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Abstract

We consider �nancial market models based on Wiener space with two agents on di�erent
information levels: a regular agent whose information is contained in the natural �ltration of the
Wiener process W, and an insider who possesses some extra information from the beginning of
the trading interval, given by a random variable L which contains information from the whole
time interval. Our main concern are variables L describing the maximum of a pricing rule. Since
for such L the conditional laws given by the smaller knowledge of the regular trader up to
�xed times are not absolutely continuous with respect to the law of L, this class of examples
cannot be treated by means of the enlargement of �ltration techniques as applied so far. We
therefore use elements of a Malliavin and Itô calculus for measure-valued random variables to
give criteria for the preservation of the semimartingale property, the absolute continuity of the
conditional laws of L with respect to its law, and the absence of arbitrage. The master example,
given by supt ∈ [0;1]Wt , preserves the semimartingale property, but allows for free lunch with
vanishing risk quite generally. We deduce conditions on drift and volatility of price processes,
under which we can construct explicit arbitrage strategies. c© 2001 Elsevier Science B.V. All
rights reserved.
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0. Introduction

Financial markets with economic agents possessing di�erent information levels have
been studied in a number of publications. There are essentially two main approaches.
Quite a number of di�erent, mostly discrete models resulted predominantly from

research in economics oriented papers (see O’Hara, 1995). Kyle (1985) investigates a
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time-discrete auction trading model with three agents: a market maker, a noise trader,
and a risk neutral insider, to whom the �nal (Gaussian) value of one stock is known
in advance. The existence of a unique equilibrium, shown by Kyle in this case, was
extended by Back (1992,1993) to the time-continuous setting. Thereby the law of the
insider’s additional information was also considerably generalized. In these models the
insider’s actions may have an e�ect on the pricing rules. For more information on
this and related classes of models and important techniques used in this area such
as control theory, Malliavin’s calculus and backwards stochastic di�erential equations,
see for example, Karatzas and Ocone (1991), El Karoui and Quenez (1997), Cho and
El Karoui (1998), and the recent thesis of Wu (1999).
The approach from the point of view of martingale theory, which we shall take

in this paper, originated in the conceptual paper by Du�e and Huang (1986). Still
closer to the setting of this paper are Karatzas and Pikovsky (1996), and Pikovsky
(1999). They study a continuous-time model on a Wiener space, in which the insider
possesses some extra information stored in a random variable L from the beginning
of the trading interval, not available to the regular agent. They discuss questions like
the additional utility of the insider with respect to particular utility functions, and
martingale representation properties in the insider’s �ltration, thereby introducing the
powerful technique of grossissement de �ltrations to this economical context. While
their L was kept within the Gaussian domain, the use of Malliavin’s calculus in prob-
lems related to the enlargement of �ltrations (see Imkeller, 1996,1997), eventually
led to more complex additional information variables on Wiener space and beyond.
The method of grossissement de �ltrations was developed in a series of deep works,
e.g. Yor (1985a,b,c,d), Jeulin (1980), Jacod (1985). Observations making martingale
representation techniques in enlarged �ltrations more easily accessible and giving a
criterion for the absence of arbitrage in the insider model were made in F�ollmer and
Imkeller (1993). In Grorud and Pontier (1998), and Denis et al. (1998) Malliavin’s
calculus resp. the abstract theory of Dirichlet forms were correspondingly used to
study on stochastic bases with increasing complexity – Wiener and Wiener-Poisson
– admissible hedging strategies for insiders. Criteria for optimality were given. Work
on the question, how an insider can be detected from his actions by statistical test-
ing was begun in Grorud and Pontier (1998), and continued in Grorud and Pontier
(1997). Techniques of enlargement of �ltrations are by no means restricted to special
stochastic bases. Their working area is quite general semimartingale theory. This fact
was beautifully underlined in the thesis by Amendinger (1999), in which many re-
sults about martingale representations and utility optimization of an insider obtained a
natural formulation in a rather general framework. In particular, in the case of loga-
rithmic utility functions, the expected additional utility of the insider was identi�ed in
Amendinger et al. (1998) with the entropy of the law of the initially known additional
information L:
Though a much more general setting had been studied in Jeulin (1980), in all the

applications of the techniques of initial enlargement of �ltrations to problems of insider
trading known so far, a technical hypothesis made by Jacod (1985) plays a crucial role.
Let L denote the extra information of the insider known from start. While the regular
trader’s evolution of knowledge is described by a �ltration F = (Ft)t ∈ [0;1], L is just
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F1-measurable, so that the evolution of information viewed by the insider, given by
Gt =

⋂
s¿tFs ∨�(L) augmented by the P-zero sets, t ∈ [0; 1], is essentially richer. The

additional information may even destroy one of the usual requirements needed to be
able to work with stochastic analysis, the stochastic integrator property with respect to
the bigger �ltration of martingales of the smaller �ltration such as W or price processes
S which are Ito semimartingales of W . Hence, if one wants to retain e.g. the linearity
of the map � 7→ ∫

� dS associating gains from trade to a trading strategy �, one has to
impose additional conditions on the insider’s extra information. The crucial property
to be ful�lled, Jacod’s (1985) hypothesis (H′); is su�cient for the preservation of the
semimartingale (integrator) property when passing to the �ltration G = (Gt)t ∈ [0;1]. It
states that the regular conditional law of L givenFt is P-a.s. absolutely continuous with
respect to the law of L as a common reference measure for all t ∈ [0; 1]: Unfortunately,
very interesting extra informations such as the maximum of a stock price over the
trading interval, which could for example be modeled by L=supt ∈ [0;1]Wt for a Wiener
process W , do not satisfy (H′).
One of the main objectives of this paper is to remove this di�culty. To generalize

the hypothesis (H′); one could work well in the very general framework of Jeulin
(1980). To have concise and more transparent expressions for the decompositions of
semimartingales in the larger �ltration for the purposes of this paper, we chose the
framework of Malliavin’s calculus on canonical Wiener space. In this context, our
main observation generalizing Jacod’s hypothesis can be paraphrased as follows. Let D
denote Malliavin’s gradient, and let Ps(:; dx) be the regular conditional law of L given
Fs; s∈ [0; 1]: The pseudodrift generated by the extra information, to be subtracted
from an F-Wiener process to create a G -Wiener process is given by the Radon–
Nikodym derivative of DsPs(:; dx) with respect to Ps(:; dx); evaluated at L: In case
(H′) is ful�lled and ps(:; x) denotes a density of Ps(:; dx) with respect to the law of
L, this quantity boils down to the quantity appearing in Jacod (1985), or the trace of
a logarithmic Malliavin derivative of ps(:; L) appearing in Imkeller (1996), or Grorud
and Pontier (1998).
So the technical basis we choose for this paper is a calculus within which the quantity

DsPs(:; dx) becomes meaningful as a random measure. This leads us to elements of a
measure-valued Malliavin calculus, developed in the appendix.
The crucial representation of the measure-valued martingale Ps(:; dx); s∈ [0; 1]; in

terms of a generalized Clark–Ocone formula �guring a stochastic integral of the rea-
sonably understood quantity DsPs(:; dx) is given in Section 1. In Section 2, we may
then replace the criterion of Jacod (H′) by the following more general and natural one
in the setting of Wiener space:

(AC) DsPs(:; dx) is absolutely continuous with respect to Ps(:; dx)

P-a:s: for s∈ [0; 1]:

