F-signature of graded Gorenstein rings

Akiyoshi Sannai ${ }^{\text {a,* }}$, Kei-ichi Watanabe ${ }^{\text {b }}$
${ }^{\text {a }}$ Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo, 156-0045, Japan

ARTICLE INFO

Article history:

Received 31 May 2010
Received in revised form 19 November
2010
Available online 21 March 2011
Communicated by S. Iyengar

Abstract

For a commutative ring R, the F-signature was defined by Huneke and Leuschke [Math. Ann. 324 (2) (2002) 391-404]. It is an invariant that measures the order of the rank of the free direct summand of $R^{(e)}$. Here, $R^{(e)}$ is R itself, regarded as an R-module through e-times Frobenius action F^{e}.

In this paper, we show a connection of the F-signature of a graded ring with other invariants. More precisely, for a graded F-finite Gorenstein ring R of dimension d, we give an inequality among the F-signature $s(R), a$-invariant $a(R)$ and Poincaré polynomial $P(R, t)$. $$
s(R) \leq \frac{(-a(R))^{d}}{2^{d-1} d!} \lim _{t \rightarrow 1}(1-t)^{d} P(R, t) .
$$

Moreover, we show that $R^{(e)}$ has only one free direct summand for any e, if and only if R is F-pure and $a(R)=0$. This gives a characterization of such rings.

© 2011 Published by Elsevier B.V.

1. Introduction

Let R be a reduced local ring of dimension d containing a field of characteristic $p>0$ with a perfect residue field. Let $R^{(e)}$ be R itself, regarded as an R-module through the e-times composition of Frobenius maps F^{e}. In the following, we often assume that $R^{(e)}$ is F-finite. This is equivalent to $R^{(1)}$ being a finite R-module. The structure of $R^{(e)}$ has a close relationship with the singularity, multiplicity and Hilbert-Kunz multiplicity of R. For example, if R is a regular local ring of dimension d, then by a theorem of Kunz, $R^{(e)}$ becomes a free module of rank $p^{e d}$. The converse also holds, and thus, this property characterizes regular local rings.

In [7], Huneke and Leuschke investigated how many free direct summands are contained in $R^{(e)}$. Namely, they decomposed $R^{(e)}$ as $R^{(e)}=R^{a_{q}} \oplus M_{q}$ and examined a_{q}, where M_{q} is an R-module that does not contain any free direct summand. The number a_{q} is known to be independent of the decomposition. In this article, first we consider the case where $a_{q}=1$ for any $q=p^{e}$.

We obtained the following result.
Theorem 1.1. For any reduced graded F-finite Gorenstein ring R such that R has an isolated singularity and R_{0} is a perfect field, the following are equivalent.
(1) $R^{(e)}$ has only one free direct summand, for each positive integer e.
(2) R is F-pure and $a(R)=0$.

[^0]Definition 1.2. Decompose $R^{(e)}$ as $R^{(e)}=R^{a_{q}} \oplus M_{q}$, where M_{q} is an R-module that does not contain R as a direct summand. If the limit exists, we set

$$
s(R)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d}}
$$

and call it F-signature.
This invariant was introduced by Huneke and Leuschke, and has been investigated by several researchers. In their paper [7], the following theorems were shown.

Theorem 1.3. Let R be an F-finite reduced Cohen-Macaulay local ring with a perfect residue field and whose F-signature $s(R)$ exists. Then the following are equivalent.
(1) $s(R)=1$.
(2) R is a regular local ring.

Theorem 1.4. Let R be an F-finite reduced complete Gorenstein local ring with a perfect residue field. Then the following are equivalent.
(1) $s(R)>0$.
(2) R is F-rational.

From these results, we can say that the F-signature contains enough information to characterize some kind of classes of commutative rings. Theorem 1.3 was generalized by Y. Yao to that $s(R) \geq 1-\frac{1}{d!p^{d}}$ implies R is regular (see [11]). Besides, as in the assumption of Theorem 1.3, it is also a nontrivial question whether the F-signature exists or not. Several papers have dealt with this problem; for example, Gorenstein local rings are known to admit F-signatures.

In this article, we obtained the following result.
Theorem 1.5. For any reduced graded F-finite Gorenstein ring R and if R_{0} is assumed to be a perfect field, we have the following inequality.

$$
\begin{equation*}
s(R) \leq \frac{(-a)^{d} e^{\prime}}{2^{d-1} d!} \tag{1.1}
\end{equation*}
$$

Here, d is the dimension of $R, a=a(R)$ is the a-invariant of R, and $e^{\prime}=\lim _{t \rightarrow 1}\left(1-t^{d}\right) P(R, t)$, where $P(R, t)$ is the Poincare series of R.

