y ∼= Y and ψ0,Z : Z ∼= Z . By naturality of the ψY ,Z , the
diagrams

Y
ψY ,0 //

i
��

Y

(Y0)
��

Z
ψ0,Z //

j

��

Z

(0Z)
��

Y + Z
ψY ,Z

// Y × Z Y + Z
ψY ,Z

// Y × Z

commute, and so also

Y + Z
ψY ,0+ψ0,Z // Y + Z

αY ,Z

��
Y + Z

ψY ,Z

// Y × Z

commutes. Just as in the proof of Lemma 1, ψY ,0 + ψ0,Z and ψY ,Z are invertible, and hence so is αY ,Z . �

4. Non-canonical isomorphisms for monoidal functors

In this section we prove a general result on monoidal functors, which could be used in the proof of both of the other
theorems. We write as if the monoidal categories in question were strict; thanks to the coherence theorem for monoidal
categories there is no danger in doing this. Recall that if A and B are monoidal categories, a monoidal functor F : A → B

consists of a functor (also called F ) equipped with maps ϕY ,Z : FY ⊗ FZ → F(Y ⊗ Z) and ϕ0 : I → FI which need not be
invertible, but which are natural and coherent [4]. The monoidal functor is said to be strong if ϕY ,Z and ϕ0 are invertible, and
normal if ϕ0 is invertible. Given monoidal functors (F , ϕ), (G, ψ) : A → B a natural transformation α : F → G is monoidal
if the diagrams

FY ⊗ FZ
αX⊗αY //

ϕX,Y

��

GY ⊗ GZ

ψX,Y

��

I
ϕ0 //

ψ0 ��=
==

==
==

= FI

αI

��
F(Y ⊗ Z)

αX⊗Y
// G(Y ⊗ Z) GI

commute. Recall further [5] that ifC is braidedmonoidal, then the functor⊗: C ×C → C is strongmonoidal, with structure
maps

W ⊗ X ⊗ Y ⊗ Z
W⊗γ⊗D // W ⊗ Y ⊗ X ⊗ Z I

λ // I ⊗ I

where γ denotes the braiding and λ the canonical isomorphism.

Theorem 6. Let A and B be braided monoidal categories, and F = (F , ϕ, ϕ0) : A → B a normal monoidal functor (so ϕ0 is
invertible). Suppose further that we have a monoidal isomorphism

A × A
F×F //

⊗

��

B × B

⊗

��

�� ��
�� ψ

A
F

// B

where F × F is made monoidal via the monoidal structure on F , and the vertical arrows are made monoidal using the braidings
on A and B. Then ϕ is invertible, and so F is strong monoidal.
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Proof. The fact that ψ is monoidal means in particular that the diagram

FW ⊗ FX ⊗ FY ⊗ FZ
ψW ,X⊗ψY ,Z //

1⊗γ⊗1

��

F(W ⊗ X)⊗ F(Y ⊗ Z)

ϕW⊗X,Y⊗Z

��
FW ⊗ FY ⊗ FX ⊗ FZ

ϕW ,Y ⊗ϕX,Z

��

F(W ⊗ X ⊗ Y ⊗ Z)

F(1⊗γ⊗1)

��
F(W ⊗ Y )⊗ F(X ⊗ Z)

ψW⊗Y ,X⊗Z

// F(W ⊗ Y ⊗ X ⊗ Z)

commutes. Taking X = Y = I and twice using the isomorphism ϕ0 gives commutativity of

FW ⊗ FZ
1⊗ϕ0⊗ϕ0⊗1//

RRRRRRRRRRRRRR

RRRRRRRRRRRRRR FW ⊗ FI ⊗ FI ⊗ FZ
ψW ,I⊗ψI,Z //

ϕW ,I⊗ϕI,Z

��

FW ⊗ FZ

ϕW ,Z

��
FW ⊗ FZ

ψW ,Z

// F(W ⊗ Z)

in which all arrows except the ϕ’s are invertible. Since the exterior commutes, it follows that ϕW ,Z too is invertible. �

Remark 7. In general, for a functor between monoidal categories there is no canonical way to make it monoidal. But for a
monoidal functor (F , ϕ, ϕ0), we do have a canonical monoidal natural transformation ⊗(F × F) → F×, namely ϕ itself. So
the theorem asserts that the existence of a non-canonical monoidal natural isomorphism ψ implies the invertibility of the
canonical ϕ. In the proof of the theorem we have used rather less than was assumed in the statement. For example, we do
not use the nullary part of the assumption that the natural transformation is monoidal.

The following corollary appeared (in dual form) as [1, Theorem 3.3]:

Corollary 8 (Caccamo–Winskel). Let A and B be categories with finite coproducts, and F : A → B a functor which preserves
the initial object. If there is a natural family of isomorphisms

FX + FY
ψX,Y // F(X + Y )

then F preserves finite coproducts.

Proof. In this case F has a unique structure of normal monoidal functor (A ,+, 0) → (B,+, 0), and ψ is always
monoidal. �

In particular if D has finite products and coproducts, we may recover Lemma 1 by applying the corollary to the functor
X × −: D → D .

Section 3 involves the case of the theoremwhere the categories A and B are the same, but the monoidal structure on A

is cartesian and that on B is cocartesian. The functor F is the identity. One proves that 0 → 1 is invertible, as in the proof of
Theorem 5; and then the identity functor 1A has a unique structure of normal monoidal functor (A ,×, 1) → (A ,+, 0),
with binary part precisely the canonicalmorphismα : Y+Z → Y×Z . Furthermore, any natural isomorphismψY ,Z : Y+Z ∼=

Y × Z is monoidal.
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