This condition is in particular ful�lled for our master example, the maximum L of the
Wiener process over the unit interval. Let gs(:; L) denote the Radon–Nikodym derivative
under (AC), taken at L. We �rst show in Theorem 2:1, that the semimartingale property
is preserved when passing from F to G ; if g(:; L) is P-a.s. integrable over [0; 1]. If
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g(:; L) is even square integrable P-a.s., we are able to see in the main result of
the section, Theorem 2.2, that (H′) is regained, at the same time as the �niteness
of the relative entropy of the regular conditional laws with respect to the law of
L: An example shows that just square integrability of g(:; L) is not enough to ob-
tain equivalence of the regular conditional laws and the law of L. For this purpose,
one needs stronger integrability conditions. We show in the �nal Theorem 2.3 of
Section 2 that an exponential integrability of the Novikov type is su�cient. We �-
nally prove that for our master example, g(:; L) is not square integrable on a set
of positive probability. Hereby a Bes(3) process will make its �rst crucial appear-
ance. It was observed already in Delbaen and Schachermayer (1995a) to lead to
arbitrage opportunities in a quite di�erent setting (see also Karatzas and Shreve,
1998).
According to a result of Amendinger (1999) the equivalence of regular conditional

laws and the law of L implies that the insider model is arbitrage free. In the light
of this result, the observation made at the end of Section 2 leads us in Section 3 to
look for free lunch or even arbitrage opportunities in case L = supt ∈ [0;1]Wt in simple
one-dimensional models of security markets. In Theorem 3.1, we show along beaten
paths that the lacking square integrability of g(:; L) leads to free lunches with vanishing
risk in the sense of Delbaen and Schachermayer (1994). In Theorems 3.2 and 3.3 we
even single out two conditions on the drift b and volatility � of the price process under
which we are able to construct concrete arbitrage strategies. If � = 1 and b= 1

2 , then
knowing L in advance just means to know the maximal stock price in advance. The
�rst strategy, which works if b=� is bounded below, is rather obvious, and essentially
tells the insider to invest as long as W is below its maximum, and to stop at the
moment it is reached. The second one is less obvious. It applies if the positive part
of b=� is p-integrable for some p¿ 2: It takes advantage of a very subtle observation
the insider can make due to the fact that he knows the maximum of W . After running
through the maximum at time �, W behaves locally as the negative of a Bes(3) process.
Therefore, it decays essentially stronger than the drift in a small random interval after �;
the upper end of which is given by an insider stopping time �: The insider then simply
has to sell stocks at time � and stop selling at time � to exercise arbitrage. This strategy
is in particular applicable if the drift b is continuous. It would be more realistic to
suppose that the additional information of the insider consists in knowing just when the
maximum of W or more generally S appears, and not how high it is, i.e. to take L=�∧1.
However, to deal with S instead of W adds considerably to the technical complexity of
the mathematical presentation, and random times such as � �t better into a framework
where progressive enlargements are treated. See Jeanblanc and Rutkowski (1999) for
a class of �nancial problems where this type of enlargements enters the scene, and Yor
(1997) for a theoretical background. These interesting subjects will be dealt with in a
forthcoming paper.
The extension of the results of this paper to the multi-dimensional setting should not

pose essentially new problems. To keep the notational level low and transparence high,
we stuck to the one-dimensional framework. It should equally be possible to dispense
with the particularities of the Wiener space setting, and pass to general semimartingale
theory.
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1. Stochastic integral representations of conditional laws

Our basic probability space is the one-dimensional canonical Wiener space (
;F; P),
equipped with the canonical Wiener process W = (Wt)t ∈ [0;1]. More precisely, 
 =
C([0; 1];R) is the set of continuous functions on [0; 1] starting at 0, F the �-algebra
of Borel sets with respect to uniform convergence on [0; 1], P Wiener measure and
W the coordinate process. The natural �ltration (Ft)t ∈ [0;1] of W is assumed to be
completed by the sets of P-measure 0.
Guided by our prototypical example L = sup06t61Wt , in this section we will give

integral representations of the conditional densities of random variables L with respect
to the �-algebras Ft ; t ∈ [0; 1]; of the small �ltration. For the more technical basic facts
of measure-valued Malliavin calculus we refer the reader to the appendix. Let L be an
F1-measurable random variable, and Pt(:; dx) a version of the regular conditional law
of L given Ft ; t ∈ [0; 1]: We know that the process Pt(:; dx); t ∈ [0; 1]; is a measure
valued martingale: for any f∈Cb(R); the process 〈Pt(:; dx); f〉; t ∈ [0; 1]; is a real
valued continuous martingale which, provided L is smooth enough in the sense of
Malliavin’s calculus, can be represented by the formula

〈Pt(:; dx); f〉= 〈P0(:; dx); f〉+
∫ t

0
E(Ds〈Ps+(:; dx); f〉|Fs) dWs

(see Imkeller, 1996 for the setting, where all measures are absolutely continuous with
respect to a joint reference measure). As follows from the martingale representation
theorem in the Wiener �ltration, in order to be able to write the stochastic integral
in this formula, one of course does not need Malliavin di�erentiability of Pt(:; dx) on
the whole interval [0; t]; but just the existence of a well-behaved trace-type object
DtPt+(:; dx) = lims↓tDtPs(:; dx) in the sense of weak ∗ convergence in L2(
× [0; 1]2).
Not to restrict generality too much from the start, we shall work with smooth approx-
imations of Pt(:; dx) and take limits only for the trace-type objects.
Let L∈D1;2; and N an additional N(0; 1)-variable on our probability space which is

independent of F1: For �¿ 0; let

L� = L+
√
�N;

and P�t (:; dx) a version of the regular conditional law of L� given Ft ; 06t61: In this
section we shall work under the hypothesis

(H) |DtL|6M; 06t61

for some random variable M the maximal function of which is p-integrable for any
p¿1, i.e. M∗ = sup06t61|E(M |Ft)| ∈Lp. Denote by p� the probability density of√
� N . Then for f∈Cb(R) we have

〈P�t (:; dx); f〉= E(f(L�)|Ft)

= E
(∫

R
p�(y − L)f(y) dy|Ft

)

=
∫
R
E(p�(y − L)|Ft)f(y) dy

= 〈E(p�(y − L)|Ft) dy; f〉:
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Moreover, for 06r6t; y∈R;
Dr E(p�(y − L)|Ft) = E(Dr p�(y − L)|Ft)

= E
(
DrL

L− y
�

p�(y − L)|Ft

)
:

(H) allows to apply the Clark–Ocone formula, and we obtain for f∈Cb(R); t ∈ [0; 1]

〈P�t (:; dx); f〉= 〈P�0(:; dx); f〉+
∫ t

0

〈
E
(
DsL

L− y
�

p�(y − L) |Fs

)
dy; f

〉
dWs:

Now de�ne

h�s(:; x) = E
(
DsL

L− x
�

p�(x − L) |Fs

)
;

k�s (:; dx) = h
�
s(:; x) dx;

�¿ 0; s∈ [0; 1]; x∈R. Then, due to the boundedness of x 7→ xp�(x) and (H), we
obtain a constant c� such that

|h�s(:; x)|6c� E(|DsL‖Fs)6c� E(M |Fs)6c�M∗;

�¿ 0; s∈ [0; 1]; x∈R. Therefore for f∈Cb(R); p¿1

E


[∫ 1

0
〈k�s (:; dx); f〉2 ds

]p=26 E


[∫ 1

0
|k�s (:; dx)|2 ds

]p=2 ‖f‖p

6 cp� E((M
∗)p) ‖f‖p:

Hence we have

sup
f∈Cb(R);‖f‖61

E


[∫ 1

0
〈k�s (:; dx); f〉2 ds

]p=2¡∞: (1)

Since moreover for any �¿ 0; t ∈ [0; 1]; p¿1 by an easier argument
sup

f∈Cb(R);‖f‖61
E(〈P�t (:; dx); f〉p)¡∞; (2)

Proposition A.1 allows us to write

P�t (:; dx) = P
�
0(:; dx) +

∫ t

0
k�s (:; dx) dWs (3)

for �¿ 0; t ∈ [0; 1]: We aim at passing to the limit � → 0 in (3), thereby keeping
track of the convergence of the measure-valued processes k�t (:; dx); t ∈ [0; 1]: To gain a
better insight into which aspects are essential, let us �rst treat our prototypical example.
Our treatment shares some aspects with Jeulin’s (1980), but in contrast is based on
Malliavin’s calculus.