In dimension 2 , the equality holds in (4.1) if R is regular or a rational double point. This equality never holds for regular rings of dimension greater than or equal to 3 .

2. Preliminaries

In the following, we write $q=p^{e}$ for any positive integer e.
Proposition 2.1. Let R be a d-dimensional Cohen-Macaulay local ring of characteristic p. The following are equivalent.
(1) R is F-rational.
(2) 0 is tightly closed in $H_{m}^{d}(R)$.

Proof. See [9], [6, Theorem 4.4].
Proposition 2.2. For any F-pure Cohen-Macaulay positively graded ring R of dimension d and characteristic p, we have $a(R) \leq 0$.
Proof. See [3], Remark 1.6.
Proposition 2.3. Let R be an F-injective Cohen-Macaulay graded ring of dimension d and characteristic p, which is an isolated singularity. If $a(R)<0$, then R is F-rational.

Proof. Let $\tau(R)$ be the test ideal of R. Because R has an isolated singularity, $\tau(R)$ is $\mathfrak{m}=\oplus_{n>0} R_{n}$-primary. Hence the annihilator of $\tau(R)$ in $H_{\mathrm{m}}^{d}(R)$ is finitely generated.

If R is not F-rational, then there exists a non-zero element x in $H_{\mathrm{m}}^{d}(R)$ that satisfies $c x^{q}=0$ for all $c \in \tau(R)$ and q. Since $a(R)<0$ and R is F-injective, $x^{q} \neq 0$ and deg x^{q} gets arbitrary small. Hence $\tau(R) x^{q}$ cannot be 0 . A contradiction!

3. \boldsymbol{F}-signature

Let R be a reduced commutative ring of positive characteristic with a perfect residue field. As before, let p be char R and let $q=p^{e}$ for any positive integer e.

In the following, we assume R is F-finite, i.e., $R^{(1)}$ is finite as an R-module.
Definition 3.1. Decompose $R^{(e)}$ as $R^{(e)}=R^{a_{q}} \oplus M_{q}$, where M_{q} is an R-module which does not contain R as a direct summand. If the limit exists, we set

$$
s(R)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d}}
$$

and call it F-signature.
Remark 3.2. For each e, we have $a_{q} \leq \operatorname{rank} R^{(e)} \leq q^{d}$. Thus $s(R)$ satisfies $s(R) \leq 1$.
Example 3.3. Let R be a regular local ring of dimension d with a perfect residue field. By the theorem of Kunz [8], we have $R^{(e)}=R^{q^{d}}$. Thus we have $a_{q}=q^{d}$, and $s(R)=1$.

The converse also holds. See [7, Corollary 16].
Proposition 3.4. Let \hat{R} be the \mathfrak{m}-adic completion of R. Then we have $s(R)=s(\hat{R})$.
Proof. This is trivial, because the completion is fully faithful.
Theorem 3.5. Let R be a Gorenstein ring. The following are equivalent.
(1) $s(R)>0$.
(2) R is F-rational.
(3) R is F-regular.

Proof. See [7, Theorem 11].
Example 3.6. For a 2-dimensional rational double point, we can calculate its F-signature in several ways. See, for example, [10]. The results are listed below.

Type	Equation	$\operatorname{char} R$	$s(R)$
$\left(A_{n}\right)$	$f=x^{2}+y^{2}+z^{n+1}$	$p \geq 2$	$\frac{1}{n+1}$
$\left(D_{n}\right)$	$f=x^{2}+y z^{2}+y^{n-1}$	$p \geq 3$	$\frac{1}{4(n-2)}$
$\left(E_{6}\right)$	$f=x^{2}+y^{3}+z^{4}$	$p \geq 5$	$\frac{1}{24}$
$\left(E_{7}\right)$	$f=x^{2}+y^{3}+y z^{3}$	$p \geq 5$	$\frac{1}{48}$
$\left(E_{8}\right)$	$f=x^{2}+y^{3}+z^{5}$	$p \geq 7$	$\frac{1}{120}$

4. Proof of the theorem

In this section, we give a proof of the main theorem and calculate some examples. We use the notation of the previous section. Throughout this section, let $R=\oplus_{n \geq 0} R_{n}$ be an F-finite graded ring of positive characteristic. We denote $\mathfrak{m}=R_{+}=$ $\oplus_{n>0} R_{n}$.
Lemma 4.1. Let R be a graded Gorenstein ring, and let $a=a(R)$. Then, for any homogeneous element α in R such that αF^{e} is split mono, we have

$$
\operatorname{deg} \alpha \leq-a(q-1)
$$

Proof. Let $f_{1}, f_{2}, \ldots, f_{d}$ be a homogeneous system of parameter R, and let $b_{i}=\operatorname{deg} f_{i}$. Because αF^{e} is split mono, by tensoring $R^{q} /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)$ over R^{q}, we see that $\alpha R^{q} /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)$ is a free direct summand of $R /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)$.