Example 1. Let L = sup06t61Wt; N be a N(0; 1)-variable independent of F1: For
t ∈ [0; 1]; 06h61− t denote by St=sup06s6tWs; and �h=sup06k6h(Wk+t−Wt): Then
we have

L= St ∨ (Wt + �1−t); 06t61;
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with �1−t independent of Wt; St : Denote by f1−t the density of the law of �1−t .
We have

f1−t(z) =

√
2
�

1√
1− t exp

(
− 1
2(1− t) z

2
)
1[0;∞[(z);

z ∈R. It is well known (see Nualart and Vives, 1988) that St ∈D1;p for all 06t61,
and, if �t denotes the (P-a.s. uniquely de�ned) random time at which W takes its
maximum on the interval [0; t]; we have

Ds St = 1[0; �t ](s); s∈ [0; 1]: (4)

In particular, if we omit the subscript for t = 1; we have

Ds L= 1[0; �](s); s∈ [0; 1]: (5)

Hence for t ∈ [0; 1]; �¿ 0; y∈R we obtain
E(p�(y − L)|Ft) = E(p�(y − St) 1{St¿Wt+�1−t}|Ft)

+E(p�(y − (Wt + �1−t)) 1{St¡Wt+�1−t}|Ft)

=p�(y − St)
∫ St−Wt

0
f1−t(y) dy

+
∫ y−St

−∞
p�(v)f1−t(y −Wt − v) dv:

Hence for r ∈ [0; t]

Dr E(p�(y − L)|Ft) =
St − y
�

DrStp�(y − St)
∫ St−Wt

0
f1−t(y) dy

+p�(y − St)f1−t(St −Wt)Dr(St −Wt)
+p�(y − St)f1−t(St −Wt)(−Dr St)

−
∫ y−St

−∞
p�(v)

y −Wt − v
1− t f1−t(y −Wt − v) dv:

This in turn implies that with the above notation for t ∈ [0; 1]; x∈R
h�t (:; x) =Dt E(p�(x − L)|Ft+)

=−p�(x − St) f1−t(St −Wt)

−
∫ x−St

−∞
p�(v)

x −Wt − v
1− t f1−t(x −Wt − v) dv: (6)

Now what happens as �→ 0? Let f∈Cb(R): Then for any t ∈ [0; 1] pointwise

〈[p�(x − St) dx − �St (dx)]; f〉=
∫
R
p�(x − St) [f(x)− f(St)] dx → 0; (7)

as well as∫
R

∫ x−St

−∞
p�(v)

[
x −Wt − v
1− t f1−t(x −Wt − v)

−1[St ;∞[(x)
x −Wt
1− t f1−t(x −Wt)] dvf(x) dx → 0 (8)
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as � → 0. Since supy∈R|yf1−t(y)|¡∞, this convergence is bounded by constants
depending only on t and f; and the constants are bounded on intervals [0; t] for t ¡ 1:
Hence dominated convergence shows

E
(∫ t

0
〈[k�s (:; dx)− ks(:; dx)]; f〉2 ds→ 0 (9)

as �→ 0; for 06t ¡ 1; where

ks(:; dx) =−�St (dx)f1−t(St −Wt)− 1[St ;∞[(x)
x −Wt
1− t f1−t(x −Wt) dx: (10)

The following convergence is obvious, due to continuity. So for all 06t61; f∈Cb(R),
we have

〈P�t (:; dx); f〉 = E(f(L�)|Ft)

→ E(f(L)|Ft)

= 〈Pt(:; dx; f〉:
Hence (10) yields the equation, valid for any f∈Cb(R); t ∈ [0; 1]

〈Pt(:; dx); f〉 − 〈P0(:; dx); f〉=
∫ t

0
〈ks(:; dx); f〉 dWs: (11)

The M -valued (for the notation see Appendix) process k(:; dx) even satis�es

E
(∫ t

0
|ks(:; dx)|2 ds

)
¡∞; 06t ¡ 1: (12)

Therefore Proposition A.4 immediately implies

Theorem 1.1. Let

kt(:; dx) =−�St (dx)f1−t(St −Wt)− 1[St ;∞[(x)
x −Wt
1− t f1−t(x −Wt) dx;

t ∈ [0; 1]: Then for 06t61 we have

Pt(:; dx) = P0(:; dx) +
∫ t

0
ks(:; dx) dWs:

Hence for our main example there is an integral representation of the process of
regular conditional densities of L.
We denote kt(:; dx) also by Dt Pt+(:; dx); t ∈ [0; 1].
We now return to the general setting. It is clear that we just have to follow the ideas

needed in the treatment of Example 1 to obtain a more general result, which we also
formulate in a weak version.

Theorem 1.2. Suppose that there exists an M -valued process kt(:; dx); t ∈ [0; 1] such
that for any t ∈ [0; 1]; f∈Cb(R) we have

E
(∫ t

0
〈[k�s (:; dx)− ks(:; dx)]; f〉2 ds→ 0 (13)
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as �→ 0. Then for any t ∈ [0; 1]; f∈Cb(R)

〈Pt(:; dx); f〉= 〈P0(:; dx); f〉+
∫ t

0
〈ks(:; dx); f〉 dWs:

If in addition

sup
f∈Cb(R);‖f‖61

E
(∫ t

0
〈ks(:; dx; f〉2 ds)¡∞; (14)

then for any t ∈ [0; 1]

Pt(:; dx) = P0(:; dx) +
∫ t

0
ks(:; dx) dWs:

2. The semimartingale property and relative entropy of the conditional laws

Let us now ask the question under which conditions on L martingales in the small
�ltration remain semimartingales in the enlarged �ltration. We shall formulate the ques-
tion and our answer in the terminology of the preceding section. We shall show that in
case kt(:; dx).Pt(:; dx) P-a.s. for any t ∈ [0; 1]; the answer can be given in terms of
integrability properties of the density gt(:; x): We shall then proceed to formulate con-
ditions on this density, under which the relative entropy of the conditional laws with
respect to the law of L is �nite and positive. As it turns out, this is closely related to
the question whether the conditional laws are equivalent to the law of L: So, for the
whole section, we shall work under the hypothesis

(AC) kt(:; dx).Pt(:; dx) P-a:s: for t ∈ [0; 1]:
Let gt(:; x); x∈R; be a measurable density of kt(:; dx) with respect to Pt(:; dx); t ∈ [0; 1]:
To �x the ideas, let us again �rst have a look at our main example.

Example 2. Let L = sup06t61Wt: Then in the notation of the preceding section for
�¿ 0; t ∈ [0; 1]

P�t (:; dx) = E(p�(x − L)|Ft) dx

=

[
p�(x−St)

∫ St−Wt

0
f1−t(y) dy+

∫ x−St

−∞
p�(v)f1−t(x−Wt−v) dv

]
dx:

Letting �→ 0; we obtain

Pt(:; dx) = �St (dx)
∫ St−Wt

0
f1−t(y) dy + 1[St ;∞[(x)f1−t(x −Wt) dx:

Consequently, we see that (AC) is satis�ed, and that the density is given by

gt(:; x) =− f1−t(St −Wt)∫ St−Wt
0 f1−t(y) dy

1{St}(x)− 1[St ;∞[(x)
x −Wt
1− t ;

t ∈ [0; t]; x∈R.

This formula has also been derived in Jeulin (1980), with a di�erent approach.
Jeulin (1980) also proves that gt(:; L); which is P-a.s. �nite, serves as the density of
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the compensator of W in the enlarged �ltration. Let us now show more generally
that, provided gt(:; L) is well behaved, the semimartingale property is preserved when
passing from the small to the enlarged �ltration.

Theorem 2.1. Suppose that (AC) is satis�ed; and that∫ t

0
|gs(:; L)| ds¡∞

P-a.s. for any 06t ¡ 1: Then the process

W̃ =W −
∫ :

0
gs(:; L) ds

is a Gt-Wiener process.

Proof. Fix 06t ¡ 1: By localization, we may suppose that
∫ t
0 |gs(:; L)| ds is bounded.

Let s1; s2 ∈ [0; t]; s16s2; F ∈Fs1 ; and h∈Cb(R). Then
E(1F h(L) (Ws2 −Ws1 )) = E(1F 〈Ps2 (:; dx); h〉 (Ws2 −Ws1 ))

= E
(
1F

∫ s2

s1
〈ku(:; dx); h〉 du

)

= E
(
1F

∫ s2

s1
〈Pu(:; dx); gu(:; :) h〉 du

)

= E
(
1F h(L)

∫ s2

s1
gu(:; L) du

)
:

A standard measure theoretic argument is now used to extend this equation to bounded
and measurable h. Since sets of the form 1F×{L∈ B}1]s1 ; s2]; F ∈Fs1 ; B∈B, generate
the previsible sets for the �ltration (Gt)t ∈ [0;1], this implies the assertion.