If we take a generator z of $\operatorname{soc}\left(R /\left(f_{1}, f_{2}, \ldots, f_{d}\right)\right)$, then it satisfies

$$
\operatorname{deg} z=a+b_{1}+b_{2}+\cdots+b_{d}
$$

Because $\alpha R^{q} /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)$ is a free direct summand of $R /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)$, we have $\alpha z^{q} \neq 0$ in $R /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)$, and thus

$$
\operatorname{deg} \alpha z^{q} \leq a\left(R /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)\right)
$$

Because $a\left(R /\left(f_{1}^{q}, f_{2}^{q}, \ldots, f_{d}^{q}\right)\right)=a+q\left(b_{1}+b_{2}+\cdots+b_{d}\right)$, we obtain

$$
\operatorname{deg} \alpha+q\left(a+b_{1}+b_{2}+\cdots+b_{d}\right) \leq a+q\left(b_{1}+b_{2}+\cdots+b_{d}\right)
$$

Thus Lemma 4.1 follows.
Theorem 4.2. Let R be a reduced graded F-finite Gorenstein ring with an isolated singularity, and let us assume that $R_{0}=k$ is a perfect field. The following are equivalent.
(1) $R^{(e)}$ has only one free direct summand for each positive integer e.
(2) R is F-pure and $a(R)=0$.

Proof. Because the implication from (2) to (1) is obvious by Lemma 4.1, it suffices to show the converse.
Suppose we have $a_{q}=1$ for some $e \gg 1$. This means there exists an α such that αR is a free direct summand of $R^{(e)} . \alpha$ is not contained in R^{0}. Therefore, R is F-pure (see [5, page 128 , remark(c)]), which implies that $a(R) \leq 0$. If we suppose that $a(R)<0$, then R becomes F-rational and $s(R)>0$, contradicting $a_{q}=1$.
Theorem 4.3. For any reduced graded F-finite Gorenstein ring R and if we assume that $R_{0}=k$ is a perfect field, we have the following inequality.

$$
\begin{equation*}
s(R) \leq \frac{(-a)^{d} e^{\prime}}{2^{d-1} d!} \tag{4.1}
\end{equation*}
$$

Here, d is the dimension of R, a is the a-invariant, and $e^{\prime}=\lim _{t \rightarrow 1}(1-t)^{d} P(R, t)$, where $P(R, t)$ is the Poincaré series of R.
Proof. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{a_{q}}$ be a basis of the free direct summand of $R^{(e)}$. We assume that each α_{i} is a homogeneous element. Let $f_{1}, f_{2}, \ldots, f_{d}$ be homogeneous parameter systems of R, and let $b_{i}=\operatorname{deg} f_{i}$. We may assume that each b_{i} is large enough with respect to a_{q} and q. Take a generator z of $\operatorname{soc}\left(R /\left(f_{1}, f_{2}, \ldots, f_{d}\right)\right)$. By Lemma 4.1, we have deg $\alpha_{i} \leq-a(q-1)$. Because $\alpha_{1} R^{q} \oplus \alpha_{2} R^{q} \oplus \cdots \oplus \alpha_{a_{q}} R^{q}$ is a free direct summand of $R^{(e)}$,

$$
\alpha_{1} R^{q} /\left(f_{1}, f_{2} \ldots, f_{d}\right) \oplus \alpha_{1} R^{q} /\left(f_{1}, f_{2} \ldots, f_{d}\right) \oplus \cdots \oplus \alpha_{a_{q}} R^{q} /\left(f_{1}, f_{2} \ldots, f_{d}\right)
$$

becomes a free direct summand of $R^{(e)} /\left(f_{1}, f_{2} \ldots, f_{d}\right) R^{(e)}=R /\left(f_{1}^{q}, \ldots, f_{d}^{q}\right) R$.
Define a_{q}^{-}and a_{q}^{+}by

$$
\begin{aligned}
& a_{q}^{-}=\left\{i \left\lvert\, \operatorname{deg} \alpha_{i}<\frac{-a(q-1)}{2}\right.\right\}, \\
& a_{q}^{+}=\left\{i \left\lvert\, \operatorname{deg} \alpha_{i} \geq \frac{-a(q-1)}{2}\right.\right\} .
\end{aligned}
$$