Theorem 2:1 states that the conservation of the semimartingale property is related to
integrability of gt(:; L) on subintervals of [0; 1]. We shall next investigate the square
integrability of gt(:; L) on subintervals of [0; 1], and elaborate on the relationship with
equivalence of the conditional laws of L given the small �ltration and the law of L.
For this purpose �x 06t61, and a nested 0-sequence of partitions (Bni )i∈N; n∈N.

More precisely, the partition is increasing with respect to inclusion, and the mesh tends
to 0 as n→ ∞. For n∈N, let Hn = �(Bni : i∈N),

Mn(:; x) =
∑
i∈N

Pt(:; Bni )
PL(Bni )

1Bni (x);

x∈R. Then Mn; n∈N, is a martingale with respect to (Hn)n∈N and PL on B. We em-
phasize at this place that we are here and in the sequel referring to a spatial martingale
property which is valid for any !∈
 (P-a.s.). Now suppose that

E

(∫ 1

0
gt(:; L)2 dt

)
¡∞: (15)
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Note that (15) can be rephrased as∫ 1

0
E(〈Pt(:; dx); g2t (:; :)〉) dt ¡∞: (16)

For s∈ [0; 1] let next

Sns (:; x) =
∑
i∈N

Ds Ps+(:; Bni )
Ps(:; Bni )

1Bni (x);

x∈R. Then, for the same reason as above, Sns ; n∈N, is a martingale with respect to
(Hn)n∈N and Ps(:; dx), which is uniformly integrable and convergent to gs(:; :). We
emphasize at this point that uniform integrability of the preceding and the two follow-
ing martingales is due to the absolute continuity condition (AC) and (16). Moreover,
(Sns )

2; n∈N, is a submartingale, and we have

(Sns )
26

∑
i∈N

1
Ps(:; Bni )

∫
Bni

g2s (:; x)Ps(:; dx) 1Bni = T
n
s ;

n∈N. But by (16), Tns ; n∈N, is a uniformly integrable martingale. Hence (Sns )2,
n∈N, is a uniformly integrable non-negative submartingale which converges in
L1(R;B; Ps(:; dx)) to g2s (:; :). But also

∫ 1
0 T

n
s (L) ds is uniformly integrable for the mea-

sure P, and therefore∫ 1

0
(Sns (L))

2 ds→
∫ 1

0
g2s (:; L) ds (17)

in L1(
;F; P). Now note that∑
i∈N

∫ :

0

Ds Ps+(:; Bni )
Ps(:; Bni )

dWs 1Bni (L)

=
∑
i∈N

∫ :

0

Ds Ps+(:; Bni )
Ps(:; Bni )

dW̃ s 1Bni (L) +
∫ :

0

Ds Ps+(:; Bni )
Ps(:; Bni )

gs(:; L) ds 1Bni (L);

with the Brownian motion W̃ for the �ltration (Gt)t ∈ [0;1] appearing in Theorem 2:1.
Hence by standard martingale inequalities (this time in the temporal sense) and the
above-stated convergence result we obtain∑

i∈N

∫ :

0

Ds Ps+(:; Bni )
Ps(:; Bni )

dW̃ s 1Bni (L)→
∫ :

0
gs(:; L) dW̃ s

in L2(
;F; P). We �nally write Itô’s formula for the processes ln Pt(:; Bni ), which
makes sense due to the above calculations. The result is∑

i∈N
lnMn(L) 1Bni (L) =

∑
i∈N

∫ :

0

Ds Ps+(:; Bni )
Ps(:; Bni )

dWs 1Bni (L)

− 1
2

∫ :

0

Ds Ps+(:; Bni )
2

Ps(:; Bni )2
ds 1Bni (L): (18)

Hence the P-supermartingale lnMn(L); n∈N, converges in L1(
;F; P). Since

E

(∑
i∈N

lnMn(L) 1Bni (L)

)
= E

(∑
i∈N

ln
Pt(:; Bni )
PL(Bni )

Pt(:; Bni )

)
;
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we obtain∑
i∈N

lnMn(L) 1Bni (L)→ H (Pt(:; dx)|PL) in L1(
;F; P);

where H (Pt(:; dx)|PL) is the relative entropy of the conditional law Pt(:; dx) with
respect to PL. In particular, H (Pt(:; dx)|PL) is P-a.s. �nite. So we have �nally proved

Theorem 2.2. Suppose that (AC) is satis�ed; and that

E

(∫ 1

0
g2s (:; L) ds

)
¡∞: (19)

Then for t ∈ [0; 1]
H (Pt(:; dx)|PL)¡∞ P-a:s:;

and this random variable is integrable. In particular; Pt(:; dx).PL.

The following example shows that under the hypothesis of Theorem 2.2 equivalence
of Pt(:; dx) and PL is too much to hope for, in general.

Example 3. Let

�1 = inf{t: Wt = 1}; � = �1 ∧ 1; A= {� = 1}; L= 1A:

Then

Pt(:; dx) = P(L= 1|Ft) �{1} + P(L= 0|Ft) �{0}
= P(� = 1|Ft) �{1} + (1− P(� = 1|Ft)) �{0}:

This expression can be explicitly given, by means of the following computation:

P(� = 1|Ft) = P(St ∨ (Wt + �1−t)¡ 1|Ft)

= 1{St¡1}P(�1−t ¡ 1−Wt |Ft)

= 1{t¡�}

∫ 1−Wt

0
f1−t(y) dy: (20)

Similarly,

PL(dx) = P(L= 1) �{1} + P(L= 0)�{0}

=
∫ 1

0
f1(y) dy �{1} +

(
1−

∫ 1

0
f1(y) dy

)
�{0}:

Let

ht(x) =
∫ x

0
f1−t(y) dy:

It follows from (20) that 1{t¡�}ht(1−Wt) is a martingale and so we have

1{t¡�}ht(1−Wt) =−1{t¡�}
∫ t∧�

0
h′s(1−Ws) dWs;
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where h′s denotes the derivative of hs with respect to x. Hence

Pt(:; {1}) = −1{t¡�}
∫ t

0
h′s(1−Ws) dWs;

kt(:; {1}) = −1{t¡�}h′t(1−Wt);

gt(:; 1) = −1{t¡�} h
′
t(1−Wt)
ht(1−Wt) :

It is easy to see that

gt(:; 1)2 = 1{t¡�}
f1−t(1−Wt)2

(
∫ 1−Wt
0 f1−t(y) dy)2

=
1

|1−Wt |2 1{t¡�} +O(t):

Let us denote the density function of �1 by g. Since the Brownian motion before
reaching level 1 behaves like a Bes (3) process � (see Revuz and Yor, 1999), we can
conclude that

E

(∫ 1

0
g2s (:; L) 1{L=1} ds

)
=
∫ 1

0

∫ ∞

0
E(g2s (:; 1)|�1 = 1 + h)g(1 + h) dh ds

=
∫ 1

0

∫ ∞

0
E
(

1
|�h+1−s|2

)
g(1 + h) dh ds+O(1)

=
∫ 1

0

∫ ∞

0

1
h+ 1− s g(1 + h) dh ds+O(1)¡∞:

One can prove in the same way that E(
∫ 1
0 g

2
s (:; L) 1{L=0} ds)¡∞. Thus (19) is satis�ed,

while Pt(:; {1}) = 0 for �¡ t and PL({1}) 6= 0.
For the equivalence of the conditional laws and the law of L exponential integrability

in the form of the following Novikov-type condition is su�cient.

Theorem 2.3. If

E

(
exp

(
1
2

∫ 1

0
g2s (:; L) ds

))
¡∞; (21)

then Pt(:; dx) is equivalent to PL a.s. for each 06t61.

Proof. First of all, (AC) and (21) allow us to apply Theorem 2:1 directly. Hence

W̃ =W −
∫ ·

0
gs(:; L) ds

is a G -Wiener process with respect to the law P. Eq. (21) in addition permits to de�ne
the Dol�eans exponential G -martingale

dZt =−Ztgt(:; L) dW̃ t ; Z0 = 1; t ∈ [0; 1]:
Therefore, we may also de�ne the equivalent probability measure on Gt :

Q|Gt = Zt · P; t ∈ [0; 1]:
Now Girsanov’s theorem gives that

W = W̃ +
∫ ·

0
gs(:; L) ds
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is a G -Wiener process with respect to the law Q. Moreover, W is also F-adapted
with independent increments, and Wt−W0, t ∈ [0; 1], is independent of G0 since for all
t ∈ [0; 1], Ft and G0 are independent under Q (see F�ollmer and Imkeller, 1993). Note
that this is hypothesis (H3) of Grorud and Pontier (1998) which also characterizes the
equivalence of PL and PLt (:; dx).

Remark. The hypothesis (21) of Theorem 2.3 could be relaxed to the condition
EP(Zt) = 1 for all t ∈ [0; 1], if Z is the exponential martingale appearing in the proof.
If Pt(:; dx) is P-a.s. equivalent with PL, the insider model, i.e. the model based on

the information ow (Gt)t ∈ [0;1] allows for no arbitrage. This is shown in the thesis
of Amendinger (1999). See also Amendinger et al. (1998).

We now show that the situation in our main example is quite di�erent, and suggests
that there are arbitrage opportunities.

Example 4. Let L= sup06t61Wt , and �x 0¡T61. Recall the notation of the above
treatments of this example. The random time � at which the maximum L is taken, is
known to have a absolutely continuous law on [0; 1[, with one obvious atom on {1}.
By the formula representing gt(:; L) we have

∫ T

0
g2t (:; L) ds¿

∫ T

�

(
f1−t(L−Wt)∫ L−Wt
0 f1−t(y) dy

)2
dt:

Now let

�0 = inf{t¿�: Wt = 0}:
Then we may estimate further

∫ T

0
g2t (:; L) dt¿

∫ �0∧T

�

(
f1−t(L−Wt)∫ L−Wt
0 f1−t(y) dy

)2
dt:

Now by Revuz and Yor (1999, Proposition VI:3:13, p. 238), the Brownian motion be-
tween � and �0 has the law of a Bes (3). So, conditionally on the event T=4¡�¡T=2,
which has positive probability, we may estimate the law of the above lower bound by
the law of the random variable

∫ �

T=4

(
f1−t(�t)∫ �t

0 f1−t(y) dy

)2
dt; (22)

where �t; 06t61, is a Bes (3), and � the �rst time it hits T=4. By the well-known
path properties of the Bessel process, we obtain that (22) is in�nite P-a.s., and hence
that ∫ T

0
g2s (:; L) ds=∞ (23)

on a set of positive probability.
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3. Arbitrage possibilities

In this section we shall see that our prototypical example provides possibilities of
arbitrage. We shall use the terminology of Karatzas and Shreve (1998) and Delbaen
and Schachermayer (1994). The �nancial markets considered will be based on the
Brownian motion in its augmented natural �ltration, and will be described by sim-
ple one-dimensional models. At this place we should mention that to really create an
arbitrage we tacitly assume the presence of another security (the numeraire) not ex-
plicitly appearing in our description, whose price is set to unity. Our �nancial market
model (b; �) thus consists of a progressively measurable mean rate of return process b
which satis�es

∫ 1
0 |bt | dt ¡∞ P-a.s. and of a progressively measurable volatility pro-

cess � satisfying
∫ 1
0 �

2
t dt ¡∞; �2¿ 0 P-a.s. They determine a (stock) price process

given by

dSt
St
=
∫ t

0
bu du+

∫ t

0
�u dWu:

For convenience, we let S0 = 1. A progressively measurable process � is called a
portfolio process if∫ 1

0
|�t bt | dt ¡∞ P-a:s:

and ∫ 1

0
|�t �t |2 dt ¡∞ P-a:s:

The excess yield process R and gains process G are given by the formulas

dRt =
dSt
St

(24)

and

Gt =
∫ t

0
�u dRu; (25)

06t61: The portfolio process is said to be tame if there is some constant c∈R such
that Gt¿c for all 06t61: Let

K0 =

{
G1 =

∫ 1

0
�s dRs: � is tame

}

and let C0 denote the cone of functions dominated by elements of K0, i.e. C0=K0−L0+:
Set C=C0∩L∞: The semimartingale R is said to satisfy the condition of no arbitrage
(NA) if C ∩ L∞+ = {0}, the condition of no free lunch with vanishing risk (NFLVR)
if for the closure �C of C in L∞ we have �C ∩ L∞+ = {0}:
Taking up the topics of the preceding sections we next consider L = sup06t61Wt ,

the enlarged �ltration

Gt =
⋂
s¿t

Fs ∨ �(L)
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augmented by the P-zero sets, t ∈ [0; 1]. This particular choice requires some comments.
In the special case � = 1; b= 1

2 , the price process will be given just by the exponen-
tial St = exp(Wt); t ∈ [0; 1]. Since exp is increasing, the knowledge of sup06t61Wt is
just equivalent to the knowledge of sup06t61 St . So in this case we are dealing with
an insider who knows the maximal stock price in advance. And one can �gure out
that there are more cases in which our L determines the maximal stock price. Though
not very realistic from the point of view of applications, this assumption is still more
realistic that knowing sup06t61Wt: This of course raises the question why not from
start we work with the additional knowledge L = sup06t61 St? The answer might be
disappointing from the point of view of someone having applicability of our model
in mind: we make this assumption for simple technical reasons. Malliavin’s calculus
for the conditional laws of the maximal stock price is possible, but would add con-
siderably to the technicality of this paper, and thus obscure the essential mathematical
steps of our approach. We therefore decided to set aside technical issues like this
one now, and to postpone the treatment of this interesting subject to a forthcoming
paper.
Another compromise made here for purely mathematical reasons, which a�ects the

issue of whether our additional piece of information is realistic is clearly addressed by
the question: why should the insider know, in addition to the time when the maximum
is achieved, how high it is? Would it not be enough for him to just know the time, in
order to exercise arbitrage? This is clearly a very relevant question. And the answer
for the time � at which the maximum of W is taken, is positive. To show this, however,
the mathematical framework of this paper is not quite appropriate. Here we enlarge
the �ltration by �xed spatial variables at the beginning of the action interval. The nat-
ural framework for the enlargement with random times is the well-studied progressive
enlargement (see Yor, 1985c). Now in the terminology of time reversal of Markov
processes, our random time � is of the same type as the well-known honest times. In
a forthcoming paper (Imkeller, 2000) we deal with progressive enlargements by times
of this type in a more systematic way, and show that they allow for ample arbitrage
opportunities. Now the progressive enlargement by � is strictly smaller than the initial
enlargement by this time. So Imkeller (2000) yields an even stronger statement on
arbitrage possibilities than we would obtain here.
Using the decomposition of Theorem 2:1

W = W̃ +
∫ :

0
gt(:; L) dt;

we obtain a new �nancial market (b̃; �̃) with b̃t = bt +�t gt(:; L); �̃t =�t; t ∈ [0; 1]; with
respect to the G -Brownian motion W̃ . In the following statements we refer to the point
of view of the insider, i.e. we argue for the G -Brownian motion W̃ ; and the �nancial
market (b̃; �̃): For the convenience of the reader, let us recall the notation of equivalent
martingale measures. Given a semimartingale Rt; t ∈ [0; 1]; with respect to a �ltration
and the measure P, a probability measure Q is called an equivalent martingale measure
(with respect to P), if P and Q are mutually absolutely continuous and Rt; t ∈ [0; 1];
is a local martingale with respect to the same �ltration and Q.

Theorem 3.1. R does not satisfy the condition (NFLVR).