And let $r_{n}=\operatorname{dim}_{k}\left(R /\left(f_{1}^{q}, \ldots, f_{d}^{q}\right) R\right)_{n}$. Because α_{i} 's are linearly independent over k, we have

$$
a_{q}^{-} \leq \sum_{n=0}^{\frac{-a(q-1)}{2}-1} r_{n}
$$

Similarly, because $\alpha_{i} z^{q}$'s are linearly independent over k, we have

$$
a_{q}^{+} \leq \sum_{n=\frac{-a(q-1)}{2}+q\left(a+b_{1}+\cdots+b_{d}\right)}^{-a(q-1)+q\left(a+b_{1}+\cdots+b_{d}\right)} r_{n}
$$

By the duality of the Gorenstein ring $R^{(e)} /\left(f_{1}, \ldots, f_{d}\right) R^{(e)}=R /\left(f_{1}^{q}, \ldots, f_{d}^{q}\right) R$, we obtain

$$
r_{\frac{-a(q-1)}{2}+q\left(a+b_{1}+\cdots+b_{d}\right)+i}=r_{\frac{-a(q-1)}{2}-i}
$$

and thus

$$
a_{q}^{+} \leq \sum_{n=0}^{\frac{-a(q-1)}{2}} r_{n}
$$

Thus we obtain

$$
a_{q}=a_{q}^{+}+a_{q}^{-} \leq 2 \sum_{n=0}^{\frac{-a(q-1)}{2}} r_{n}
$$

Dividing this by q^{d} and taking the limit, we obtain $s(R)$ from the left-hand side. For large q,

$$
2 \sum_{n=0}^{\frac{-a(q-1)}{2}} r_{n}=2 \frac{e^{\prime}}{d!}\left(\frac{-a(q-1)}{2}\right)^{d}+(\text { terms of lower degree })=\frac{(-a)^{d} e^{\prime}}{2^{d-1} d!} q^{d}+(\text { terms of lower degree })
$$

Hence the result follows.
Example 4.4. If $R=k\left[X_{1}, \ldots, X_{d}\right]$ is a polynomial ring over perfect field k, because $a(R)=-d$ and $e^{\prime}=1$, we have

$$
\frac{(-a)^{d} e^{\prime}}{2^{(d-1) d!}}=\frac{d^{d}}{2^{(d-1)} d!}
$$

The right-hand side is equal to 1 for $d=1,2$ and greater than 1 for $d \geq 3$. Thus we have equality in (4.1) if and only if $d=1,2$.

Example 4.5. (4.1) becomes an equality if R is a 2-dimensional rational double point.
To confirm this, we introduce the following lemma.
Lemma 4.6. Let R be a graded ring, and let x be a regular homogeneous element in degree b. Then

$$
\begin{equation*}
\left(1-t^{b}\right) P(R, t)=P(R /(x), t) \tag{4.2}
\end{equation*}
$$

Proof. Since x is a homogeneous regular element of degree b,

$$
\begin{equation*}
0 \rightarrow R(-b) \xrightarrow{x} R \rightarrow R /(x) \rightarrow 0 \tag{4.3}
\end{equation*}
$$

is exact. By the additivity of the dimension of k-vector spaces, we obtain

$$
H(R /(x), n)=H(R, n)-H(R, n-b),
$$

and thus

$$
\begin{aligned}
& H(R /(x), n) t^{n}=H(R, n) t^{n}-H(R, n-b) t^{n} \\
& H(R /(x), n) t^{n}=H(R, n) t^{n}-t^{b} H(R, n-b) t^{n-b}
\end{aligned}
$$

Here, $H(R, n)$ denotes the k-dimension of the degree- n part of R. Taking the sum of these equations, we obtain (4.2).
Lemma 4.7. Let R be a graded Cohen-Macaulay ring, and let x be a homogeneous regular element of degree b. Then we have

$$
a(R /(x))=a(R)+b
$$

Proof. See [4] (2.2.10) or [2] (3.6.14).
In the following, we demonstrate how to calculate the right-hand side of (4.1) in Theorem 4.3 for singularities of type A_{n} by using these lemmas. In this case, $R=k[x, y, z] / x^{2}+y^{2}+z^{n+1}$. We remark that because R is a hypersurface singularity, it is a complete intersection, in particular Cohen-Macaulay.
R can be regarded as a graded ring with $\operatorname{deg} x=\operatorname{deg} y=n+1, \operatorname{deg} z=2$. With this grading, $x^{2}+y^{2}+z^{n+1}$ is a homogeneous element of degree $2(n+1)$, and thus we have