P. Imkeller et al. / Stochastic Processes and their Applications 92 (2001) 103–130 119

Proof. In a more general setting, Delbaen and Schachermayer (1996) proved that there
is an equivalent martingale measure which makes R a local martingale if and only if
R satis�es (NFLVR). In case the model is based on a Wiener process, hence in our
case, there exists at most one equivalent martingale measure Q which, if it exists, has
the form

dQ
dP

= exp

(
−
∫ 1

0
�t dMt − 1

2

∫ 1

0
�2t d〈M 〉t

)
; (26)

if R possesses the Doob–Meyer decomposition

R=M +
∫ :

0
�td〈M 〉t : (27)

Now suppose that R satis�es (NFLVR). Comparing (24) and (27) we can see that

Mt =
∫ t

0
�sdW̃ s; �t =

b̃t
�2t
:

Hence there exists a progressively measurable process � such that b̃t = �t �t ; t ∈ [0; 1]:
See for example Theorem 4:2. in Karatzas and Shreve (1998). This fact combines with
(26) to give the formula

dQ
dP

= exp

(
−
∫ 1

0
�t dW̃ t − 1

2

∫ 1

0
�2t dt

)
: (28)

We shall show in the subsequent lemma that
∫ 1
0 �

2
t dt=∞ on a set of positive measure.

Consequently, (28) implies that dQ=dP = 0 on a set of positive measure (see for
example Delbaen and Schachermayer, 1995b, or Revuz and Yor, 1999, p. 157). Hence
P and Q cannot be equivalent. This completes the proof.

Lemma 3.1. On a set of positive probability we have∫ 1

0
�2t dt =∞:

Proof. Recalling our assumption � 6= 0, write ct=bt=�t . We have to prove that
∫ 1
0 (ct+

gt(:; L))2 dt =∞ on a set of positive probability. Let us assume that on the contrary∫ 1

0
(ct + gt(:; L))2 dt ¡∞ (29)

P-a.s. Let � be as in Section 3 the random time when the maximum of W before time
1 is reached. For �¿ 0 let

�(�) = sup{t¿�: St −Wt ¡�}:
From (23) we know that for any �¿ 0 on the set {�+ �(�)¡ 1}∫

[�;�+�(�)]
gt(:; L)2 dt =∞; (30)

while by de�nition of �(�)∫
[�;�+�(�)]c

gt(:; L)2 dt ¡∞: (31)
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Since this set has positive probability for � small enough, we have (30) on a set of
positive probability. Furthermore, we obtain the following estimate:

|ct |6 |gt(:; L)| 1[�;�+�(�)](t) + |ct + gt(:; L)|+ |gt(:; L)| 1[�;�+�(�)]c(t)
= |gt(:; L)| 1[�;�+�(�)](t) + vt :

We know, moreover, that for t ∈ [�; �+ �(�)]

gt(:; L) =− f1−t(L−Wt)∫ L−Wt
0 f1−t(y) dy

− L−Wt
1− t

so that our estimate is seen to give

|ct |6E
(
1[�;�+�(�)](t)

f1−t(L−Wt)∫ L−Wt
0 f1−t(y) dy

∣∣∣∣∣Ft

)
+ E(Vt |Ft); (32)

by F-adaptedness of b and �, where Vt = vt + (L−W )t =(1− t). Let us next �x T ¡ 1
and �¿ 0 such that the set {�+�(�)¡T} still has positive probability. Now (29) and
(31) clearly imply that we have∫ T

0
E(V 2t |Ft) dt ¡∞: (33)

Let us consider the �rst term in the estimate given by (32). We have

E

(
1[�;�+�(�)](t)

f1−t(L−Wt)∫ L−Wt
0 f1−t(y) dy

∣∣∣∣∣Ft

)

6E

(
f1−t(L−Wt)∫ L−Wt
0 f1−t(y) dy

∣∣∣∣∣Ft

)

=
∫ ∞

0

f1−t(St ∨ (Wt + z)−Wt)∫ St∨(Wt+z)−Wt
0 f1−t(y) dy

f1−t(z) dz

=f1−t(St −Wt) +
∫ ∞

St−Wt

f1−t(z)2∫ z
0 f1−t(y) dy

dz: (34)

Obviously, the �rst term in the last line of (34) is square integrable over the interval
[0; T ] P-a.s. To estimate the second term, we write

∫ T

0
E


(∫ ∞

St−Wt

f21−t(z)∫ z
0 f1−t(y) dy

dz

)2 dt

=
∫ T

0

∫ ∞

0

(∫ ∞

x

f21−t(z)∫ z
0 f1−t(y) dy

dz

)2
pt(x) dx dt; (35)

where pt denotes the density of St −Wt: Now we may �nd constants aT ; AT such that
for any t ∈ [0; T ]; 06z61 we have

aT6f1−t(z)6AT ; aT z6
∫ z

0
f1−t(y) dy6AT z:
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We therefore �nd constants �T ; �T such that∫ ∞

x

f21−t(z)∫ z
0 f1−t(y) dy

dz6
∫ 1

x

f21−t(z)∫ z
0 f1−t(y) dy

dz + �T

6
∫ 1

x

�T
z
dz + �T

= �T |ln x|+ �T :
Hence the right-hand side of (35) can be estimated by a constant multiple of the
obviously �nite quantity∫ T

0

∫ ∞

0
(ln x)2 pt(x) dx dt:

Hence (32), (33), and (34) imply that∫ T

0
|ct |2 dt ¡∞ P-a:s:

Hence (30) has the consequence∫ T

0
(ct + gt(:; L))2 dt =∞ on the set {�+ �(�)¡T}:

This is in contradiction with (29), and thus provides the desired conclusion.

Theorem 3.1 proves that the (NFLVR) condition is violated for all possible choices
of b and �: We now construct explicit arbitrage possibilities in various cases. This will
show in addition that in these cases even the (NA) condition is violated.

Theorem 3.2. Suppose that
∫ 1
0 |bs=�s| ds¡∞ and there is c¿ 0 such that for any

s∈ [0; 1] we have bs=�s¿− c P-a.s. Then arbitrage possibilities exist.

Proof. Let

Tt = exp
(∫ t

0

bs
�s
ds+Wt − 1

2
t
)
; t ∈ [0; 1]:

We de�ne the tame strategy

�t = 1[0; �](t)
Tt
�t
1{L¿c+1=2}; t ∈ [0; 1]:

Note that the set {L¿c+ 1
2} has positive probability. Hence for the gains process the

following estimation is valid. We have for all t ∈ [0; 1]

Gt =
∫ t

0
�s dRs

=
∫ t∧�

0
Ts
dTs
Ts
1{L¿c+1=2}

= (Tt∧� − T0)1{L¿c+1=2}
¿−1 (36)
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and

G1 =

[
exp

(
L+

∫ 1

0

bs
�s
ds− 1

2
�

)
− 1
]
1{L¿c+1=2}

¿
[
exp
(
L− c − 1

2

)
− 1
]
1{L¿c+1=2}

¿ 0 and ¿ 0 (37)

with positive probability.

In case the positive part of b=� is bounded, the type of strategy of the preceding
theorem curiously does not work. We have to take resort to a di�erent strategy. As
we shall see, in this case the drift may destroy any tendency in the development of
W before or after the time at which it takes its maximum. But in an eventually very
short interval just after the maximum is taken, provided the drift is su�ciently well
integrable, the Wiener process will decrease at a too fast rate, so that the insider can
take advantage of the corresponding decay of the price. Note that the following theorem
includes the dual statement of the preceding theorem, i.e. that there exists a constant c
such that for all s∈ [0; 1] we have bs=�s6c, but that the arbitrage strategies are quite
di�erent.
We denote by f+ resp. f− the positive resp. negative part of a function f.

Theorem 3.3. Suppose that there exists p¿ 2 such that (b=�)+ ∈Lp([0; 1]). Then
there is arbitrage.

Proof. Let q be the conjugate exponent to p. H�older’s inequality gives

∫ t

�

(
bs
�s

)+
ds6(t − �)1=q

(∫ t

�

((
bs
�s

)+)p
ds

)1=p
: (38)

The crucial point for our argument is the following observation. Given L, the process
(�t = L−W�+t : 06t61− �) is a Bes(3) process. Moreover, due to Pitman’s Theorem
(see Revuz and Yor, 1999, p. 253), � has the same law as the initial piece of the
process (2Mt − Bt : 06t61), where B is a one-dimensional Brownian motion with
maximum process M . Since – as is easy to see by a standard Borel–Cantelli argument –
limt→0Mt=t1=q =∞, P-a.s., and hence a fortiori limt→0 �t=t1=q =∞; we may write

lim
t↓�

L−Wt
(t − �)1=q =∞ P-a:s: for q¡ 2: (39)

Eqs. (38) and (39) together imply that on a random, small but nontrivial time interval
just after �, we have∫ t

�

(
bs
�s

)+
ds¡L−Wt:

Hence the G -stopping time

� = inf

{
t¿�:

∫ t

�

(
bs
�s

)+
ds+

1
2
(t − �)¿ L−Wt

2

}
∧ 1 (40)
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is strictly greater than � as long as �¡ 1 P-a.s. Using this stopping time, we may
de�ne our tame strategy. Let

�t =−1[�;�](t) T
′
t

T ′
��t
; t ∈ [0; 1];

where

T ′
t = exp

(
−
∫ t

0

bs
�s
ds−Wt − 1

2
t
)
; t ∈ [0; 1]:

Then we obtain for t ∈ [0; 1]

Gt =
∫ t∧�

�

T ′
s

T ′
�

dT ′
s

T ′
s

=
[
exp
(
−
∫ t∧�

�

bs
�s
ds+ (L−Wt∧�)− 1

2
(t ∧ � − �)

)
− 1
]

¿−1
and

G1¿
[
exp
(
L−W�
2

)
− 1
]

¿ 0 and ¿ 0

on the set {�¡ 1} which has positive measure. This completes the proof.

Corollary 3.1. Suppose that there is a random variable � such that we have
supt ∈ [0;1] bt=�t6�. Then there is arbitrage. In particular; there is arbitrage if b=�
is continuous.

Proof. The condition clearly implies the p-integrability of the quotient for any p¿ 2.

Remark. The conditions on � and b formulated in the preceding theorems are not
restrictive enough not to leave room for speculations. One could for example imagine
that � and especially the drift b could be chosen violent enough to defeat any possibility
of arbitrage. So far, however, we cannot give an example.

For further reading

The following references are also of interest to the reader: Blanchet-Scaillet and
Jeanblanc, 2000; Choulli, et al., 1998; Choulli, et al., 1999; Chaleyat-Maurel and Jeulin,
1985; Elliott, et al., 1999; Karatzas, et al., 1991; Meyer, 1978
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Appendix A. A calculus for measure-valued random variables

It is well known from the classical works on the enlargement of �ltrations (see Jacod,
1985; Yor, 1985a; Jeulin, 1980) that for initial enlargements by random variables L
properties of the conditional laws of L given the �-algebras of the small �ltration play
a dominant role. From our point of view, these conditional laws will be considered
as appropriate provided the conditional laws of a standard regularization given by the
perturbation of L with an independent Gaussian variable are smooth in the sense of
Malliavin’s calculus. For this purpose, we shall consider the conditional laws as random
variables with values in the space of signed measures. The regularization will allow
us to work essentially with the Banach space topology on this space induced by the
total variation norm | : |; though to de�ne stochastic integral representations, the weak∗
topology will be su�cient. The reason for requiring these smoothness properties lies
in the fact, that throughout this paper, we restrict to the Clark–Ocone formula for
representing martingales, especially measure-valued ones, as stochastic integrals with
respect to the Wiener �ltration.
Let us briey recall the basic concepts of Malliavin’s calculus needed. We refer to

Nualart (1995) for a more detailed treatment.
Let S be the set of smooth random variables on (
;F; P), i.e. of random variables

of the form

F = f(Wt1 ; : : : ; Wtn); f∈C∞
0 (Rn); t1; : : : ; tn ∈ [0; 1]:

For F ∈S we may de�ne the Malliavin derivative

(DF)s = DsF =
n∑
i=1

@
@xi
f(Wt1 ; : : : ; Wtn)1[0; ti](s); s∈ [0; 1]:

We may regard DF as a random element with values in L2([0; 1]), and then de�ne
the Malliavin derivative of order k by k fold iteration of the above derivation. It will
be denoted by D⊗k F , and is a random element with values in L2([0; 1]k). Its value at
(s1; : : : ; sk)∈ [0; 1]k is written D⊗k

s1 ;:::; sk .
If p¿1 and k ∈N, we denote by Dp;k the Banach space given by the completion

of S with respect to the norm

‖F‖p;k = ‖F‖p +
∑
16j6k

E


[∫ 1

0
(D⊗j

s1 ;:::; sjF)
2 ds1; : : : ; dsj

]p=2
1=p

; F ∈S:

More generally, if H is a Hilbert space and SH the set of linear combinations of
tensor products of elements of S with elements of H , Dp;k(H) will denote the closure
of SH w.r. to the norm

‖F‖p;k = ‖ |F |H‖p +
∑
16j6k

E


[∫ 1

0
|D⊗j
s1 ;:::; sjF |2H ds1 : : : dsj

]p=2
1=p

; F ∈SH ;

where the Malliavin derivatives of smooth functions are given in an obvious way,
and | : |H denotes the norm on H induced by the scalar product. These de�nitions are
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consistent. For example,

‖F‖p + ‖DF‖p;k−1 = ‖F‖p;k ; F ∈Dp;k ;
if H = L2([0; 1]).
Let M be the space of signed measures on (R;B), the real line equipped with

the Borel sets. The variation norm is denoted by |�| for �∈M . M is endowed with
the Banach space topology induced by this norm. At places it will be convenient to
use a weaker topology: the weak∗ topology which is induced by the space Cb(R)
of continuous bounded functions with the supremum norm ‖:‖. Endowed with the
latter topology, M is a locally convex space which, due to the separability of Cb(R),
is separable. For �∈M ; f∈Cb(R); we denote 〈�; f〉 = ∫R f d�. We may choose a
dense sequence (fi)i∈N⊂Cb(R), to use the standard embedding of M into an in�nite
dimensional metrizable space

� :M → RN;
� 7→ (〈�; fi〉)i∈N: (41)

Note that � is actually mapped into the compact cube
∏
i∈N [ − |�‖ |fi‖; |�‖ |fi‖]:

We shall subsequently use � to de�ne Malliavin derivatives, stochastic integrals, and
conditional expectations of M -valued objects, which �nally leads us to formulate a
type of measure valued martingale representation formula. For h∈L2([0; 1]), let W (h)=∫ 1
0 h(s) dWs: We �rst de�ne the smooth cylinder functions. Let

S(M) = {F : F = g(W (h1); : : : ; W (hk); x) dx; g∈C∞
c (Rk+1);

h1; : : : ; hk ∈L2([0; 1]); k ∈N}:
For g∈C∞

c (Rk) denote by @ig the partial derivative of g in direction i, 16i6k.
So we may de�ne the Malliavin derivative for smooth cylinder functions by

DsF =
k∑
i=1

@ig(W (h1); : : : ; W (hk); x) dxhi(s); s∈ [0; 1]:

We consider DF as an element of L2(
× [0; 1];M) with respect to the Banach space
topology. We obviously have in terms of the Malliavin derivative of real-valued func-
tions

〈DF;f〉= D〈F; f〉; f∈Cb(R); (42)

and hence also

DF = �−1((D〈F; fi〉)i∈N): (43)

We next introduce a norm on S(M). For F ∈S(M) let

‖F‖1;2 = [E(|F |2)1=2 + E(‖ |DF | ‖22)1=2]: (44)

Note that by de�nition, we have indeed ‖F‖1;2¡∞ for F ∈S(M): Hence the closure
D1;2(M) of S(M) with respect to ‖:‖1;2 is well de�ned and nontrivial.
In a similar way, we may de�ne ‖:‖1;p; p¿1; and D1;p(M) by replacing the 2-norm

by the p-norm, as well as for higher derivatives the norms ‖:‖k;p and spaces Dk;p(M);
k ∈N; p¿1: We obviously have the following property.
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Proposition A.1. For F ∈D1;2(M) and f∈Cb(R) we have 〈F; f〉 ∈D1;2 and
〈DF;f〉= D〈F; f〉:

Proof. Let F ∈S(M), f∈Cb(R): Then by de�nition with a suitable constant c

E(〈F; f〉2)1=2 + E
(∫ 1

0
Ds〈F; f〉2 ds

)1=2
6c‖F‖1;2 ‖f‖:

The asserted property therefore follows from (42) and the closability of the operator
D for measure and real-valued functions.