$$
a(R)=-(n+1+n+1+2)+2(n+1)=-2
$$

by Lemma 4.7.
Next we calculate the Poincaré series. By Lemma 4.6, we have

$$
\left(1-t^{n+1}\right) P(R, t)=P(R /(x), t)
$$

Moreover, because y is a regular element in $R /(x)$ of degree $n+1$, we have

$$
\left(1-t^{n+1}\right) P(R /(y), t)=P(R /(x, y), t)
$$

again by Lemma 4.6. Since z is an element of degree 2 in $R /(x, y)=k[x, y, z] / z^{n+1}$, we have

$$
P(R /(x, y), t)=1+t^{2}+\cdots+t^{2 n}=\frac{1-t^{2(n+1)}}{1-t^{2}}
$$

Combining with the above two equations, we obtain

$$
P(R, t)=\frac{1-t^{2(n+1)}}{\left(1-t^{n+1}\right)\left(1-t^{n+1}\right)\left(1-t^{2}\right)}
$$

and thus $e^{\prime}=\frac{1}{n+1}$. The right-hand side of (4.1) can be calculated to be $\frac{1}{n+1}$, and thus is equal to e^{\prime} in this case.
The following is the list of a and e^{\prime} calculated by the above method.

Type	e^{\prime}	$a(R)$	RHS of (4.1)
$\left(A_{n}\right)$	$\frac{1}{n+1}$	-2	$\frac{1}{n+1}$
$\left(D_{n}\right)$	$\frac{1}{n-1}$	-1	$\frac{1}{4(n-2)}$
$\left(E_{6}\right)$	$\frac{1}{6}$	-1	$\frac{1}{24}$
$\left(E_{7}\right)$	$\frac{1}{12}$	-1	$\frac{1}{48}$
$\left(E_{8}\right)$	$\frac{1}{30}$	-1	$\frac{1}{120}$

5. Local case

Finally, we give a local version of Theorem 4.2 .
Theorem 5.1. Let (R, \mathfrak{m}) be a F-finite Gorenstein local ring that is F-rational on a punctured spectrum and assume that the residue field is perfect. The following are equivalent.
(1) $R^{(e)}$ has only one free direct summand, for each positive integer e.
(2) R is F-pure and not F-rational.

Proof. The implication from (1) to (2) is the same as the graded case. To show the converse, we use the splitting prime. For the definition and the behavior, see [1]. Let \mathfrak{p} be the splitting prime. Because R is F-pure, \mathfrak{p} is not unit ideal. Because \mathfrak{p} contains the test ideal, \mathfrak{p} equals to \mathfrak{m}. (See [1, remark 3.5.].)
But then $a_{q}=1$ by the remark again, namely $R^{(e)}$ has only one free direct summand, for each positive integer e.

Acknowledgements

We would like to thank Anurag K. Singh and the referee for their useful advice.

References

[1] I.M. Aberbach, F. Enescu, The structure of F-pure rings, Math. Z. 250 (4) (2005) 791-806.
[2] W. Bruns, J. Herzog, Cohen-Macaulay rings, in: Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993, xii+403 pp.
[3] R. Fedder, K.-i. Watanabe, A characterization of F-regularity in terms of F-purity, in: Commutative Algebra (Proc. Microprogram, Berkeley, 1987), Springer, 1989, pp. 227-245.
[4] S. Goto, K. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (2) (1978) 179-213.
[5] Melvin Hochster, Craig Huneke, Tight closure and strong F-regularity, Mém. Soc. Math. Fr. (N.S.) (38) (1989) 119-133.
[6] C. Huneke, Tight closure and its applications, With an appendix by Melvin Hochster. CBMS Regional Conference Series in Mathematics, vol. 88. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. $\mathrm{x}+137 \mathrm{pp}$.
[7] C. Huneke, G.J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2) (2002) 391-404.
[8] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 41 (1969) 772-784.
[9] E.K. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997) 159-180.
[10] K. Watanabe, K. Yoshida, Minimal relative Hilbert-Kunz multiplicity, Illinois J. Math. 48 (1) (2004) 273-294.
[11] Y. Yao, Observations on the F-signature of local rings of characteristic p, J. Algebra 299 (1) (2006) 198-218.

[^0]: * Corresponding author.

 E-mail addresses: sannai@ms.u-tokyo.ac.jp (A. Sannai), watanabe@math.chs.nihon-u.ac.jp (K.-i. Watanabe).