The following property extends (43).

Proposition A.2. For F ∈D1;2(M) we have
DF = �−1((D〈F; fi〉)i∈N):

Proof. This is a consequence of the continuity of �−1 for the weak∗ topology and
(43).

We next need Itô integrals for random elements with values in M with respect to
the weak∗ topology at least. Consider an M -valued adapted process (Ft)t ∈ [0;1] with
respect to the augmented Wiener �ltration (Ft)t ∈ [0;1]: This amounts to say that for
any i∈N the real-valued process (〈Ft; fi〉)t ∈ [0;1] is adapted, since due to (43) we
have Ft = �−1((〈Ft; fi〉)i∈N): Note that in this case we also have adaptedness of
(〈Ft; f〉)t ∈ [0;1] for any f∈Cb(R): Now suppose that in addition we have

sup
f∈Cb(R);‖f‖61

E

(∫ 1

0
〈Ft; f〉2 dt

)
¡∞: (45)

Denote

‖F‖2 = sup
f∈Cb(R);‖f‖61

E

(∫ 1

0
〈Ft; f〉2 dt

)1=2
:

In a similar fashion, we can de�ne ‖F‖p for p¿1. Then for any f∈Cb(R) the
Itô integral process

∫ :
0〈Ft; f〉 dWt is well de�ned and continuous on [0; 1]: As above,

we may use the embedding to de�ne the Itô integral for the measure-valued process
(Ft)t ∈ [0;1]: For this purpose for any i∈N let

∫ :
0〈Ft; fi〉 dWt be a continuous version of

the Itô integral of (〈Ft; fi〉)t ∈ [0;1]: Let then∫ :

0
Ft dWt = �−1

((∫ :

0
〈Ft; fi〉 dWt

)
i∈N

)
:

Let now f∈Cb(R) be arbitrary. Let, moreover, (gi)i∈N be a subsequence of (fi)i∈N
which converges to f. Then we have by de�nition

E

(∫ 1

0
〈Fs; f − gi〉2 ds

)
6‖F‖2 ‖f − gi‖ → 0
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as i → ∞: But we may use Doob’s inequality to write

E

(
sup
t ∈ [0;1]

∣∣∣∣
∫ t

0
〈Fs; f − gi〉 dWs

∣∣∣∣
2
)
64E

(∫ 1

0
〈Fs; f − gi〉2 ds

)

for any i∈N: Hence for any f∈Cb(R),
∫ :
0〈Fs; f〉 dWs is well de�ned as a continuous

process. This way we obtain

Proposition A.3. Let (Ft)t ∈ [0;1] be anM -valued adapted process such that ‖F‖2¡∞:
Then there exists a uniquely (up to equivalence of processes) process

∫ :
0 Ft dWt on M

which is continuous with respect to the weak∗ topology such that we have for any
f∈Cb(R)〈∫ :

0
Ft dWt; f

〉
=
∫ :

0
〈Ft; f〉 dWt:

Moreover;

‖F‖2 = sup
i∈N

E

(∫ 1

0

〈
Ft;

fi
‖fi‖

〉2
dt

)1=2
:

The process
∫ :
0 Ft dWt is called Itô integral process of F = (Ft)t ∈ [0;1].

Of course, if the measure-valued process is L2-bounded in the variation norm, the
Itô integral process exists, and our statement becomes more stringent.

Proposition A.4. Let (Ft)t ∈ [0;1] be an M -valued adapted process such that

E

(∫ 1

0
|Fs|2 ds

)
¡∞:

Then the Itô integral process for F exists and is continuous in the strong topology
induced by the total variation norm.

Proof. Since for a measure �∈M we have

|�|= sup
f∈Cb(R);‖f‖61

〈�; f〉;

we know that the process (|Ft |)t ∈ [0;1] is measurable and adapted. For any f∈Cb(R),
‖f‖61; we obviously have

E

(∫ 1

0
〈Ft; f〉2 dt

)
6E

(∫ 1

0
|Ft |2 dt

)
:

The argument starting with (45) can now be replaced by a simpler one based upon∫ 1

0
〈Ft; f − g〉2 dt6

∫ 1

0
|Ft |2 dt ‖f − g‖2;

which derives the existence of continuous integral processes
∫ :
0〈Ft; f〉 dWt directly from

the embedding.
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The classical Clark–Ocone formula states that for F ∈D1;2 one has

F = E(F) +
∫ t

0
E(DtF |Ft) dWt:

Our next aim is to derive a measure-valued version of this formula. For this purpose,
we �rst have to extend the operation of conditional expectation to measure-valued
quantities.
Let F be an M -valued random variable, which is F-measurable. This means that

〈F; fi〉 isF-measurable for any i∈N. Then also 〈F; f〉 isF-measurable for f∈Cb(R).
Let G⊂F be a �-algebra. Then for any i∈N the conditional expectation E(〈F; fi〉|G)
is well de�ned, up to P-a.s. equality. Let then

E(F |G) = �−1((E(〈F; fi〉)i∈N):
Then the conditional expectation is de�ned up to P-a.s. equality, and by de�nition we
have

〈E(F |G); fi〉= E(〈F; fi〉|G)
for i∈N. Now suppose in addition

‖F‖1 = sup
f∈Cb(R);‖f‖61

E(|〈F; f〉|)¡∞: (46)

Let f∈Cb(R) be arbitrary, and choose a subsequence (gi)i∈N of (fi)i∈N such that
gi → f. Then we know that

|E(〈F; f − gi〉)|6‖F‖1 ‖f − gi‖ → 0

as i → ∞. By using Jensen’s inequality in addition, we also obtain
E(|E(〈F; f − gi〉|G)|)6‖F‖1 ‖f − gi‖ → 0

as i → ∞. Therefore we get

Proposition A.5. Let F be F-measurable with values in M ; G⊂F a �-algebra.
Assume (46). Then there exists a uniquely (up to P-a.s. equality) determined G-
measurable random variable E(F |G) with values in M such that for any f∈Cb(R)
we have

〈E(F |G); f〉= E(〈F; f〉|G):

If we know that F is integrable in the variation norm, the statement of the preceding
proposition becomes more direct.

Proposition A.6. Let F be F-measurable with values in M ; G⊂F a �-algebra.
Suppose that E(|F |)¡∞. Then there exists a uniquely (up to P-a.s. equality) de-
termined G-measurable random variable E(F |G) with values in M such that for any
f∈Cb(R) we have

〈E(F |G); f〉= E(〈F; f〉|G):

We are ready to formulate a measure-valued Clark–Ocone formula.
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Theorem A.1. Let F ∈D1;2(M). Then we have

F = E(F) +
∫ 1

0
E(DsF |Fs) dWs:

Proof. For i∈N the classical formula yields

〈F; fi〉= E(〈F; fi〉) +
∫ 1

0
E(Ds〈F; fi〉|Fs) dWs: (47)

But by Propositions A.6, A.2 and de�nition, we have for any t ∈ [0; 1]
E(DtF |Ft) = �−1(E(Dt〈F; fi〉|Ft)i∈N):

Hence by Proposition A.4 and de�nition∫ 1

0
E(DtF |Ft) dWt =�−1

((∫ 1

0
〈E(DtF |Ft); fi〉 dWt

)
i∈N

)

=�−1
((∫ 1

0
E(Dt〈F; fi〉|Ft) dWt

)
i∈N

)
;

where the measurability is again due to the measurability in the scalar case and the
embedding. Since similar, but simpler identi�cations are valid for F and E(F) (the
conditional expectation with respect to the trivial �-algebra), (47) may be applied to
yield the desired formula. This completes the proof.
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